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Abstract. In this paper, the effects of different numerical integra-
tion schemes on the distributed Lagrange multiplier/fictitious domain
(DLM/FD) method with body-unfitted meshes are studied for solving
different types of interface problems: elliptic-, Stokes- and Stokes/elliptic-
interface problems. Commonly-used numerical integration schemes, com-
pound type formulas and a specific subgrid integration scheme are pre-
sented for the mixed finite element approximation and the comparison
between them is illustrated in numerical experiments, showing that dif-
ferent numerical integration schemes have significant effects on approxi-
mation errors of the DLM/FD finite element method for different types
of interface problems, especially for Stokes- and Stokes/elliptic-interface
problems, and that the subgrid integration scheme always results in
numerical solutions with the best accuracy.

1 Introduction

Physical phenomena in a domain consisting of multiple materials and/or multi-
phase fluids, which are immiscible and are divided by distinct interfaces, are often
modeled by either identical or different partial differential equations with dis-
continuous coefficients on both sides of interfaces. These problems are generally
called interface problems, sometimes called interaction problems in some spe-
cific scenarios such as fluid-structure interaction (FSI) problems, e.g., see [5,17]
and others references therein. In the past several decades, two major numerical
approaches – the body-fitted mesh method and the body-unfitted mesh method
– have been developed for tackling interface problems, which are classified by
how the computational mesh and then the interface conditions are handled along
the interface. In contrast to the body-fitted mesh method such as the arbitrary
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Lagrangian-Eulerian (ALE) method [8,9], which is obliged to adapt the mesh
to accommodate the motion of the interface, the body-unfitted mesh method,
due to its simplicity in the mesh generation, becomes more promising and more
advantageous for interface problems whose interfaces may bear a large deforma-
tion/displacement, such as the immersed boundary method (IBM) [12,14], the
distribute Lagrange multiplier/fictitious domain (DLM/FD) method [1,7], the
immersed finite element method (IFEM) [10,11], and etc.

Among the aforementioned body-unfitted mesh methods, taking all prop-
erties of reliability, accuracy, flexibility and theoretical guarantees into consid-
eration, the DLM/FD method has shown a lot of strengths and potentials in
theoretical analyses as well as practical applications for general interface prob-
lems, and has gained considerable popularity in simulating FSI problems as well.
So in this paper, we focus on the DLM/FD method, where a fictitious equation
that is defined in one subdomain is introduced to cover the other subdomain,
and its mesh is fixed in the entire domain as a background mesh and needs not
to be updated even if the interface moves or deforms. Benefited from this fea-
ture, the DLM/FD method has became more popular in the simulation of FSI
problems, especially in the case of an immersed structure with large deforma-
tion/displacements. To enforce the interface conditions, the DLM/FD method
introduces the Lagrange multiplier (a pseudo body force) to weakly enforce the
fictitious variables equal everywhere to the primary variables of the equation
defined in the immersed domain and on the interface too. A monolithic system
bearing a saddle-point structure is thus formed in regard to the Lagrange mul-
tiplier and primary variables. Therefore, the classical Babus̆ka–Brezzi’s theory
[3,4] can be employed to prove the well-posedness, stability as well as conver-
gence properties of the DLM/FD finite element method [2,15].

To implement the DLM/FD method, an accurate and also efficient numer-
ical integration scheme is needed to calculate the integration in which the dis-
tributed Lagrange multiplier is involved. For instance, (21) can be referred to
in advance to preview the significance, where, in the finite element computa-
tion on each immersed element for the Lagrange multiplier terms denoted by
the dual inner product 〈λ, vh|Ω〉Ω2

, the integrand function is a product of two
piecewise polynomials which are defined on two non-matched meshes, Th(Ω) and
TH(Ω2). Although the piecewise polynomial defined on Th(Ω), vh|Ω, can be trans-
ferred to TH(Ω2) through the interpolation approach, it is no longer sufficiently
smooth in each immersed element of TH(Ω2) just because of the non-matching
between Th(Ω) and TH(Ω2). Thus we can not conclude that the commonly-used
higher order numerical integration scheme will lead to a higher accuracy for
those Lagrange multiplier terms.

The object of this paper is to study the effects of various numerical integra-
tion schemes on the performance of the DLM/FD methods for solving different
interface problems with jump coefficients. Essentially, we do not want to let the
accuracy of numerical integration influence the overall approximation accuracy,
especially when the DLM/FD method is used for simulating complex problems,
e.g., FSI problems. However, we find out different numerical integration methods
indeed have significant effects on approximation errors of the DLM/FD method
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for different types of interface problems. Three types of numerical integration
schemes are considered in our study: the commonly-used numerical integration
schemes (see e.g. [6]), the compound type formulas, and the subgrid integration
scheme proposed in [18]. Numerical results presented in Sect. 4 shows that the
performance of DLM/FD method for solving elliptic interface problems is insen-
sitive to the numerical integration but is sensitive to Stokes- and Stokes/elliptic-
interface problems, and that the subgrid integration scheme always leads to the
approximation solution of the highest accuracy.

The rest of this paper is organized as follows. The DLM/FD finite element
method for solving different types of interface problems are recalled in Sect. 2.
Several commonly-used numerical integration schemes, the compound type for-
mulas and the subgrid integration technique are introduced in Sect. 3. Numerical
performances are shown in Sect. 4.

2 DLM/FD Method for Three Types of Interface
Problems

In this section, we briefly recall the DLM/FD finite element method for solving
three different types of interface problems with jump coefficients.

