
Big Data Approach to Fluid Dynamics
Visualization Problem

Vyacheslav Reshetnikov1 , Egor Golubchikov1 , Andrey Pyatlin1 ,
Alexey Kuzin1(B) , Vladislav Kiev1 , Nikolay Shabrov1 ,

Alexey Zhuravlev1,2 , and Ekaterina Guseva1

1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
kuzin aleksei@mail.ru

2 Reutlingen University, Reutlingen, Germany

Abstract. Present work is dedicated to development of the software for
interactive visualization of results of simulation of gas dynamics prob-
lems on meshes of extra large sizes. Kitware ParaView visualization tool,
which is popular among engineers and scientists is used as a frontend.
The coupling of client and server instances of ParaView is used in the
project. The crucial feature of the work is an application of Apache
Hadoop and Apache Spark for distributed retrieving of simulation data
from files on hard disk. The data is stored on the cluster in Hadoop
Distributed File System (HDFS) managed by Apache Hadoop and is
provided to ParaView server by Apache Spark data processing tool.

Keywords: Visualization · Spark · ParaView · Parquet

1 Introduction

The capabilities of modern high performance computers and the level of develop-
ment of special problem-oriented software packages of predictive modeling allow
the user to increase resolution of numerical grids up to the order of billions nodes
and more. Files of simulation results on larger meshes are represented by big data
arrays, especially in the case of modeling of unsteady processes. Investigations
show that there is a growing trend in the size of the data [1]. The size of data
retrieved causes a problem of low speed of scientific visualization and analysis
of the results.

While software for predictive modeling and hardware available for the wide
spectrum of scientists allow to perform fluid dynamics evaluations on meshes
up to 10 billions cells, visualization tools do not provide desired efficiency. One
of the problems is low visualization speed. Moreover, it is not only linked with
the rendering. Childs et al. [2] showed that time of input/output can be two

Supported by Russian Science Foundation (Grant No. 18-11-00245)
The research carried out with the financial support of the grant from the Program Com-
petitiveness Enhancement of Peter the Great St. Petersburg Polytechnic University.

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 461–467, 2019.
https://doi.org/10.1007/978-3-030-22750-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_38&domain=pdf
http://orcid.org/0000-0002-3953-3440
http://orcid.org/0000-0002-0366-1424
http://orcid.org/0000-0002-1851-702X
http://orcid.org/0000-0002-3715-5829
http://orcid.org/0000-0002-3790-2994
http://orcid.org/0000-0001-7721-1824
http://orcid.org/0000-0002-9973-1705
http://orcid.org/0000-0002-7117-2454
https://doi.org/10.1007/978-3-030-22750-0_38


462 V. Reshetnikov et al.

orders higher than rendering and evaluations. One of the ways to reduce the
time of input/output is the development of special algorithms for data process-
ing not involving supercomputers technologies. This approach was performed
in [3–5]. In this paper authors use another approach which assumes usage of a
supercomputer.

There is a lack of good tools which are able to handle extra large grids on the
market of visualization systems. The most known scientific visualization brands
such as ParaView, TecPlot, COVISE, TechViz do not support information about
effective results presentation on the meshes of up to billion nodes large. At the
same time, this kind of problem persists for aircrafts designers.

The scientific problem considered in this article is the problem of achieving an
effective and rapid interactive visualization and analysis of results of predictive
modelling of fluid dynamics problems for modern aircrafts on superlarge meshes.
It is assumed that created software can be used by engineers who do not have
any special knowledges in IT, that is why it should provide displaying of the
results in the most convenient and easy to understand way. The software should
give visualization of fields in real or almost real time for comfortable working
process.

The key idea underlying the developed software package is the usage of dis-
tributed big data analysis tools such as Apache Hadoop in conjunction with
Apache Spark [6]. They provide distributed retrieval of the data from cluster
nodes that can seriously reduce time of data reading in comparison to traditional
sequential approach. Hadoop is mainly used to support Hadoop Distributed File
System (HDFS), and the server built on the base of the Spark framework pro-
vides distributed processing of queries for retrieving required dataset from a
cluster. A plugin to ParaView developed by the authors, plays the role of client
of Spark server. It is intended to send queries and is integrated with the server
version of ParaView. The user’s computer has the client version of ParaView,
which receives final results of rendering from server ParaView.

