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Abstract. The velocity, coupling term in the flow and transport prob-
lems, is important in the accurate numerical simulation or in the poste-
riori error analysis for adaptive mesh refinement. We consider Enhanced
Velocity Mixed Finite Element Method (EVMFEM) for the incompress-
ible Darcy flow. In this paper, our aim is to study the improvement
of velocity at interface to achieve the better approximation of veloc-
ity between subdomains. We propose the reconstruction of velocity at
interface by using the post-processed pressure. Numerical results at the
interface show improvement on convergence rate.

Keywords: Domain decomposition · Enhanced Velocity ·
Velocity improvement

1 Introduction

The numerical reservoir simulations have been utilized in many subsurface appli-
cations such as groundwater remediation, reservoir well evaluation, and con-
taminate transport problems. For such applications, it is common to deal with
the flow and transport problem. The main component or coupling term of the
flow and transport systems is the velocity and its accuracy the mostly achieved
by employing classical mixed finite element system. Due to the heterogeneity
of porous media multiphysics problems could be categorized systematically in
which one physical phenomena influences within a subdomain and another physi-
cal phenomena dominates within another subdomain. Such solutions are coupled
through continuity of normal flux at interface, shared region between differently
discretized subdomains. To deal with these problems there are the well-known
methods such as Multiscale Mortar and Enhanced Velocity schemes that are
established in various applications. Recently, a novel adaptive method was stud-
ied in subsurface applications [2–4,14] using Enhanced Velocity scheme. The
main idea is here to utilize the EVMFEM as domain decomposition method to
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couple different discretized subdomains with more accurate upscaled subsurface
parameters.

In the simulation of flow with adaptivity, the results obtained in [9] suggest
that pressure values could be interpolated using neighboring elements values
to approximate auxiliary pressure values within provided elements. Selection of
interpolants is based on convex combinations of vertical and horizontal oriented
pressure values.

In related reference [6], it was studied that the interface error of solution
between subdomains for different numerical methods including Mortar Multi-
scale MixedFEM which provided better approximation for second-order elliptic
problems. One of reasons is the iterative procedure in the mortar scheme that
is a key in coupling two subdomains physics. According to author in [6] mortar
scheme is general method in coupling for practical multiphysics problems. On
the other hand, the efficient Enhanced Velocity scheme has not been investi-
gated from the point of view of the improvement solution including velocity at
interface in the previous studies.

The challenge here is to construct the velocity approximation of EVMFEM
and specifically at interface to have a better velocity between subdomains that
leads accurate approximation in the flow and transport problems. In [17], a priori
error analysis states that the global error is

‖u − uh‖Ω ≤ C
(
‖p‖1,∞,Ω∗ + ‖u‖1,Ω h1/2

)
h1/2 (1)

and away from the interface Γ the velocity error convergence rate is better, since

‖u − uh‖Ω′ ≤ Cε

(
‖p‖1,∞,Ω∗ + ‖u‖1,Ω

)
hr−ε (2)

where ε > 0, r = 1 if d = 2 and r = 5/6 if d = 3, and Ω
′
i is compactly

contained in Ωi, Ω
′
=

⋃Nb

i=1 Ω
′
i . This implies that the discrete velocity should be

approximated more precise near interface region Ω∗. On the question of pressure
approximation, the convergence rate of pressure approximation is O(h1), if d = 2,
and O(h5/6), if d = 3 [15,17]. If one compares the error of velocity (1) and
pressure approximation these results indicate that the velocity convergence rate
is not strong as pressure in Ω. Similar a priori error result was shown in [4] for
transient problems. Nevertheless, there are still problems including the velocity
approximation at the interface to be addressed.

In this paper, we introduce the way to improve velocity accuracy at inter-
face in the Enhanced Velocity MFEM for incompressible flow using the post-
processed pressure from [5]. This improvement is important in flow coupled with
transport problems and it also can be a good candidate for a recovery-based
error estimate evaluation. In a recent work [2], a posteriori error analysis was
shown for the incompressible flow problems without recovery of velocity.

