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Abstract. This paper presents a comparative analysis of algorithms
belonging to manifold learning and linear dimensionality reduction.
Firstly, classical texture image descriptors, namely Gray-Level Co-
occurrence Matrix features, Haralick features, Histogram of Oriented
Gradients features and Local Binary Patterns are combined to character-
ize and discriminate textures. For patches extracted from several texture
images, a concatenation of the image descriptors is performed. Using four
algorithms to wit Principal Component Analysis (PCA), Locally Linear
Embedding (LLE), Isometric Feature Mapping (ISOMAP) and Lapla-
cian Eigenmaps (Lap. Eig.), dimensionality reduction is achieved. The
resulting learned features are then used to train four different classifiers:
k-nearest neighbors, naive Bayes, decision tree and multilayer percep-
tron. Finally, the non-parametric statistical hypothesis test, Wilcoxon
signed-rank test, is used to figure out whether or not manifold learn-
ing algorithms perform better than PCA. Computational experiments
were conducted using the Outex and Salzburg datasets and the obtained
results show that among twelve comparisons that were carried out, PCA
presented better results than ISOMAP, LLE and Lap. Eig. in three com-
parisons. The remainder nine comparisons did not presented significant
differences, indicating that in the presence of huge collections of texture
images (bigger databases) the combination of image feature descriptors
or patches extracted directly from raw image data and manifold learning
techniques is potentially able to improve texture classification.

1 Introduction

Texture analysis plays an important role in the computer vision area. It is respon-
sible for extracting meaningful information from texture images. Texture is con-
sidered as an essential attribute, among all characteristics present in an image,
which can be used as a rich source of information in many application areas, such
as object recognition, remote sensing, content-based image retrieval and so on.
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In the computational context, texture analysis can be defined as a set of
techniques capable of processing texture information in every perspective or
in certain regions of interest (ROIs) of an image. According to Materka, Strz-
elecki et al. [12], this set is basically composed of four major categories, namely:
feature extraction, texture classification, texture segmentation and shape recon-
struction from texture. Feature extraction is the first stage of texture analysis. It
is responsible for translating the correlation between visual patterns contained
in an image into quantitative values. The methods responsible of performing
this function are known as texture descriptors. The purpose of texture clas-
sification is to associate textured samples with two or more classes according
to a given criteria of similarity [8,12,21]. Texture segmentation, unlike classi-
fication, focuses on the delimitation of regions based on texture information.
In this case there is no need for prior knowledge of the characteristics of each
surface meaning that unsupervised grouping techniques can be used [12,21,22].
Shape reconstruction through textures is directly linked to the recomposition of
three-dimensional surfaces by means of texture information [12,13,21,22]. This
work is confined mainly to texture classification which is composed of two main
processes, regarding feature extraction and classification of patterns.

Many methods of texture analysis have been developed over the years, each
one exploring a novel approach to extract the image’s texture information. For
instance, we have classical methods based on second-order statistics (such as
Co-occurrence Matrices (GLCM)), Haralick, Histogram of Oriented Gradients
(HoG) and Local Binary Patterns (LBP). Over many years, these four descrip-
tors have gained a large amount of interest in many computer vision researching
groups. The features extracted using the aforementioned descriptors have proven
to be discriminative in classifying texture patterns.

By using those four descriptors to choose a subset of features that really repre-
sent a texture image separately, some texture information can be lost which may
result in decreased recognition performance. According to this paper, in order to
compensate for lost texture information and to fill the gaps left by each descrip-
tor separately, the features extracted by those four descriptors are combined.
Feature vector representing the patches are then taken through dimensionality
reduction methods which give an improvement in recognition performance. On
the other hand, we also propose to consider as feature vector a concatenation of
32 × 32 patches extracted directly from an image raw data.