The problem with the Apache Hadoop application for creation of packages
for visualization of results of finite element modelling is considered in [7]. The
example of an effective usage of HDFS is presented in [8]. An approach similar
to the authors one was investigated in [9] with the difference that in that work
Apache Hive was used instead of Apache Spark. Also the article [10] should be
mentioned in which a hybrid approach is offered that assumes usage of HDFS
and Kitware ParaView as a user interface. In the papers [11] and [12] Hadoop
and Spark frameworks were applied for analysis and visualization of atmospheric
phenomena modeling in Earth science problems. The attention was paid mainly
to the analysis tasks.

2 Architecture

In this section the software architecture is described, as well as how particular
program parts interact with each other during the typical visualization process.



Big Data Approach to Fluid Dynamics Visualization Problem 463

The software environment is built by “client-server” scheme and has the
structure which is shown on the Fig. 1. Basic elements are:

– Client ParaView. The client version of the well-known scientific visualiza-
tion Kitware’s ParaView package is installed on the local computer and is
intended to provide direct interaction with the user. It visualizes results of
rendering obtained from ParaView server. This is the only component of the
software, which works on the local machine.

– Server ParaView. The server version of ParaView which is installed on the
cluster. It provides effective parallel rendering based on the data retrieved
with the plugin to ParaView, designed by the authors.

– Plugin to ParaView. The plugin is made by the authors and is integrated
into the server Paraview and is intended to efficient data reading. The reading
is processed through the responds to the client SQL-queries to data server
that is also run on the same or another cluster.

– Data server. The server is written using Python and uses the Apache Thrift
framework. It receives queries from the ParaView plugin and gives data blocks
back. The server forwards queries to the Spark system that retrieves data in
a distributed manner from Hadoop Distributed File System.

Fig. 1. The scheme of interaction of the software components

The interaction of client and server parts of ParaView is quite traditional app-
roach of usage of ParaView that provides parallel model rendering [13]. There-
fore, the development of the ParaView plugin and the data server is the main
direction of the authors efforts. From the ParaView point of view the plugin is
the regular plugin for the reading of the model data defined on the structured
grid. At the present time the plugin gives VTK-object vtkMultiBlockDataset.



464 V. Reshetnikov et al.

But instead of direct data reading, plugin forms SQL-query to the data server
and retrieves data in response. The server transfers the query to Apache Spark.
Spark executes distributed reading, collecting (collect operation) and sending
data as a response to the SQL-query. The advantage of such a scheme over direct
reading from file is that the reading via Spark is performed in parallel on several
nodes of the cluster, which can give an increase in speed, especially on large files.

The speed of reading essentially depends on the file format used. Initially,
data is presented in text format Tecplot and takes 1.27 GB. It is not suitable
format for holding large data so it must be converted into another format. The
format to be converted in must meet the following requirements. Firstly, the file
size must be as small as possible. Secondly, it must provide relatively fast access
to individual blocks of data, which is important in cases there is no need to read
the entire file. It must support distributed storage and be readable by Spark.
Based on the sum of these requirements, Apache Parquet [14] was chosen as
the data format. On the one hand, it meets all requirements above. It is binary
format so it has a smaller size in comparison to Tecplot. After conversion one
frame of data takes about 400 MB. Besides, it provides fast access, distributed
storage and can be read by Spark. Also it has a sufficient flexibility to form the
necessary block structure of data storage. The format itself is a set of columns
organized into a hierarchical structure under the control of a special scheme.
The choice of the scheme is left to the person who writes the file. The scheme
is the part of the format written to the file’s metadata and can be restored
while reading. Thus, a Parquet file can contain a highly complex hierarchical
structure. Although Apache does not describe details of format implementation
it provides open-source API for reading and writing. The basic ideas of working
with Parquet are taken from [15].