2.1 Three Types of Interface Problems

The first type is the elliptic interface problem, defined as

−∇ · (β1∇u1) = f1, in Ω1, (1)
−∇ · (β2∇u2) = f2, in Ω2, (2)

u1 = u2, on Γ, (3)
β1∇u1 · n1 + β2∇u2 · n2 = w, on Γ, (4)

u1 = 0, u2 = 0, on ∂Ω\Γ, (5)

where, Ω = Ω1∪Ω2 ⊂ Rd (see Fig. 1), the interface Γ = ∂Ω2 is a closed curve that
divides the domain Ω into an interior region Ω2 and an exterior region Ω1, n1

and n2 stand for the unit outward normal vectors on ∂Ω1 and ∂Ω2, respectively.
u, that is defined in Ω, satisfies u|Ω1 = u1, u|Ω2 = u2 which are associated with
f ∈ L2(Ω) and f |Ω1 = f1 ∈ L2(Ω1), f |Ω2 = f2 ∈ L2(Ω2). β ∈ L∞(Ω) satisfies
β|Ω1 = β1 ∈ W 1,∞(Ω1), β|Ω2 = β2 ∈ W 1,∞(Ω2) and β1 �= β2.

Fig. 1. Graphical depiction of the domain with an immersed interface.
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The second type is the Stokes interface problem, defined as

−∇ · (β1∇u1) + ∇p1 = f1, in Ω1, (6)
∇ · u1 = 0, in Ω1, (7)

−∇ · (β2∇u2) + ∇p2 = f2, in Ω2, (8)
∇ · u2 = 0, in Ω2, (9)

u1 = u2, on Γ, (10)
(β1∇u1 − p1I)n1 + (β2∇u2 − p2I)n2 = w, on Γ, (11)

u1 = 0, u2 = 0, on ∂Ω\Γ, (12)

which can be considered as the linearized model of an immiscible two-phase fluid
flow problem, where the primary variable pair (u, p) satisfies u|Ω1 = u1, u|Ω2 =

u2, p|Ω1 = p1, p|Ω2 = p2, which are associated with f ∈ (L2(Ω))d satisfying
f |Ω1 = f1 ∈ (L2(Ω1))

d, f |Ω2 = f2 ∈ (L2(Ω2))
d. The jump coefficient β ∈ L∞(Ω)

satisfies β|Ω1 = β1 ∈ W 1,∞(Ω1), β|Ω2 = β2 ∈ W 1,∞(Ω2), β1 �= β2.
And, the third type is the Stokes/elliptic interface problem, defined as

−∇ · (β1∇u1) + ∇p1 = f1, in Ω1, (13)
∇ · u1 = 0, in Ω1, (14)

−∇ · (β2∇u2) = f2, in Ω2, (15)
u1 = u2, on Γ, (16)

(β1∇u1 − p1I)n1 + β2∇u2n2 = w, on Γ, (17)
u1 = 0, u2 = 0, on ∂Ω\Γ, (18)

which can be considered as a steady state linearized model of FSI problems,
where, the primary variable pair (u, p1) satisfies u|Ω1 = u1, u|Ω2 = u2, p1 ∈
Ω1, which are associated with f ∈ (L2(Ω))d satisfying f |Ω1 = f1 ∈ (L2(Ω1))

d,
f |Ω2 = f2 ∈ (L2(Ω2))

d. The jump coefficient β ∈ L∞(Ω) satisfies β|Ω1 = β1 ∈
W 1,∞(Ω1), β|Ω2 = β2 ∈ W 1,∞(Ω2), β1 �= β2.

2.2 DLM/FD Method for the Elliptic Interface Problem

The main idea of the DLM/FD method is to smoothly extend one material, such
as the fluid in FSI, into another material’s subdomain, such as the structure in
FSI, as a fictitious equation whose primary variable is constrained to equal to
that of the occupied material’s equation in its subdomain and on the interface
too. And, such constraint is weakly imposed through the Lagrange multiplier (a
pseudo body force) in the DLM/FD method. Thus, a monolithic saddle-point
system is formed in regard to the Lagrange multiplier and primary variables, for
which the classical Babus̆ka–Brezzi’s theory [3,4] can be employed to prove the
well-posedness, stability as well as convergence properties [2,16]. In the following,
we introduce the DLM/FD finite element method for each type of interface
problem that is defined in Sect. 2.1.

Define V E = H1
0 (Ω), V E

2 = H1(Ω2), ΛE =
(
V E

2

)∗
, where

(
V E

2

)∗ denotes
the dual space of V E

2 . Let Th(Ω) and TH(Ω2) be the meshes of Ω and Ω2, respec-
tively. And denote by V E

h , V E
2,H and ΛE

H the conforming finite element spaces
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of V E , V E
2 and ΛE, respectively. Here and hereafter, let (·, ·)ω be the L2 inner

product over ω, and 〈·, ·〉ω be the dual product over ω that is actually associated
with the H1 inner product [1].