Finally, we use this effective combination of the features of those four descrip-
tors and also those ones extracted directly from an image raw data (after concate-
nating them and applying dimensionality reduction algorithms) with four classi-
fiers (KNN [10], Naive Bayes [23], Decision Trees [14] and Multilayer Perceptron
[5]) on Outex [19] and Salzburg [11] datasets. Finally, a comparative analysis
is achieved using the Wilcoxon test [24] to figure out if nonlinear dimensional-
ity reduction methods are better than the linear ones using the two proposed
approaches.

The rest of this paper is organized as follows. We give a brief overview of
PCA and manifold learning methods in Sects. 2 and 3 respectively. Section 4 is
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dedicated to present our proposal. Computational experiments and results for
this work are presented in Sects. 5 and 6 respectively. Finally, we conclude the
paper’s work in Sect. 7.

2 Principal Component Analysis

High-dimensional datasets (i.e datasets with many features) may present diffi-
culty in visualization process, may require high computational performance or
may contain noise. To overcome these issues, there exist methods related with
linear dimensionality reduction with the purpose of shrinking datasets by trans-
formation and/or selection of features, while minimizing information loss. In this
section, we will focus particularly on PCA [9].

It is common that some datasets follow certain distributions that are majorly
embedded in a few orthogonal components, where a component is the result of
a linear combination of the original features. PCA is a statistical technique that
aims at transforming a n-dimensional dataset X to a m-dimensional dataset Y ,
where, obviously, m ≤ n. Moreover, the dimensions of Y are captured in the
direction in which the variance of samples in X is maximum and should nec-
essarily be orthogonal components, commonly known as principal components
[9]. In Fig. 1, the orange and purple arrows are the principal components of the
synthetic dataset K, with 1000 samples and 2 features (2 principal components).
In addition, the Algorithm1 summarizes in a few simple steps the idea behind
PCA method.

Fig. 1. The principal components of dataset K (orange and purple arrows). (Color
figure online)
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Data: a dataset D with n samples and f features and m as being the
number of dimensions desired for the reduced dataset [17,15].

Result: the matrix consisting of the principal components
1. Find X = HD, where H is the centering matrix defined as
H = In − 1

n11T , where In and 1 are, respectively, the identity matrix of
order n and the column vector of 1′s.

2. Calculate the covariance matrix
∑

X .
3. Use singular value decomposition to find the eigenvalues

∑
= {σi} and

eigenvector V = {vi} of
∑

X .
4. Sort the eigenvalues by their absolute value in descending order and
select the first m ones and their respective eigenvectors.

Algorithm 1. Simple idea behind PCA Algorithm

3 Manifold Learning

Manifold learning is a popular approach to nonlinear dimensionality reduction.
Algorithms for this task are based on the idea that the dimensionality of many
datasets is only artificially high; though each data point consists of perhaps
thousands of features, it may be described as a function of only a few underlying
parameters. That is, the data points are actually samples from a low-dimensional
manifold that is embedded in a high-dimensional space. Manifold learning algo-
rithms attempt to uncover these parameters in order to find a low-dimensional
representation of the data. Manifold learning algorithms include methods such
as ISOMAP, LLE, Lap. Eig. that we are going to present briefly in this section.

3.1 ISOMAP

Firstly, ISOMAP has been suggested by Tenenbaum, de Silva and Langfor [20]
and was one of the first algorithms introduced for manifold learning. It can
be thought of as an extension of Multidimensional Scaling (or simply MDS).
ISOMAP algorithm can be summarized in three big steps:

1. Construct the weighted graph G from the distances pairwise for all points in
the input and find the graph G′ by applying the nearest-neighbor algorithm
on the graph G.

2. Compute the shortest path graph G′′ between all pairs of nodes from graph
G′. This might be done by the all-pairs Dijkstra’s [6] or by the Floyd Warshall
algorithm [1].

