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Abstract. The main purpose of this paper is modelling and solving
boundary value problems simultaneously considering uncertainty of all
of input data such as: shape of boundary, boundary conditions and other
parameters. The strategy is presented on the basis of problems described
by Navier-Lamé equations. Therefore, the uncertainty of parameters
here, means the uncertainty of the Poisson’s ratio and Young’s modulus.
For solving uncertainly defined problems we use implementation of inter-
val parametric integral equations system method (IPIES). In this method
we propose modification of directed interval arithmetic for modeling and
solving uncertainly defined problems. We consider an examples of uncer-
tainly defined, 2D elasticity problems. We present boundary value prob-
lems with linear as well as curvelinear (modelled using NURBS curves)
shape of boundary. We verify obtained interval solutions by comparison
with precisely defined (without uncertainty) analytical solutions. Addi-
tionally, to obtain errors of such solutions, we decided to use the total
differential method. We also analyze influence of input data uncertainty
on interval solutions.

Keywords: Boundary problems · Uncertainty · Interval arithmetic ·
Parametric integral equations system

1 Introduction

Modeling of uncertainty is a very important problem and it generates consider-
able interest among researchers. However direct application of existing mathe-
matical apparatuses is often useless in practice. In this paper we present inter-
val parametric integral equations system (IPIES) [8,10] for solving uncertainly
defined boundary value problems on examples of 2D elasticity problems. The
parametric integral equations system method (PIES) was previously developed
and widely tested for precisely (exactly) defined problems [7,11]. Many studies
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have confirmed PIES advantages over other methods, such as well known FEM
and BEM methods.

Mentioned methods have also corresponding interval methods, such as
IFEM [1] and IBEM [4]. However, in these methods accuracy of solutions depends
on (finite or boundary) elements number. So, discretization increases the num-
ber of interval data and results in solutions overestimation. Therefore, the IFEM
and IBEM researchers have mainly focused on modeling uncertainty of boundary
conditions and other parameters only.

The article presents the impact of all uncertainly defined input data (nec-
essary to define the problem) on IPIES solutions, obtained based on imple-
mented program of the method. We consider 2D elasticity problems modeled
by Navier-Lamé equations and we define uncertainty of the shape of boundary,
boundary conditions and other parameters (Poisson’s ratio and Young’s modu-
lus). We model uncertainty using modified directed interval arithmetic (applied
in IPIES). To verify obtained interval solutions we use analytical solutions with
errors obtained using total differential method [3]. Additionally we test an impact
of change in data uncertainty on interval solutions.

2 Mathematical Foundations of IPIES

Till now, PIES was applied for precisely defined boundary problems [7,11]. It
is an analytical modification of boundary integral equations. Now, to include
uncertainly defined input data, we can present PIES (on example of Navier-Lamé
equation) using intervals:
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are the interval parametric boundary functions on cor-

responding boundary segments Sj (on which the boundary was theoretically
divided). One of these functions will always be defined as uncertain (interval)
boundary conditions on segment Sj , then the other will be obtained as a result
of numerical solution of IPIES (1).

Including uncertainty in the first integral U∗
lj(s1, s) for plane state of strain

we obtained following interval matrix:
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where l, j = 1, 2, ..., n, μ = 0.5 · E/(1 + ν) is an interval Lamé parameter,
ν = [ν, ν] is an interval Poisson’s ratio, E = [E,E] is an interval Young’s
modulus and the formulas to obtain η = [η, η], η1 = [η

1
, η1] and η2 = [η

2
, η2]

are:

η = [η2
1 + η2

2 ]
0.5, η1 = S

(1)
l (s1) − S

(1)
j (s), η2 = S

(2)
l (s1) − S

(2)
j (s). (3)