Then, the DLM/FD finite element method for solving elliptic interface prob-
lem (1)–(5) can be defined as follows [1,2]: Find (ũh, u2,H , λH) ∈ V E

h ×V E
2,H ×

ΛE
H such that

(β̃∇ũh, ∇vh)Ω + 〈λH , vh|Ω2〉Ω2
= (f̃ , vh)Ω , (19)

(
(β2 − β̃)∇u2,H , ∇v2,H

)

Ω2
− 〈λH , v2,H〉Ω2

=
(
f2 − f̃2, v2,H

)

Ω2
+ (w, v2,H)Γ , (20)

〈ξH , ũh|Ω2 − u2,H〉Ω2
= 0, ∀ (vh, v2,H , ξ) ∈ V E

h × V E
2,H × ΛE

H . (21)

2.3 DLM/FD Method for the Stokes Interface Problem

Define V S =
(
H1

0 (Ω)
)d

, QS = L2(Ω), V S
2 =

(
H1(Ω2)

)d
, ΛS =

(
V S

2

)∗, where(
V S

2

)∗ denotes the dual space of V S
2 . Let V S

h , V S
2,H , QS

h and ΛS
H be the conforming

finite element spaces of V S , V S
2 , QS and ΛS, respectively. Then, the DLM/FD

finite element method for solving the Stokes interface problem (6)–(12) can be
defined as follows [13]: Find (ũh, u2,H , p̃h, λH) ∈ V S

h ×V S
2,H ×QS

h ×ΛS
H such that

(β̃∇ũh, ∇vh)Ω − (p̃h, ∇ · vh)Ω + 〈λH , vh|Ω2〉Ω2
= (f̃ , vh)Ω , (22)

(∇ · ũh, qh)Ω = 0, (23)
(
(β2 − β̃)∇u2,H , ∇v2,H

)

Ω2
− 〈λH , v2,H〉Ω2

=
(
f2 − f̃2, v2,H

)

Ω2
+ (w, v2,H)Γ , (24)

〈ξH , ũh|Ω2 − u2,H〉Ω2
= 0, ∀ (vh, v2,H , qh, ξH) ∈ V S

h × V S
2,H × QS

h × ΛS
H . (25)

2.4 DLM/FD Method for the Stokes/Elliptic Interface Problem

The spaces to be used for defining the weak formulation and the DLM/FD
formulation of Stokes/elliptic interface problem are the same as those of Stokes
interface problem. The DLM/FD finite element method is proposed and analyzed
in [15] for the Stokes/elliptic interface problem (13)–(18), as described below.

Find (ũh, u2,H , p̃h, λH) ∈ V S
h × V S

2,H × QS
h × ΛS

H such that

(β̃∇ũh, ∇vh)Ω − (p̃h, ∇ · vh)Ω + 〈λH , vh|Ω2〉Ω2
= (f̃ , vh)Ω , (26)

(∇ · ũh, qh)Ω − (∇ · u2,H , qh)Ω2 = 0, (27)
(
(β2 − β̃)∇u2,H , ∇v2,H

)

Ω2
+ (ph|Ω2 , ∇ · v2,H)Ω2

− 〈λH , v2,H〉Ω2
=

(
f2 − f̃ |Ω2 , v2,H

)

Ω2
+ (w, v2,H)Γ , (28)

〈ξH , ũh|Ω2 − u2,H〉Ω2
= 0, ∀ (vh, v2,H , qh, ξH) ∈ V S

h × V S
2,H × QS

h × ΛS
H . (29)
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3 Numerical Integration Schemes

Note that in the DLM/FD finite element methods described in Sects. 2.2, 2.3 and
2.4, some inner product terms involve an integration over the immersed domain
Ω2 with a product of two piecewise functions defined on Th(Ω) and TH(Ω2),
respectively. For instance,

〈λH , vh|Ω2〉Ω2
in (19) and 〈ξH , ũh|Ω2〉Ω2

in (21), (30)

〈λH , vh|Ω2〉Ω2
in (22) and 〈ξH , ũh|Ω2〉Ω2

in (25), (31)

(∇ · ũ2,H , qh)Ω2
in (26) and (ph|Ω2 , ∇ · v2,H)Ω2

in (29). (32)

Since two grids Th(Ω) and TH(Ω2) are constructed independently, they are gen-
erally not matched with each other, see Fig. 2. Thus, we need to employ some
numerical techniques to implement the numerical integration for terms shown
in (30)–(32) in order to make the DLM/FD finite element method perform well.
In this paper, we restrict ourselves to the cases of triangular finite element.

It shall be pointed out that we can not simply make such a conclusion that the
higher order the integration scheme, the higher accuracy the numerical integra-
tion. That is because the integrand functions shown in (30)–(32) are essentially
the product of piecewise polynomials defined on two non-matched meshes, Th(Ω)

or TH(Ω2), inducing an insufficiently smooth integrand function in each element
of TH(Ω2), and thus it is not able to deduce a higher order derivative in the
remainder of the numerical integration scheme.

3.1 Commonly-Used Numerical Integration Schemes

The numerical integration schemes in the field of finite element method are of
the form:

∫
K̂

f(x̂)dx̂ =
∑

i ωif(λi), where K̂ stands for the reference element that
is an isosceles right triangle with two sides equal 1, that is, three vertices of K̂ are
(0, 0), (1, 0) and (0, 1). And, the quadrature points are denoted by the barycentric
coordinates. Nine different commonly-used numerical integration schemes, from
Scheme 1 to Scheme 9 as listed in the Appendix, are adopted to carry out our
numerical studies in Sect. 4.

Moreover, to improve the numerical integration accuracy, we consider the
compound type formulas of numerical integration, for which each triangular
reference element is divided into four equilateral sub-triangles. For example,
Scheme 4c1 can be obtained by applying Scheme 4 of the numerical integration
to each one of four sub-triangles in the first-time refinement of the reference
element, Scheme 4c2 is constructed by applying Scheme 4 to each one of 16
sub-triangles after refining the reference element twice, and Scheme 4c3 based
on Scheme 4 and 64 sub-triangles after refining the reference element for three
times, and so forth, which are not necessarily shown in the Appendix for the
simplicity.