3. Use G′′ to construct the p-dimensional embedding using the MDS algorithm.
In other words, the MDS method can now be used to construct a representa-
tion in sub-spaces of the Rn.
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3.1.1 Multidimensional Scaling (MDS)
Isomap algorithm finds points whose Euclidean distances equal the geodesic
distances that were calculated in steps 1 and 2. In fact, such points exist and are
unique, since the manifold is isometrically embedded. Multidimensional Scaling
[7] is a classical technique that may be used to find such points. The main goal of
the MDS algorithm can be formalized as follows: Let {xi, yi} be the input dataset
for i = 1, 2, ..., n where xi denotes the feature vector that represents the ith
sample and yi denotes the class or category to which the vector belongs, being
generally an integer greater than zero. Given a Euclidean pairwise distances
matrix, retrieve which are the coordinates of xr ∈ Rk, r = 1, 2, ..., n, where
k is defined by the user (plan, space 3D, etc.). A distance matrix is given by
D =

{
d2rs

}
, r, s = 1, 2, ..., n where d2rs is a distance between xr and xs vectors.

Its expression is given by

d2rs = ‖xr − xs‖2.
Now, let B be the matrix of inner products defined as B = {brs}, where

brs = xT
r xs. Based on these configurations, the MDS method seeks to address

two main problems:

(i) From the distance matrix D find a matrix B.
(ii) From B retrieve the coordinates xr ∈ Rp where p is the rank of B.

To address the first problem, MDS method assume that points are mean-
centered—i.e.

∑n
r=1 xr = 0. After some algebraic operations on D and using the

initial form of matrix B, the final expression of matrix B is as B = HAH such
that A = − 1

2D and H = I − 1
n11T .

Finally, for retrieving the coordinates of the points, some properties of matrix
B can be used. In fact B has three important properties, namely B is symmet-
ric, the rank of B is p (this corresponds to the maximal number of linearly
independent rows/columns of B that generates a base in Rp) and B is positive
semidefinite. This implies that the matrix B has p non-negative eigenvalues and
n−p eigenvalues are null. Thus, by the spectral decomposition of B one can write
B = ∨′ ∧′ ∨′T where ∧′

= diag(λ1, λ2, ..., λn) is a diagonal matrix of eigenvalues
of B and ∨′

with n × p dimension is defined as
⎡

⎢
⎢
⎢
⎢
⎣

| | . . . |
| | . . . |
v1 v2 . . . vp

| | . . . |
| | . . . |

⎤

⎥
⎥
⎥
⎥
⎦

However, as B can be written in these following format B = Xn×pX
T
p×n,

thus, the observed Xn×p can be expressed as Xn×p = ∨′
n×p∧

′ 1
2

p×p where
∧′ 1

2 = diag(
√

λ1,
√

λ2, ...,
√

λp).
Each row of Xn×p will have the coordinate of a vector xi ∈ Rp, where p is

a parameter that controls the number of dimensions of the output space: if we
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want a 2D plot, p = 2, in case of a 3D plot, p = 3. The Algorithm 2 summarizes
the process of MDS.

Data: D =
{
d2
rs

}

Result: points in low-dimensional (k) Euclidean space whose interpoint
distances match the geodesic distances found in step 1 of ISOMAP

1. Do A = − 1
2
D

2. Do H = I − 1
n
11T

3. Compute B = HAH
4. Find the eigenvalues and the eigenvectors of B
5. Take the k eigenvectors associated with the largest k eigenvalues of B and set

∨′
nxk and ∧′ 1

2 = diag(
√

λ1,
√

λ2, ...,
√

λk)

6. Compute Xnxk = ∨′
nxk∧

′ 1
2

kxk

Algorithm 2. MDS Algorithm

It should be noted that the ISOMAP algorithm is totally unsupervised, in the
sense that it does not use any information about class distribution. It attempts
to find a more compact representation of the original data only by preserving
the distances.