The second integral P∗
lj(s1, s) we also defined using intervals:
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[
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]
, (4)

where l, j = 1, 2, ..., n and Pik = [P ik, P ik] (where i, k = 1, 2) are defined as:
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We use directed intervals for modeling uncertainty and modified directed
interval arithmetic for calculations:

x · y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xs · ys − xs · ym − xm · ys + xm · ym for x ≤ 0,y ≤ 0
xs · y − xm · y for x > 0,y ≤ 0
x · ys − x · ym for x ≤ 0,y > 0
x · y for x > 0,y > 0

, (8)

where for any interval number a = [a, a] we define as = a + am and

am =

{
|a| for a > a

|a| for a < a
, where a > 0 means a > 0 and a > 0 i a ≤ 0 means

a < 0 or a < 0 then multiplication (·) is an interval multiplication. Research on
such modification was widely discussed in [8].

3 Verification of IPIES on Examples

To obtain interval solutions, presented mathematical apparatus was implemented
as computer program of IPIES method. We decided to verify obtained interval
solutions using analytical solutions with errors obtained by total differential
method (used directly to define errors in arithmetic operations). This method
allows us to obtain error of the function, when the errors of all function arguments
are known. If the function u = f(x1, x2, ..., xn) is differentiable and we define
|Δxi|(i = 1, 2, ..., n) as absolute errors of function arguments, then the general
formula to obtain an absolute error of the function is [3]:
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Δu =
n∑

i=0

∣∣∣∣
∂f

∂xi

∣∣∣∣ |Δxi|, (9)

where in boundary value problem the function f correspond to analytical
solution.

Example 1. The first of considered problems is known as the Lamé problem
[6]. We define simultaneously uncertainty of the boundary shape and boundary
conditions (Fig. 1). We analyze thick-walled pipe, which length of the internal
radius (a = 10 cm) and external radius (b = 25 cm) is defined with the width of
uncertainty band (the width of interval) εa = εb = 1. So defined pipe is subjected
to a uniform internal pressure pa. Therefore, we define the uncertainty of the
boundary condition by interval value pa = [99, 101]. The problem is defined
in plane state of strain and the material parameters are defined as degenerate
intervals with values: E = 2 · 105 MPa i ν = 0.25. We use NURBS curves [5,9] of
second degree (defined using interval points) to model uncertainty of the shape
of boundary.

Fig. 1. Modelling uncertainty of the shape of boundary and boundary condition.

As already mentioned, we decided to compare obtained interval solutions
with analytical ones [6]:

σx =
paa2 − pbb

2

b2 − a2
− (pa − pb)a2b2

r2(b2 − a2)
, σy =

paa2 − pbb
2

b2 − a2
+

(pa − pb)a2b2

r2(b2 − a2)
, (10)

where r is the one of polar coordinates r2 = x2+y2, a < r < b. We obtain solution
error using total differential method, where as the error of function arguments
(|Δxi| from the (9)) we assume the half of the interval width (Δa = |a − a|/2)
for uncertainly defined shape of boundary a = [a, a], b = [b, b] and boundary
condition pa = [pa, pa],pb = [pb, pb]. Additionally we assume pb = [0, 0] and
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omit the uncertainty of material constant in this example, because the Young’s
modulus and Poisson’s ratio are not defined in analytical solution (10).

We present interval solutions and analytical solutions with errors obtained
using total differential method in Table 1 in cross section: x = 12, 14, ..., 24 and
y = 0. To allow direct comparison, we present interval solutions using the middle
of interval (mid(a) = (a + a)/2) and the half of interval width (Δa = |a − a|/2).
Both obtained middle values of interval solutions and analytical solutions, as
well as obtained halves of the width of interval solutions and analytical solutions
errors are almost equal. Average relative error is ca one percent, so the example
confirms correctness of proposed strategy.