3.2 The Subgrid Integration Scheme

The subgrid integration scheme has been proposed and used in [18] for solving
two-dimensional parabolic interface problems with the DLM/FD method. The
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main ingredient of this scheme is to generate a subgrid, T r
H(Ω2), by finding all

intersections of Th(Ω) and TH(Ω2) then forming a new subgrid structure in the
immersed domain Ω2. Clearly, T r

H(Ω2) is a matching subset of both Th(Ω) and
TH(Ω2), and T r

H(Ω2) is a finer mesh on Ω2. Thus, all integral terms as shown in
(30)–(32) can be implemented on T r

H(Ω2) now, and the piecewise polynomials
defined on Th(Ω) and TH(Ω2) must be smooth in each element of T r

H(Ω2). Then,
the interpolations between two different meshes are avoided. An example of such
a subgrid is shown in Fig. 2.

Since the integrand function on each element of the subgrid T r
H(Ω2) is smooth,

the commonly-used integration schemes with the help of such a subgrid can yield
sufficiently high accuracy for numerical integrations. In this sense, the subgrid
integration scheme is of the highest accuracy among the schemes presented in
this paper, as long as a subtle implementation programming can be done to
eliminate every possible geometrical error when finding the intersection points
of two non-matching meshes. Interested readers can refer to [18] for more details
about the subgrid integration scheme and its implementation.

4 Numerical Experiments

In what follows, we will carry out two scenarios in our numerical experiments to
investigate effects of different numerical integration schemes on the approxima-
tion solutions of the DLM/FD finite element method for solving three types of
steady interface problems: (1) the real solution of the original interface problem
is unknown; (2) the real solution of the original interface problem is known.

To that end, a fixed mesh size is chosen as h = 1/64 and H = 1/64 to attain
two meshes Th(Ω) and TH(Ω2), as depicted in Fig. 2. On these two fixed meshes,
we will implement the DLM/FD finite element method with different numer-
ical integration schemes for the elliptic-, Stokes-, and Stokes/elliptic-interface
problems, respectively.

Fig. 2. The meshes (from left to right): the background mesh Th(Ω) partitioned in
a square Ω, the foreground mesh TH(Ω2) partitioned in a disk Ω2, and the subgrid
T r

H(Ω2) in Ω2.
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4.1 The Scenario of Unknown Real Solutions

In this scenario, since the real solution is unknown, we will report the energy
norm of the numerical solution instead of its approximation error to the real
solution, and compare all numerical solutions in the energy norm obtained from
different numerical integration schemes for each type of interface problem.

The Elliptic Interface Problem with a Unknown Real Solution. Let Ω

be a square with the size (0, 6) × (0, 6) and Ω2 be a unit circle with the center
at (3, 3). Consider the elliptic interface problem (1)–(5) with the following jump
coefficients and right hand side functions:

– Case E1: β1 = 1, β2 = 100, f1 = f2 = 1,
– Case E2: β1 = 1, β2 = 10000, f1 = f2 = 1.

The linear (P1) finite element space is adopted to define V E
h , V E

2,H and ΛE
H , which

are used in the implementation of the DLM/FD finite element method (19)–
(21). Numerical solutions in H1-norm in regard to different numerical integration
schemes are reported in Tables 1 and 2 for two cases E1–E2, where, we use
the numbers from 1 to 9 to successively represent nine commonly-used non-
compound type numerical integration schemes, use the notation “4c1”, “4c2”
and “4c3” to represent three compound-type formula of numerical integration,
respectively, and use “s” to stand for the subgrid integration scheme.

Table 1. Numerical results of Case E1

schemes # 1 2 3 4 5 6 7

‖ũh‖1 1.1057e+1 1.1057e+1 1.1057e+1 1.1057e+1 1.1057e+1 1.1057e+1 1.1057e+1

scheme # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.1057e+1 1.1057e+1 1.1057e+1 1.1057e+1 1.1058e+1 1.1057e+1

Table 2. Numerical results of Case E2

schemes # 1 2 3 4 5 6 7

‖ũh‖1 1.1055e+1 1.1052e+1 1.1054e+1 1.1051e+1 1.1052e+1 1.1052e+1 1.1052e+1

scheme # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.1052e+1 1.1052e+1 1.1052e+1 1.1053e+1 1.1052e+1 1.1051e+1

From Tables 1 and 2, we find out all numerical integration schemes yield
almost the same numerical solution in terms of the energy (H1-) norm, that is
even true for the case of large jump coefficients. Thus, the DLM/FD finite ele-
ment method for the elliptic interface problem is insensitive with different numer-
ical integration schemes, i.e., all commonly-used numerical integration schemes
and their compound formulas can achieve the same approximation accuracy with
the subgrid integration scheme which supposes to produce the highest accuracy
of the numerical integration for the DLM/FD method.
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The Stokes Interface Problem with a Unknown Real Solution. Let
Ω be a square with the size (0, 1) × (0, 1) and Ω2 be a circle with the center at
(0.3, 0.3) and the radius 0.1. Consider the Stokes interface problem (6)–(12) with
the following jump coefficients and right hand side functions:

– Case S1: β1 = 1, β2 = 100, f1 = (ex, ey)T , f2 = (0, 0)T .
– Case S2: β1 = 1, β2 = 10000, f1 = (ex, ey)T , f2 = (0, 0)T .