3.2 LLE

LLE has been suggested by Saul and Roweis [16] and was introduced at about the
same time as ISOMAP, but it is based on different idea than that of ISOMAP.
The idea comes from visualizing a manifold as a collection of overlapping coor-
dinate patches. If the neighborhood sizes are small and the manifold is suffi-
ciently smooth, then these patches will be approximately linear. Moreover, the
chart from the manifold to Rd (d is the dimensionality of the manifold that the
input is assumed to lie on and, accordingly, the dimensionality of the output i.e.
yi ∈ Rd) will be roughly linear on these small patches. The idea is to identify
these linear patches, characterize the geometry of them, and find a mapping to
Rd that preserves this local geometry and is nearly linear. It is assumed that
these local patches will overlap with one another so that the local reconstruc-
tions will combine into a global one [3]. LLE algorithm can be summarized in
two big steps:

1. Model the manifold as a collection of linear patches and attempts to charac-
terize the geometry of these linear patches.

2. Find a configuration in d-dimensions (the dimensionality of the parameter
space) whose local geometry is characterized well by W (Wi is a characteri-
zation of the local geometry around xi of the manifold). Unlike ISOMAP, d
must be known a priori or estimated.
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3.3 Laplacian Eigenmaps

The idea behind the Lap. Eig. [2] is to use spectral graph theory in order to cap-
ture local information about the manifold. Given a graph and the corresponding
matrix of edge weights, W , the Laplacian graph is defined as L = D − W in
which D represents the diagonal matrix with elements Dii =

∑
j Wij .

Here, a matrix W is used as a local similarity in order to measure the degree
to which points are near to one another. Thus Wij = e−‖xi−xj‖2/2σ2

if xj is one
of the k-nearest neighbors of xi and equals 0 otherwise. The main goal is to use
W in order to find output points y1, ..., yn ∈ Rd that are the low-dimensional
analogs of input points x1, ..., xn ∈ RD where d < D. Lap. Eig. algorithm can
be summarized in two big steps:

1. Given x1, ..., xn ∈ RD, d, k, σ as input, define a local similarity matrix Wij .
2. Let U be defined as the matrix whose columns are the eigenvectors of

Ly = λDy associated to the non-zero eigenvalues. Here L represents Lagrange
multipliers. Y is then given by the n × d matrix whose columns are these d
eigenvectors and whose rows are the embedded points (y1, ..., yn ∈ Rd).

4 Proposed Method

This section presents a dimensionality reduction based approach for texture
classification. Our method is firstly inspired by the observation of how dimen-
sionality reduction techniques can effectively learn relevant information from the
raw data, and secondly, by a wide variety of characteristics that present the fea-
ture vectors generated by each one of the classical descriptors adopted in this
work. Based on this, we propose a straightforward solution which concatenates
all these feature vectors (referred as first approach) and also those feature vec-
tors constructed from patches extracted directly from the raw data (referred
as second approach) and makes a feature selection through PCA and manifold
learning techniques to choose the most effective features for class separability.

The idea consists in creating an approach for texture classification strongly
based on the application of dimensionality reduction techniques. According to
the block diagram of the proposed method (refer to Fig. 2), the two stages in
Fig. 2(a) are part of the first approach and consist in extracting HoG, GLCM,
Haralick and LBP features followed by their concatenation. We concatenated
these four feature vectors aiming at constructing one big feature vector to serve
as an input for dimensionality reduction using PCA and manifold learning algo-
rithms. The stage in Fig. 2(b) is part of the second approach and consists in
extracting 32 × 32 patches from an image which will then be concatenated to
form a feature vector of the underlying image. In the next stage of the diagram
flow, feature selection is achieved through PCA, ISOMAP, LLE and Lap. Eig.
algorithms during which thresholds are used to maintain only the most effec-
tive features among all belonging to the concatenated feature vector. From this
process, we have as an output a discriminative and reduced feature vector that
contains only the best elements (the most relevant informations) of the input
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descriptors. Then, the selected feature vector is taken through the classification
process using KNN, Naive Bayes, Decision Trees and ML Perceptron. Finally, a
comparative analysis is achieved using the Wilcoxon test to figure out if nonlin-
ear dimensionality reduction methods are better than the linear ones using the
two proposed approaches.