The remaining part of the paper proceeds as follows. Section 2 of this paper
will describe model formulation with different view of EVMFEM. In Sect. 3, the
proposed numerical method will be discussed. Section 4 shows numerical results.
Section 5 summarizes the results of this work and draws conclusions.
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2 Model Formulation

We start by giving the model formulation for the incompressible single-phase
flow. For the convenience of reader we repeat the relevant material of domain
decomposition method, discrete formulation with Enhanced Velocity from [17].
We next describe the proposed different view of Enhanced Velocity Discrete
Scheme with projection operator.

2.1 Governing Equations of the Incompressible Flow

We consider the incompressible single-phase flow model for pressure p and the
Darcy velocity u:

u = −K∇p in Ω, (3)
∇ · u = f in Ω, (4)

p = g on ∂Ω, (5)

where Ω ∈ R
d(d = 2 or 3) is multiblock domain, f ∈ L2(Ω) and K is a sym-

metric, uniformly positive definite tensor representing the permeability divided
by the viscosity with L∞(Ω) components, for some 0 < kmin < kmax < ∞
kminξT ξ ≤ ξT K(x)ξ ≤ kmaxξT ξ ,∀x ∈ Ω ,∀ξ ∈ R

d, under the Dirichlet bound-
ary condition.

A weak variational form of the fluid flow problem (3)–(5) is to find a pair
u ∈ V, p ∈ W

(
K−1u,v

) − (p,∇ · v) = −〈g,v · ν〉∂Ω ∀v ∈ V, (6)
(∇ · u, w) = (f, w) ∀w ∈ W, (7)

where ν is the outward unit normal to ∂Ω, V is H(div;Ω) = {v ∈ (
L2(Ω)

)d :

∇ · v ∈ L2(Ω)} and equipped with the norm ‖v‖V =
(
‖v‖2 + ‖∇ · v‖2

) 1
2

and

the pressure the space is W = L2(Ω) and the corresponding norm ‖w‖W = ‖w‖ ..

Discrete Formulation. Let Ω be decomposed into non-overlapping small sub-
domains, see Fig. 1. We consider

Ω =

(
Nb⋃
i=1

Ω̄i

)o

, Γi,j = ∂Ωi

⋂
∂Ωj , Γ =

(
Nb⋃

i,j=1

Γ̄i,j

)o

, Γi = Ωi

⋂
Γ = ∂Ωj \ ∂Ω.

This implies that the domain is divided into Nb subdomains, the interface
between ith and jth subdomains(i 
= j), the interior subdomain interface for ith

subdomain and union of all such interfaces, respectively. Let Th,i be a conform-
ing, quasi-uniform and rectangular partition of Ωi, 1 ≤ i ≤ Nb, with maximal
element diameter hi. We then set Th = ∪n

i=1Th,i and denote h the maximal ele-
ment diameter in Th; note that Th can be nonmatching as neighboring meshes
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Fig. 1. Illustration of a domain Ω with subdomains Ωi and non-matching mesh dis-
cretization Th.

Th,i and Th,j need not match on Γi,j . We assume that all mesh families are
shape-regular.

In Enhanced Velocity scheme setting, the velocity basis functions are based
on the traditional Raviart-Thomas spaces of lowest order on rectangles for d = 2
and bricks for d = 3. The RT0 spaces are defined for any element T ∈ Th by the
following spaces:

Vh(T ) = {v = (v1, v2) or v = (v1, v2, v3) : vl = αl + βlxl : αl, βl ∈ R; l = 1, ..d},

Wh(T ) = {w = constant}.

The pressure finite element approximation space on Ω is taken to be as Wh(Ω) =

{w ∈ L2(Ω) : w

∣∣∣∣
E

∈ Wh(T ),∀T ∈ Th}. In addition, a vector function in Vh can

be determined uniquely by its normal components v · ν at midpoints of edges
(in 2D) or face (in 3D) of T . The degrees of freedom of v ∈ Vh(T ) were created
by these normal components. The degree of freedom for a pressure function
p ∈ Wh(T ) is at center of T and piecewise constant inside of T . Let us formulate
RT0 space on each subdomain Ωi for partition Th

Vh,i = {v ∈ H(div;Ωi) : v
∣∣∣∣
T

∈ Vh(T ),∀T ∈ Th,i} i ∈ {1, ...n}

and then

Vh =
n⊕

i=1

Vh,i.
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Fig. 2. Degrees of freedom for the Enhanced Velocity space.