Table 3. Numerical results of Case S1

schemes # 2 3 4 5 6 7

‖ũh‖1 1.7091e−2 1.8972e−2 1.8557e−2 1.8417e−2 1.8500e−2 1.8570e−2

‖ph‖0 2.0895e+0 2.0883e+0 2.0884e+0 2.0884e+0 2.0884e+0 2.0884e+0

schemes # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.8328e−2 1.8221e−2 1.8197e−2 1.7985e−2 1.7917e−2 1.7047e−2

‖ph‖0 2.0885e+0 2.0886e+0 2.0885e+0 2.0886e+0 2.0886e+0 2.0892e+0

Table 4. Numerical results of Case S2

schemes # 2 3 4 5 6 7

‖ũh‖1 1.6789e−2 1.8964e−2 1.8537e−2 1.8396e−2 1.8475e−2 1.8544e−2

‖ph‖0 2.0903e+0 2.0883e+0 2.0884e+0 2.0884e+0 2.0884e+0 2.0884e+0

schemes # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.8302e−2 1.8188e−2 1.8164e−2 1.7944e−2 1.7873e−2 1.7043e−2

‖ph‖0 2.0886e+0 2.0886e+0 2.0885e+0 2.0887e+0 2.0887e+0 2.0897e+0

The Taylor-Hood P2P1-mixed finite element is adopted to define V S
h , V S

2,H ,

QS
h and ΛS

H , which are used in the implementation of the DLM/FD finite ele-
ment method (22)–(25). Numerical solutions in the energy norm (the velocity
in H1-norm and the pressure in L2-norm) in regard to different numerical inte-
gration schemes are reported in Tables 3 and 4 for two cases S1–S2. From these
tables, we observe some obvious differences on the numerical solutions of velocity
between different numerical integration schemes, while the numerical pressure is
insensitive with different integration schemes.

The Stokes/Elliptic Interface Problem with a Unknown Real Solution.
Let Ω be a square with the size (0, 1) × (0, 1) and Ω2 be a circle with the center
at (0.3, 0.3) and the radius 0.1. Consider the Stokes/elliptic interface problem
(13)–(18) with the following jump coefficients and right hand side functions:

– Case SE1: β1 = 1, β2 = 100, f1 = f2 = (1, 1)T ,
– Case SE2: β1 = 1, β2 = 10000, f1 = f2 = (1, 1)T .



560 C. Wang et al.

The same P2P1-mixed finite element space is adopted to define V S
h , V S

2,H , QS
h

and ΛS
H , which are used in the implementation of the DLM/FD finite element

method (26)–(29). Numerical solutions in the energy norm in regard to different
numerical integration schemes are reported in Tables 5 and 6 for two cases SE1–
SE2, from which the similar conclusions can be drawn as those for the numerical
results of Stokes interface problem in Cases S1–S2.

Table 5. Numerical results of Case SE1

schemes # 2 3 4 5 6 7

‖ũh‖1 1.8780e−2 1.8979e−2 1.8559e−2 1.8420e−2 1.8497e−2 1.8567e−2

schemes # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.8325e−2 1.8215e−2 1.8191e−2 1.7973e−2 1.7902e−2 1.7105e−2

Table 6. Numerical results of Case SE2

schemes # 2 3 4 5 6 7

‖ũh‖1 1.8763e−2 1.8964e−2 1.8537e−2 1.8396e−2 1.8475e−2 1.8544e−2

schemes # 8 9 4c1 4c2 4c3 s

‖ũh‖1 1.8302e−02 1.8188e−2 1.8164e−2 1.7944e−2 1.7873e−2 1.7098e−2

4.2 The Scenario of Known and Smooth Real Solutions

The Elliptic Interface Problem with a Known Real Solution. Let Ω

be a square with the size (0, 6) × (0, 6) and Ω2 be a unit circle with the center
at (3, 3). Consider the elliptic interface problem (1)–(5) with the following jump
coefficients and right hand side functions:

– Case E3: β1 = 1, β2 = 100, f1 and f2 are defined below;
– Case E4: β1 = 1, β2 = 10000, f1 and f2 are defined below,

where, f1 and f2 are chosen such that the real solution of (1)–(5) is taken as
u = (x − 6)x(y − 6)y((x − 3)2 + (y − 3)2 − 1)2.

Table 7. Numerical results of Case E3

scheme # 1 2 3 4 5 6 7

‖u − ũh‖1 2.0333e+2 2.0330e+2 2.0330e+2 2.0329e+2 2.0329e+2 2.0329e+2 2.0329e+2

scheme # 8 9 4c1 4c2 4c3 s

‖u − ũh‖1 2.0329e+2 2.0329e+2 2.0329e+2 2.0329e+2 2.0338e+2 2.0329e+2
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Table 8. Numerical results of Case E4

scheme # 1 2 3 4 5 6 7

‖u − ũh‖1 5.3984e+2 5.3830e+2 5.396e+2 5.3805e+2 5.3801e+2 5.3803e+2 5.3804e+2

scheme # 8 9 4c1 4c2 4c3 s

‖u − ũh‖1 5.3802e+2 5.3802e+2 5.3800e+2 5.3800e+2 5.3801e+2 5.3801e+2

With the P1 finite element space, the numerical results of the DLM/FD finite
element method (19)–(21) are reported in Tables 7 and 8 for two cases E3-E4,
from which we observe that all numerical errors in H1-norm in regard to different
numerical integration schemes are almost the same, confirming again that the
DLM/FD finite element method for the elliptic interface problem is insensitive
with different numerical integration schemes.