5 Experimental Setup

5.1 Image Datasets

Two texture image datasets were used in the experiments:

• Salzburg [11] contains a collection of 476 color texture images that have
been captured around Salzburg (Austria) and, herein, depicted in Fig. 4. For
each texture class (from total of 10 classes used in this paper), there were
128 × 128 source images, of which 80% was used for training the classifier,
while the other 20% was used for testing.

• Outex [19] has a total of 960 (24 × 20 × 2) image instances of illuminant
“inca”. The training set consists of 480 (24 × 20) images and the other 480
(24×20) images are part of the test set. The test suite for Outex used in this
work is Outex TC 00011-r. Some of the texture instances for each class are
depicted in Fig. 5.

5.2 Description of Experiments

In Fig. 2 we present the flow diagram of the proposed method, including details
of the pipeline, and the methods used in the experiments. Note that our con-
tribution is to perform a statistical comparative analysis to show which app-
roach is better than other between PCA and manifold techniques and how these
approaches can be used to reduce the dimensionality of the feature space in
texture classification task.

In this paper, we perform the following two types of experiments:

• Experiments using the full feature vector created by concatenating
all descriptors, followed by classification with feature selection;

• Experiments using the feature vector created by extracting 32×32
patches, followed by classification with feature selection.

The main topic under investigation is the effect of different methods in reduc-
ing dimensionality for concatenation of descriptors and 32× 32 image patches-
based feature vector in texture classification. In our experiments we analyze if
PCA reduction produces better results than manifold algorithms for both feature
extraction approaches adopted in this paper. It is for this reason that we used
the Wilcoxon test to find which method has significant difference. A significance
level of α = 0.05 was used in all tests. In this case the comparison is pair-wise.
In addition, all experiments were performed with a stratified k − fold cross val-
idation setting. The accuracy proved to be a suitable measure to evaluate the
classification performance, since all datasets are balanced and also the sampling
for the cross validation is stratified [18].
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6 Results and Discussion

6.1 Full Feature Space Experiments

The accuracies for the first set of experiments are shown in Table 1 and Table 3.
They present a general perspective of the results. For each dataset and dimen-
sionality reduction method among PCA, ISOMAP, LLE and Lap. Eig., we dis-
played ten accuracies, corresponding to the dimensionality reduction using 1, 2,
3, 4, 5, 6, 7, 8, 9 and 10 features (attributes).

Fig. 2. Block diagram of the proposed method.

Fig. 3. Accuracies of PCA, ISOMAP, LLE and Lap. Eig. for the Salzburg dataset
using the 32 × 32 image patch-based feature vector (a), Salzburg dataset using the
concatenated feature vector (b) and Outex dataset using the concatenated feature
vector (c). Boxplots in gray correspond to significances when compared to the accuracy
of other method with p-value < 0.05. Here, the name Salzburg-2 (a) refers to the
second approach applied to Salzburg dataset. Analogously, the names Salzburg-1 (b)
and Outex-1 (c) refer to the first approach applied to Salzburg and Outex datasets,
respectively.

Fig. 4. A sample from Salzburg’s texture database.
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Fig. 5. 128 × 128 blocks from the 24 texture classes of the Outex database.

It is evident that, in general, the methods used to reduce the dimensionality
of the full feature space have significant impact on classification accuracy. In
this way, the choice of d (target feature vector size) can improve or hamper the
discriminative capacity of texture descriptors. While the brute force search for
the best value of d seems a major drawback of many works in feature selection
using dimensionality reduction techniques, in this paper, we adopted an intrinsic
dimensionality estimation approach to find the intrinsic value of d. This approach
computes the accumulated percentual of variance of the ith component from a list
of n components (dimensions). Then the intrinsic dimensionality of the reduced
space will be the first component with accumulated variance ratio greater than
95% for ISOMAP algorithm, for instance. One of the important observations
from this result is that the reduction from the computed d to a higher number
of dimensions often maintains the accuracies and sometimes can even slightly
increase them. Figure 6 shows the observed value of d, varying from 0 to 100,
based on the percentage of variance retained in the attributes. It also shows
that the intrinsic dimensionalities of Salzburg and Outex datasets for ISOMAP
algorithm are 10 and 24, respectively.