As a method of storing data on a structured grid, a block structure was
chosen, which is obtained from the initial index of parallelepiped grid elements
by dividing it by parallel index planes in three directions. Each block spatially
occupies an area in the form of a curvilinear hexahedron and represents a struc-
tured grid. The storage of such block inside the Parquet file is organized as a set
of separate Parquet columns for each of the node coordinates and field compo-
nents. Due to the specifics of the Parquet format, column addresses are stored
in the file’s metadata and each column can be accessed directly without reading
the entire file so it solves the problem of selective reading of the necessary grid
blocks.

At the moment, the solution is not adaptive to the manner of distribution
of simulation output. That is why data must be redistributed in case of change
of computer nodes numbers. Solution adaptivity to this kind of changes is the
point for further research.

3 Usage Example

An example of visualization of unsteady gas dynamics simulation results on
the structured grid of hexahedrons is considered. The source data is written in



Big Data Approach to Fluid Dynamics Visualization Problem 465

the form of time layers. Then each layer is initially stored in a separate file in
Techplot format. The model contains about 5 · 106 nodes and each Techplot file
has size of 1.27 GB.

The processing of separate frame files during direct visualization of these
frames sequence on a standalone computer in ParaView takes about 30 s, which
is unacceptably slow for interactive mode. Such low speed can be attributed to
the fact that Tecplot is not suitable format to hold an information of big data.

The same data is visualized with developed software. All components except
of client ParaView are installed on the cluster. The nodes of supercomputer “RSC
Tornado” of Saint-Petersburg Polytechnic University Supercomputer Center are
used as a cluster for ParaView and data servers. Each node consists of two
CPU Intel Xeon E5-2697 v3 (14 cores, 2.6 GHz) and 64 GB RAM DDR4. Simple
reading of Tecplot datafile located on one node with Paraview takes about 60 s.

Data files were converted to Parquet format before visualization in the devel-
oped environment and the size of one frame was reduced to about 400 MB. There
were 20 frames. In total, the size of all frames was about 7.8 GB. The data of
such rather small size is used only to illustrate approach. In further research size
of each file is proposed to be bigger. During writing to Parquet format the data
was transformed as described above: initial index parallelepiped of structured
grid was divided by mutually orthogonal index planes into the parallelepipeds
of smaller sizes. Inside each box each coordinate and each component field is
separate Parquet column. Such a structure is effective on extraction of selected
blocks because it does not require reading of the entire file. Each conversion
takes about 40–45 s. In total, the whole dataset is converted on 10 MPI threads
for 90 s.

Apache Spark is launched on the cluster under control of Slurm system.
The reading of Parquet files in Spark is performed by the pyarrow library, as
it provides a higher speed and requires significantly less memory than built-in
Spark tools for Parquet reading. Data in Spark is represented in non-hierarchical
plain structure.

Table 1. Time of reading and displaying of separate frames on 8 nodes of the cluster
“RSC Tornado”

Frame Reading time, s Total time, s fps

1 4.655 49.314 0.020

2 2.794 14.142 0.071

3 2.723 11.862 0.084

4 2.790 10.895 0.092

5 2.956 15.596 0.064

The time of displaying of the first five frames using 8 cluster nodes is shown
in the Table 1. The second column contains the time of direct reading of the



466 V. Reshetnikov et al.

Parquet file in Spark using pyarrow. The third column is the total time of the
frame displaying. The last column is the number of frames per second, i.e. the
inverse of the total time. Most of the time is spent on data transfer from the data
server to the client ParaView, which indicates the need to use a faster network.
The time of reading and transmitting the first frame is longer than the next
ones, which is caused first of all by the necessity of reading the grid. The fact is
that the grid remains unchanged during the transition from frame to frame, so
it is read only once at the first frame. Starting from the second frame the system
reads only the values of the displayed field. That is why from the second frame
reading time does not change.

The increment of the number of nodes involved does not lead to the expected
decrement of reading time in Spark. Finding the cause of this phenomenon is
one of the tasks of further research.

4 Conclusions

A software environment for interactive visualization is developed. It provides
visualization of simulation results evaluated on large numerical grids. The envi-
ronment consists of a client ParaView, a server ParaView, a data server that
forwards SQL queries to Apache Spark. The latter is used to increase the speed
of reading large data by providing distributed access to them.

The experiments have shown the effectiveness of using data in Parquet for-
mat. Compared to the Tecplot text format this format provides a smaller file
size, is directly readable by Apache Spark, and provides an ability to extract
individual data blocks without having to read the entire file.