Table 1. Interval solutions in domain with compare to analytical ones.

x Analytical solution Interval solution (IPIES)

σx σy Δσx Δσy mid(σx) mid(σy) Δσx Δσy

12 −63.624 101.720 8.488 14.664 −64.074 102.686 8.535 14.714

14 −41.691 79.786 5.824 11.666 −41.980 80.573 5.833 11.708

16 −27.455 65.551 4.096 9.721 −27.670 66.223 4.101 9.758

18 −17.695 55.791 2.911 8.387 −17.861 56.385 2.914 8.421

20 −10.714 48.810 2.063 7.433 −10.846 49.347 2.066 7.464

22 −5.549 43.644 1.436 6.727 −5.649 44.135 1.441 6.754

24 −1.620 39.716 0.959 6.190 −1.629 40.180 1.003 6.230

Average relative error [%] 0.95 1.06 0.87 0.43

Example 2. In the next example we decided to examine the influence of input
data uncertainty on interval solutions of IPIES method. We consider 2×2 square
plate presented in [2] and uncertainly defined in Fig. 2. The shape of boundary is
defined with width of uncertainty band ε = 0.1. Material constants are defined
as follow: Young’s modulus E = [0.9, 1.1] and Poisson’s ratio ν = [0.29, 0.31]. In
Fig. 2, we also present interval force p acting to one side of the plate. We obtain
solutions of the problem in plane state of strain.

Analytical solutions, of above mentioned example, are defined exactly (with-
out uncertainty) as follow [2]:

ux = −0.195x2 − 0.455(y − 1)2, uy = 0.91x(y + 1), (11)

and corresponding stress [2]:

σx = 0, σy = x. (12)

We obtain interval solutions in cross-section presented on Fig. 2, where y = 0
and x changing from −1 to 1. Results are presented in Fig. 3. We denote the width
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Fig. 2. Uncertainly defined boundary value problem.

Fig. 3. Interval solutions in domain.

of uncertainty band as values 0.1 − 0. For example, value 0.08 means the width
of uncertainty band equal to εKB = 0.08 for the shape of boundary, εWB = 0.08
for boundary conditions, εE = 0.16 for Young’s modulus and εν = 0.016 for
Poisson’s ratio. Interval solutions are presented as lower (l) and upper (u) bound.

So, we can note, that the strategy works well for problems where all of input
data are defined uncertainly. As we expect, by increasing the width of interval
input data, the width of interval solutions is also increased. Additionally pre-
sented IPIES solutions with the width of uncertainty band ε = 0 and analytical
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ones 0* (for precisely defined problem) are almost equal and are located inside
of each interval solution.

4 Conclusions

We presented mathematical foundation of IPIES with uncertainly defined all
of input data simultaneously. Based on such mathematical model the program
of IPIES method has been implemented. We test the program on examples of
the problems described by Navier-Lamé equations. Therefore we modeled uncer-
tainly defined shape of boundary, boundary conditions and parameters: Young’s
modulus and Poisson’s ratio. To verify interval solutions we decided to use ana-
lytical solutions and its errors obtained by total differential method. Obtained
solutions are almost equal. We also tested an impact of the width of interval
input data on width of interval solutions. We noted, that the width of interval
solution, as expected, increases with the width of interval input data. Addition-
ally exact solutions of PIES (almost equal to the analytical ones) are located
inside all of considered interval solutions. Therefore, in conclusion, it is very dif-
ficult and time-consuming to define exactly what kind of problems can be solved
by IPIES, but we present a high potential of the method, in solving problems
with all of input data defined uncertainly, for further investigations.
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11. Zieniuk, E., Kużelewski, A.: GPU-based acceleration of computations in elasticity
problems solving by parametric integral equations system. Adv. Eng. Softw. 79,
27–35 (2015)

https://doi.org/10.1007/978-3-319-93713-7_19
https://doi.org/10.1007/978-3-319-93713-7_19

	IPIES for Uncertainly Defined Shape of Boundary, Boundary Conditions and Other Parameters in Elasticity Problems
	1 Introduction
	2 Mathematical Foundations of IPIES
	3 Verification of IPIES on Examples
	4 Conclusions
	References