The Stokes Interface Problem with a Known Real Solution. Let Ω
be a square with the size (0, 1) × (0, 1) and Ω2 be a circle with the center at
(0.3, 0.3) and the radius 0.1. Consider the Stokes interface problem (6)–(12) with
the following jump coefficients and right hand side functions:

– Case S3: β1 = 1, β2 = 100, f1 and f2 are defined below;
– Case S4: β1 = 1, β2 = 10000, f1 and f2 are defined below,

where, f1 and f2 are chosen such that the real solution of (6)–(12) can be taken
as

u =

(
(y−0.3)((x−0.3)2+(y−0.3)2−0.01)

βi
−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)

βi

)

if (x, y)T ∈ Ωi,

p = 0.01(x3 − y3).

Note that an inhomogeneous boundary condition is employed instead for the
Stokes interface problem in the above two cases.

With the P2P1-mixed finite element space, the numerical results of the
DLM/FD finite element method (22)–(25) are reported in Tables 9 and 10 for two
cases S3-S4, from which we observe the obvious differences on numerical solu-
tions of both the velocity and the pressure between different numerical integra-
tion schemes, and, the subgrid integration scheme produces the lowest approx-
imation error, i.e., the best accuracy, for both the velocity and the pressure in
comparison with other numerical integration schemes in all two cases.

To look into effects of other numerical integration schemes than the subgrid
scheme, in terms of the following formula

∣
∣‖u − ũi

h‖1 − ‖u − ũs
h‖1

∣
∣

‖u − ũs
h‖1

or

∣
∣‖u − ũ5ci

h ‖1 − ‖u − ũs
h‖1

∣
∣

‖u − ũs
h‖1

,

∣
∣‖p − pi

h‖0 − ‖p − ps
h‖0

∣
∣

‖p − ps
h‖0

or

∣
∣‖p − p5ci

h ‖0 − ‖p − ps
h‖0

∣
∣

‖p − ps
h‖0

,
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we calculate and plot the relative differences between numerical errors obtained
from other integration schemes and those from the subgrid scheme, as shown
in Fig. 3, where, two cases illustrate a slow convergence tendency on numer-
ical errors of the velocity towards those from the subgrid scheme along with
the increase of numerical integration scheme number. However, such tendency
does not even apply to numerical errors of the pressure, instead, Fig. 3 shows
that a higher order integration scheme may lead to a worse approximation to
the pressure. Furthermore, in Fig. 4, a special case is observed that the numer-
ical solution obtained by Scheme 2 is significantly polluted inside Ω2 while the
numerical solution obtained by the subgrid integration scheme is of better accu-
racy in Ω2, which implies that the Lagrange multiplier does not work well to
enforce (25) hold true, reflecting from the low accuracy of Scheme 2.

Table 9. Numerical results of Case S3

scheme # 2 3 4 5 6 7

‖u − ũh‖1 1.8194e−3 1.5948e−3 1.6239e−3 1.5642e−3 1.6210e−3 1.6269e−3

‖p − ph‖0 5.9637e−1 6.1253e−1 7.2035e−1 7.0451e−1 8.3067e−1 7.9560e−1

scheme # 8 9 4c1 4c2 4c3 s

‖u − ũh‖1 1.6024e−3 1.5858e−3 1.6295e−3 1.5737e−3 1.5595e−3 7.8025e−4

‖p − ph‖0 7.7359e−1 7.9780e−1 8.5104e−1 8.8010e−1 8.8306e−1 4.4222e−1

Table 10. Numerical results of Case S4

scheme # 2 3 4 5 6 7

‖u − ũh‖1 1.8718e−3 1.7913e−3 1.9442e−3 1.9896e−3 2.0783e−3 2.0616e−3

‖p − ph‖0 4.8900e−1 5.6678e−1 5.4602e−1 5.5996e−1 6.2313e−1 6.2266e−1

scheme # 8 9 5c1 5c2 5c3 s

‖u − ũh‖1 2.0758e−3 2.0257e−3 2.0505e−3 2.0818e−3 2.0549e−3 1.2073e−3

‖p − ph‖0 5.7456e−1 5.7665e−1 6.2303e−1 6.2144e−1 6.2582e−1 4.3039e−1

The Stokes/Elliptic Interface Problem with a Known Real Solution.
Let Ω be a square with the size (0, 1) × (0, 1) and Ω2 be a circle with the center
at (0.3, 0.3) and the radius 0.1. Consider the Stokes/elliptic interface problem
(13)–(18) with the following jump coefficients and right hand side functions:

– Case SE3: β1 = 1, β2 = 100, f1 and f2 are defined below;
– Case SE4: β1 = 1, β2 = 10000, f1 and f2 are defined below,

where, f1 and f2 are chosen such that the real solution of (13)–(18) is taken as

u =

(
(y−0.3)((x−0.3)2+(y−0.3)2−0.01)

βi
−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)

βi

)

if (x, y)T ∈ Ωi,

p = 0.01(x3 − y3)((x − 0.3)2 + (y − 0.3)2 − 0.01).
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Fig. 3. Relative differences of the velocity error in H1-norm and of the pressure error
in L2-norm for Cases S3 and S4 (from left to right).

Fig. 4. The first components of u−ũ2
h and u2−u2

2,H vs the first components of u−ũs
h

and u2 − u2
2,H for Cases S3 (from left to right).

Note that an inhomogeneous boundary condition is employed instead for the
Stokes/elliptic interface problem in the above two cases.