Since the results showed in Tables 1 and 3 are only an overall view, we
performed a deeper analysis using the following pairs of methods: PCA with
ISOMAP; PCA with LLE and PCA with Lap. Eig. Also, because of the compar-
ison must be carried out in pairs and under no assumption about the distribu-
tion of the data, the Wilcoxon’s test was performed to compare the accuracies
obtained by the reduction methods showed in Tables 1 and 3. A significance level
of α = 0.05 was used in all tests. To observe the results in more detail, boxplots
for Salzburg and Outex datasets using PCA with LLE and PCA with Lap. Eig
are shown in Figs. 3 (b) and (c), respectively. The boxplots shaded in gray corre-
spond to data with significant difference when compared to the accuracy of the
other method, obtaining p-value < 0.05.

We obtained significantly better results for PCA when compared with the
LLE method for Salzburg (see Fig. 3 (b)) and with the Lap. Eig method for
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Fig. 6. Intrinsic dimensionality estimation for ISOMAP for Salzburg and Outex
datasets using the full feature space.

Outex (see Fig. 3 (c)), according to the Wilcoxon’s statistical test. On a more
general note, it can be observed that the results were not significantly worse,
except for the value of d equals to 1 for all the methods in the two datasets.

6.2 32× 32 Patch-Based Feature Space Experiments

An overview of the results for the second set of experiments is shown in Tables 2
and 4. For each data set and dimensionality reduction method, we showed eleven
accuracies, corresponding to the dimensionality reduction with the value of d
equals to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 100. Here, the idea is to test if
the extraction of patches directly from a texture image raw data can improve or
maintains the results, and also to compare the use of PCA and manifold learning
methods in this way.

The only result that significantly presented difference among the pair-wise
comparisons was between PCA and ISOMAP for Salzburg data set as shown
in Fig. 3 (a). PCA significantly presented better accuracies than ISOMAP for
salzburg data set, according to the Wilcoxon’s statistical test for p-value < 0.05.
More importantly, on a more general perspective (i.e., for all accuracies), the
results were not significantly worse.
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Table 1. Quantitative results when comparing PCA method with four techniques
of manifold learning in Salzburg dataset. Here we considered the full feature vector
created by concatenating all descriptors.

Number of features

1 2 3 4 5 6 7 8 9 10

PCA KNN 58.33 88.89 88.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N.B. 80.56 86.11 97.22 100.00 97.22 100.00 97.22 100.00 100.00 100.00

MLP 38.89 77.78 80.56 94.44 97.22 91.67 97.22 100.00 100.00 100.00

DT 52.78 86.11 88.89 94.44 94.44 88.89 94.44 94.44 97.22 88.89

ISOMAP KNN 86.11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.22 100.00

N.B. 75.00 100.00 100.00 97.22 100.00 97.22 100.00 94.44 88.89 100.00

MLP 44.44 77.78 91.67 91.67 94.44 94.44 100.00 97.22 97.22 100.00

DT 75.00 97.22 88.89 94.44 97.22 94.44 83.33 83.33 91.67 83.33

LLE KNN 66.67 69.44 94.44 100.00 97.22 97.22 100.00 100.00 100.00 97.22

N.B. 41.67 68.75 78.13 83.33 82.29 82.29 94.79 92.71 89.58 90.63

MLP 30.56 16.67 55.56 55.56 47.22 50.00 69.44 47.22 94.44 83.33

DT 63.89 75.00 91.67 94.44 91.67 97.22 97.22 88.89 94.44 94.44

Lap. Eig. KNN 72.22 83.33 100.00 100.00 97.22 100.00 100.00 94.44 100.00 100.00

N.B. 72.22 83.33 100.00 97.22 100.00 97.22 97.22 94.44 100.00 97.22

MLP 11.11 55.56 91.67 100.00 91.67 94.44 97.22 91.67 100.00 97.22

DT 63.89 80.56 100.00 100.00 94.44 94.44 94.44 94.44 91.67 91.67

Table 2. Quantitative results when comparing PCA method with four techniques
of manifold learning in Salzburg dataset. Here a 32 × 32 patch of a texture image is
considered as the feature vector.