The experiments also showed the absence of scalability of the data reading
speed in Spark with increasing number of nodes and high overhead for data
transfer from Spark to the server ParaView. These problems are tasks for further
development.

Another challenge is to use more specific SQL queries. These can be requests
to get data corresponding to the visible part of the model. In addition, there
might be requests to retrieve data distributed across layers. The layer which
data should be extracted depends on the camera position. If it corresponds to a
higher detalization, the layer must contain more nodes.

References

1. Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data
research. Big Data Res. 2(2), 59–64 (2015)

2. Childs, H., et al.: A contract based system for large data visualization. In: Visual-
ization, VIS 2005, pp. 191–198. IEEE (2005)

3. Belyaev, S., Shubnikov, V., Motornyi, N.: Adaptive screen sampling algorithm
acceleration for volume rendering. In: MCCSIS 2018 - Multi Conference on Com-
puter Science and Information Systems; Proceedings of the International Confer-
ences on Interfaces and Human Computer Interaction 2018, Game and Entertain-
ment Technologies 2018 and Computer Graphics, Visualization, Computer Vision
and Image Processing 2018, pp. 377–381 (2018)



Big Data Approach to Fluid Dynamics Visualization Problem 467

4. Belyaev, S., Smirnov, P., Shubnikov, V., Smirnova, N.: Adaptive algorithm for
accelerating direct isosurface rendering on GPU. J. Electron. Sci. Technol. 16(3),
222–231 (2018). https://doi.org/10.11989/JEST.1674-862X.71013102

5. Savchuk, D.A., Belyaev, S.Y.: Two-pass real-time direct isosurface rendering algo-
rithm optimization for HTC vive and low performance devices. Paper Presented at
the Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 10579
(2018). https://doi.org/10.1117/12.2292183

6. Apache Spark framework. http://spark.apache.org. Apache Spark is developed by
Apache company. https://apache.org

7. Lange, B., Nguyen, T.: A Hadoop distribution for engineering simulation. [Research
Report] INRIA Grenoble - Rhône-Alpes (2014)

8. Voinov, N., Drobintsev, P., Kotlyarov, V., Nikiforov, I.: Distributed OAIS-based
digital preservation system with HDFS technology. In: 2017 20th Conference
of Open Innovation Association, (FRUCT), St. Petersburg, pp. 491–497 (2017).
https://doi.org/10.23919/FRUCT.2017.8071353

9. Artigues, A., et al.: Scientific big data visualization: a coupled tools approach.
Supercomput. Front. Innov. 1(3), 4–18 (2014)

10. Mitchell, C., Ahrens, J., Wang, J.: VisIO: enabling interactive visualization of
ultra-scale, time series data via high-bandwidth distributed I/O systems. In: 2011
IEEE International Parallel & Distributed Processing Symposium (IPDPS), pp.
68–79 (2011)

11. Zhou, S., et al.: A Hadoop-based visualization and diagnosis framework for Earth
science data. In: IEEE International Conference on Big Data, pp. 1911–1916 (2015)

12. Zhou, S., Li, X., Matsui, T., Tao, W.: Visualization and diagnosis of earth science
data through hadoop and spark. In: IEEE International Conference on Big Data,
pp. 2974–2980 (2016)

13. ParaView software. http://www.paraview.org. ParaView is developed by Kitware
company. http://www.kitware.com

14. Columnar storage format. http://parquet.apache.org. Parquet is developed by
Apache company. https://apache.org

15. Melnik, S., et al.: Dremel: interactive analysis of web-scale datasets. In: Proceedings
of the 36th International Conference on Very Large Data Bases, pp. 330–339 (2010)

https://doi.org/10.11989/JEST.1674-862X.71013102
https://doi.org/10.1117/12.2292183
http://spark.apache.org
https://apache.org
https://doi.org/10.23919/FRUCT.2017.8071353
http://www.paraview.org
http://www.kitware.com
http://parquet.apache.org
https://apache.org

	Big Data Approach to Fluid Dynamics Visualization Problem
	1 Introduction
	2 Architecture
	3 Usage Example
	4 Conclusions
	References