With the P2P1-mixed finite element space, the numerical results of the
DLM/FD finite element method (26)–(29) are reported in Tables 11 and 12 and
Fig. 5 for two cases SE3–SE4, from which the same conclusions can be drawn as
those for the numerical velocity errors of Stokes interface problem in Cases S3-
S4, and, the slowly convergent relative differences of ‖ũ − ũh‖1, that is generally
between 20% and 60%, can be observed in Fig. 5.

Table 11. Numerical results of Case SE3

scheme # 2 3 4 5 6 7

‖u − ũh‖1 1.6099e−3 1.5944e−3 1.6228e−3 1.5636e−3 1.6225e−3 1.6268e−3

scheme # 8 9 5c1 5c2 5c3 s

‖u − ũh‖1 1.6049e−3 1.5898e−3 1.6364e−3 1.5855e−3 1.5729e−3 1.0022e−3
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Table 12. Numerical results of Case SE4

scheme # 2 3 4 5 6 7

‖u − ũh‖1 1.8389e−3 1.7904e−3 1.9435e−3 1.9891e−3 2.0779e−3 2.0612e−3

scheme # 8 9 5c1 5c2 5c3 s

‖u − ũh‖1 2.0755e−3 2.0251e−3 2.0502e−3 2.0813e−3 2.0543e−3 1.5111e−3

In summary, we notice that for the elliptic-, Stokes- and Stokes/elliptic- inter-
face problem, their coefficient matrices of the linear algebra systems obtained by
the DLM/FD FEM are in the following forms, respectively

SE =

⎛

⎝
A O BT

O A2 CT

B C O

⎞

⎠ , SS =

⎛

⎜⎜
⎝

A O BT CT

O A2 O DT

B O O O
C D O O

⎞

⎟⎟
⎠ , SSE =

⎛

⎜⎜
⎝

A O BT CT

O A2 E DT

B −E O O
C D O O

⎞

⎟⎟
⎠ , (33)

Fig. 5. Relative differences of the velocity error in H1-norm for Cases SE3 and SE4
(from left to right).

where “O” denotes the zero matrix block. One way to view these linear alge-
bra systems as saddle point problems is to split the matrices as showed in (33),
where the Lagrange multiplier and the pressure are bundled in SS and SSE .
Slight changes of B in SE , C in SS , C and E in SSE may result in quite
different effects on the corresponding numerical solutions, which is a possible
reason for explaining the observations illustrated in the previous sections: the
DLM/FD FEM is insensitive with various numerical integration schemes for the
elliptic interface problem, however, it is sensitive with different numerical inte-
gration schemes for both the Stokes- and the Stokes/elliptic interface problems.
Although only two-dimensional interface problems are considered in the numer-
ical experiments, the DLM/FD FEM and subgrid integration technique can be
used for solving the interface problems in any dimension.

5 Conclusions

In this paper, we study the effects of different numerical integration schemes,
including the commonly-used integration schemes and their compound-type
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schemes, and the subgrid integration scheme, on the performance of the
DLM/FD finite element method for solving the elliptic-, Stokes-, and
Stokes/elliptic-interface problem. Numerical experiments illustrate that: (1)
DLM/FD FEM is insensitive with various numerical integration schemes for the
elliptic interface problem; (2) DLM/FD FEM is sensitive with different numerical
integration schemes for both Stokes- and Stokes/elliptic interface problem, and
sometimes, numerical solutions obtained from other integration schemes than
the subgrid integration scheme may not be reliable; (3) the subgrid integration
scheme always results in numerical solutions with the best accuracy.