Number of features

5 10 15 20 25 30 35 40 45 50 100

PCA KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N.B. 53.82 68.14 70.33 72.68 71.99 75.23 78.95 79.15 79.15 80.78 83.24

MLP 91.11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ISOMAP KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N.B. 44.08 45.85 52.97 51.37 54.35 56.01 54.48 56.24 58.69 60.03 68.89

MLP 88.46 98.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

LLE KNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N.B. 22.91 36.01 41.08 43.50 48.04 49.51 49.58 51.80 52.75 53.89 63.33

MLP 43.46 52.55 54.80 57.78 63.89 68.82 69.12 71.86 72.42 77.25 90.20

DT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Lap. Eig. KNN 99.97 99.97 100.00 100.00 100.00 99.97 100.00 100.00 100.00 100.00 100.00

N.B. 47.78 46.54 54.64 52.97 55.33 56.34 55.39 56.67 54.41 56.70 61.01

MLP 66.86 76.18 80.36 86.44 91.57 92.88 95.26 98.56 98.14 99.08 99.74

DT 99.90 99.93 99.93 99.93 99.87 99.84 99.97 99.97 99.84 99.87 99.80
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Table 3. Quantitative results when comparing PCA method with four techniques of
manifold learning in Outex dataset. Here we considered the full feature vector created
by concatenating all descriptors.

Number of features

1 2 3 4 5 6 7 8 9 10

PCA KNN 20.83 77.08 94.79 90.63 95.83 95.83 98.96 97.92 96.88 97.92

N.B. 25.00 73.96 91.67 87.50 91.67 92.71 91.67 95.83 96.88 98.96

MLP 13.54 59.38 81.25 84.38 88.54 88.54 94.79 95.83 96.88 98.96

DT 20.83 68.75 88.54 83.33 84.38 85.42 86.46 88.54 92.71 92.71

ISOMAP KNN 31.25 83.33 89.58 92.71 92.71 96.88 97.92 97.92 98.96 95.83

N.B. 31.25 70.83 81.25 88.54 84.38 94.79 92.71 96.88 94.79 94.79

MLP 17.71 60.42 82.29 87.50 88.54 91.67 92.71 92.71 94.79 95.83

DT 22.92 69.79 85.42 83.33 78.13 90.63 88.54 84.38 87.50 86.46

LLE KNN 40.63 67.71 79.17 88.54 89.58 92.71 98.96 97.92 100.00 96.88

N.B. 41.67 68.75 78.13 83.33 82.29 82.29 94.79 92.71 89.58 90.63

MLP 30.56 16.67 55.56 55.56 47.22 50.00 69.44 47.22 94.44 83.33

DT 63.89 75.00 91.67 94.44 91.67 97.22 97.22 88.89 94.44 94.44

Lap. Eig. KNN 46.88 84.38 88.54 91.67 88.54 95.83 92.71 88.54 88.54 91.67

N.B. 50.00 73.96 75.00 78.13 77.08 82.29 82.29 82.29 83.33 86.46

MLP 10.42 42.71 58.33 58.33 66.67 67.71 73.96 69.79 77.08 86.46

DT 43.75 69.79 77.08 83.33 83.33 85.42 88.54 88.54 88.54 88.54

Table 4. Quantitative results when comparing PCA method with four techniques
of manifold learning in Outex dataset. Here a 32 × 32 patch of a texture image is
considered as the feature vector.

Number of features

5 10 15 20 25 30 35 40 45 50 100

PCA KNN 56.51 62.24 61.98 60.42 58.33 54.69 53.65 52.60 48.96 45.83 37.50

N.B. 61.98 70.05 73.95 76.30 79.43 78.91 79.69 80.47 79.95 80.47 80.47

MLP 63.80 73.70 77.08 75.26 76.82 71.88 69.79 67.97 63.80 63.02 49.23

DT 53.39 56.25 61.20 58.33 57.81 58.85 58.33 55.73 57.81 57.29 53.13

ISOMAP KNN 70.31 76.82 76.56 76.30 75.78 76.56 76.56 76.56 75.78 75.50 72.14

N.B. 55.99 68.23 72.66 73.18 73.18 73.70 73.96 72.92 73.96 74.48 73.70

MLP 51.82 60.42 65.63 63.28 66.41 62.76 60.94 57.81 63.02 56.25 54.95

DT 58.07 65.36 66.93 66.41 64.58 62.50 63.02 61.20 61.46 63.02 64.32

LLE KNN 59.11 68.23 66.15 70.57 72.14 70.57 71.88 71.88 73.44 72.40 65.10

N.B. 58.59 64.32 68.23 71.88 75.00 75.52 77.08 79.17 78.13 79.95 82.55

MLP 37.24 37.50 42.19 42.71 44.53 45.83 48.18 46.88 46.09 47.66 53.91

DT 53.13 53.65 50.26 58.33 59.11 55.73 59.11 56.77 53.65 51.82 52.34

Lap. Eig. KNN 61.46 69.27 69.27 71.61 73.70 73.96 76.56 75.78 74.48 74.48 67.45

N.B. 47.66 58.59 63.02 61.72 64.58 66.93 67.71 68.23 68.49 68.49 67.45

MLP 59.38 67.71 74.22 71.09 71.88 75.26 74.22 74.22 74.22 73.96 67.97

DT 58.85 63.28 62.76 62.50 61.98 65.10 66.41 64.32 63.80 62.50 60.42
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7 Conclusions

This research presented an important contribution regarding the use of dimen-
sionality reduction techniques for texture classification task. We stated that an
original feature vector of D dimensions could be reduced to only d features
(where d < D) that can better represent the data, achieving similar or higher
accuracies. To produce an higher feature vector size to be used as input of the
dimensionality reduction methods, we proposed two approaches: one using the
full feature vector created by concatenating HoG, LBP, GLCM and Haralick
descriptors; and other using the feature vector created by extracting 32× 32
patches of each texture image. In this paper we especially carried out investi-
gations through Wilcoxon’s statistical test with regard to figure out whether or
not manifold learning algorithms perform better than PCA. In this case for each
data set, we performed six pair-wise comparisons, namely PCA with ISOMAP;
PCA with LLE and PCA with Lap. Eig such as each comparison was done for
both approaches. Thus, we had twelve pair-wise comparisons in total for all
experiments.

In the first place, it is important to note that the use of the two approaches
(full feature vector and 32× 32 patches-based feature vector) followed by feature
selection using both PCA and manifold learning produced, on average, superior
results than the individuals descriptors for texture classification task. In the sec-
ond one, among all the pair-wise comparisons involved in the experiments, only
three results (from a set of twelve ones) were significantly differents, according to
the boxplots in Fig. 3. These results clearly indicated that PCA overperformed
the ISOMAP in Salzburg using the second approach, also overperformed the
LLE in Salzburg using the first approach, and finally, overperformed the Lap.
Eig in Outex using the first approach.

Since the results for the rest of nine comparisons did not significantly show
the difference between the accuracies of PCA and each one of the manifold
learning method, we believe that increasing the dimension of the feature vectors
of both approaches by respectively adding more descriptors and by extracting
8 × 8 patches from texture image, may promote better performance in favour
of manifold learning methods. The reason for this is that manifold learning
methods are more efficient in dimensionality reduction than PCA in the presence
of huge collections of texture images (bigger databases) and especially for texture
classification task [4,25].

Future studies can take into account new approaches for estimating the intrin-
sic dimensionality value of d for each manifold learning method, can also explore
different manifold learning methods and variations of the supervised classifier’s
algorithms in order to produce better accuracies, as well as investigate the sub-
spaces generated by such methods in order to understand better their discrimi-
native power.
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