Appendix: Numerical Integration Schemes

Scheme # λi ωi

1 (0.333333333333333, 0.333333333333333, 0.333333333333333) 1.000000000000000

2 (0.666666666666667, 0.166666666666667, 0.166666666666667) 0.333333333333333

(0.166666666666667, 0.666666666666667, 0.166666666666667) 0.333333333333333

(0.166666666666667, 0.166666666666667, 0.666666666666667) 0.333333333333333

3 (0.333333333333333, 0.333333333333333, 0.333333333333333) −0.562500000000000

(0.600000000000000, 0.200000000000000, 0.200000000000000) 0.520833333333333

(0.200000000000000, 0.600000000000000, 0.200000000000000) 0.520833333333333

(0.200000000000000, 0.200000000000000, 0.600000000000000) 0.520833333333333

4 (0.108103018168070, 0.445948490915965, 0.445948490915965) 0.223381589678011

(0.445948490915965, 0.108103018168070, 0.445948490915965) 0.223381589678011

(0.445948490915965, 0.445948490915965, 0.108103018168070) 0.223381589678011

(0.816847572980459, 0.091576213509771, 0.091576213509771) 0.109951743655322

(0.091576213509771, 0.816847572980459, 0.091576213509771) 0.109951743655322

(0.091576213509771, 0.091576213509771, 0.816847572980459) 0.109951743655322

5 (0.333333333333333, 0.333333333333333, 0.333333333333333) 0.225000000000000

(0.059715871789770, 0.470142064105115, 0.470142064105115) 0.132394152788506

(0.470142064105115, 0.059715871789770, 0.470142064105115) 0.132394152788506

(0.470142064105115, 0.470142064105115, 0.059715871789770) 0.132394152788506

(0.797426985353087, 0.101286507323456, 0.101286507323456) 0.125939180544827

(0.101286507323456, 0.797426985353087, 0.101286507323456) 0.125939180544827

(0.101286507323456, 0.101286507323456, 0.797426985353087) 0.125939180544827

6 (0.249286745170910, 0.249286745170910, 0.501426509658180) 0.116786275726379

(0.249286745170910, 0.501426509658179, 0.249286745170911) 0.116786275726379

(0.501426509658179, 0.249286745170910, 0.249286745170911) 0.116786275726379

(0.063089014491502, 0.063089014491502, 0.873821971016996) 0.050844906370207

(0.063089014491502, 0.873821971016996, 0.063089014491502) 0.050844906370207

(0.873821971016996, 0.063089014491502, 0.063089014491502) 0.050844906370207

(0.310352451033784, 0.636502499121399, 0.053145049844817) 0.082851075618374

(0.636502499121399, 0.053145049844817, 0.310352451033784) 0.082851075618374

(0.053145049844817, 0.310352451033784, 0.636502499121399) 0.082851075618374

(0.636502499121399, 0.310352451033784, 0.053145049844817) 0.082851075618374

(0.310352451033784, 0.053145049844817, 0.636502499121399) 0.082851075618374

(0.053145049844817, 0.636502499121399, 0.310352451033784) 0.082851075618374



566 C. Wang et al.

Scheme # λi ωi

7 (0.333333333333333, 0.333333333333333, 0.333333333333334) −0.149570044467682

(0.260345966079040, 0.260345966079040, 0.479308067841920) 0.175615257433208

(0.260345966079040, 0.479308067841920, 0.260345966079040) 0.175615257433208

(0.479308067841920, 0.260345966079040, 0.260345966079040) 0.175615257433208

(0.065130102902216, 0.065130102902216, 0.869739794195568) 0.053347235608838

(0.065130102902216, 0.869739794195568, 0.065130102902216) 0.053347235608838

(0.869739794195568, 0.065130102902216, 0.065130102902216) 0.053347235608838

(0.312865496004874, 0.638444188569810, 0.048690315425316) 0.077113760890257

(0.638444188569810, 0.048690315425316, 0.312865496004874) 0.077113760890257

(0.048690315425316, 0.312865496004874, 0.638444188569810) 0.077113760890257

(0.638444188569810, 0.312865496004874, 0.048690315425316) 0.077113760890257

(0.312865496004874, 0.048690315425316, 0.638444188569810) 0.077113760890257

(0.048690315425316, 0.638444188569810, 0.312865496004874) 0.077113760890257

8 (0.333333333333333, 0.333333333333333, 0.333333333333334) 0.144315607677787

(0.081414823414554, 0.459292588292723, 0.459292588292723) 0.095091634267285

(0.459292588292723, 0.081414823414554, 0.459292588292723) 0.095091634267285

(0.459292588292723, 0.459292588292723, 0.081414823414554) 0.095091634267285

(0.658861384496480, 0.170569307751760, 0.170569307751760) 0.103217370534718

(0.170569307751760, 0.658861384496480, 0.170569307751760) 0.103217370534718

(0.170569307751760, 0.170569307751760, 0.658861384496480) 0.103217370534718

(0.898905543365938, 0.050547228317031, 0.050547228317031) 0.032458497623198

(0.050547228317031, 0.898905543365938, 0.050547228317031) 0.032458497623198

(0.050547228317031, 0.050547228317031, 0.898905543365938) 0.032458497623198

(0.008394777409958, 0.263112829634638, 0.728492392955404) 0.027230314174435

(0.008394777409958, 0.728492392955404, 0.263112829634638) 0.027230314174435

(0.263112829634638, 0.008394777409958, 0.728492392955404) 0.027230314174435

(0.728492392955404, 0.008394777409958, 0.263112829634638) 0.027230314174435

(0.263112829634638, 0.728492392955404, 0.008394777409958) 0.027230314174435

(0.728492392955404, 0.263112829634638, 0.008394777409958) 0.027230314174435

9 (0.333333333333333, 0.333333333333333, 0.333333333333334) 0.097135796282799

(0.020634961602525, 0.489682519198738, 0.489682519198737) 0.031334700227139

(0.489682519198738, 0.020634961602525, 0.489682519198737) 0.031334700227139

(0.489682519198738, 0.489682519198738, 0.020634961602524) 0.031334700227139

(0.125820817014127, 0.437089591492937, 0.437089591492936) 0.077827541004740

(0.437089591492937, 0.125820817014127, 0.437089591492936) 0.077827541004740

(0.437089591492937, 0.437089591492937, 0.125820817014126) 0.077827541004740

(0.623592928761935, 0.188203535619033, 0.188203535619032) 0.079647738927210

(0.188203535619033, 0.623592928761935, 0.188203535619032) 0.079647738927210

(0.188203535619033, 0.188203535619033, 0.623592928761934) 0.079647738927210

(0.910540973211095, 0.044729513394453, 0.044729513394452) 0.025577675658698

(0.044729513394453, 0.910540973211095, 0.044729513394452) 0.025577675658698

(0.044729513394453, 0.044729513394453, 0.910540973211094) 0.025577675658698

(0.036838412054736, 0.221962989160766, 0.741198598784498) 0.043283539377289

(0.036838412054736, 0.741198598784498, 0.221962989160766) 0.043283539377289

(0.221962989160766, 0.036838412054736, 0.741198598784498) 0.043283539377289

(0.741198598784498, 0.036838412054736, 0.221962989160766) 0.043283539377289

(0.221962989160766, 0.741198598784498, 0.036838412054736) 0.043283539377289

(0.741198598784498, 0.221962989160766, 0.036838412054736) 0.043283539377289
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