Although the normal components of vectors in Vh are continuous between ele-
ments within each subdomains, the reader may see Vh is not a subspace of
H(div;Ω), because the normal components of the velocity vector may not match
on subdomain interface Γ . Let us define Th,i,j as the intersection of the traces
of Th,i and Th,j , and let TΓ

h =
⋃

1≤i≤j≤Nb
Th,i,j . We require that Th,i and Th,j

need to align with the coordinate axes. Fluxes are constructed to match on each
element e ∈ TΓ

h . We consider any element T ∈ Th,i that shares at least one
edge with the interface Γ , i.e., T ∩ Γi,j 
= ∅, where 1 ≤ i, j ≤ Nb and i 
= j.
Then newly defined interface grid introduces a partition of the edge of T . This
partition may be extended into the element T as shown in Fig. 2.

Such partitioning helps to construct fine-scale velocities that is in H(div, Ω).
So we represent a basis function vTk

in the Vh(Tk) space (RT0) for given Tk

with the following way:

vTk
· ν =

{
1, on ek

0, other edges

i.e. a normal component vTk
· ν equal to one on ek and zero on all other

edges(faces) of Tk. Let VΓ
h be span of all such basis functions defined on all sub-

elements induced the interface discretization Th,i,j . Thus, the enhanced velocity
space V∗

h is taken to be as

V∗
h =

n⊕
i=1

V0
h,i

⊕
VΓ

h ∩ H(div;Ω),

where V0
h,i = {v ∈ Vh,i : v · ν = 0 on Γi} is the subspace of Vh,i. The finer

grid velocity allows to velocity approximation on the interface and then form the
H(div, Ω) conforming velocity space. Some difficulties arise, however, in analysis
of method and implementation of robust linear solver for such modification of
RT0 velocity space at all elements, which are adjacent to the interface Γ . We
now formulate the discrete variational form of Eqs. (3)–(5) as: Find uh ∈ V∗

h

and ph ∈ Wh such that
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(
K−1uh,v

)
= (ph,∇ · v) − 〈g,v · ν〉∂Ω ∀v ∈ V∗

h, (8)
(∇ · uh, w) = (f, w) ∀w ∈ Wh. (9)

2.2 A Different View of the EVMFEM in the Discrete Variational
Formulation

We consider the discrete variational form that is given in (8)–(9). Find uh ∈ V∗
h

and ph ∈ Wh such that
(
K−1uh,v

)
M,T

= (ph,∇ · v) − 〈g,v · ν〉∂Ω ∀v ∈ V∗
h, (10)

(∇ · uh, w) = (f, w) ∀w ∈ Wh. (11)

We exploit the approximation inner product and for v,q ∈ R
d

(v,q)M,T =

{
(vx, qy)Tx,My

+ (vy, qy)Mx,Ty
if d = 2,

(vx, qy)Tx,My,Mz
+ (vy, qy)Mx,Ty,Mz

+ (vz, qz)Mx,My,Tz
if d = 3.

where T(·) and M(·) denote the trapezoidal and midpoint quadrature rules in
each coordinate direction respectively, see [13]. In particularly, we take v =
K−1uh and q = v. It is easily proven that the finite variational form (10)–(11)
is equivalent to finding uh ∈ V∗

h, ph ∈ Wh, 1 ≤ i ≤ Nb, such that
(
K−1uh,v

)
Ωi,M,T

− (ph, ∇ · v)Ωi
= −〈g,v · ν〉∂Ωi∩ΓD ∀v ∈ V0

h,i,

(12)
(∇ · uh, w)Ωi

= (f, w)Ωi
∀w ∈ Wh,i,

(13)
Nb∑
i=1

{
(
K−1uh,vEV

)
Ωi,M,T

−
(
ph, ∇ · vEV

)
Ωi

} = 0 ∀vEV ∈ VΓ .

(14)

We note that the discrete variational formulation was similarly proposed in [10]
with conjugate gradient method. We want to share the idea for small number
of discretization elements that can be applied for a large number of elements.
Thus, we consider two subdomains, i.e., Ω = Ω̄1 ∪ Ω̄2 and Γ is the interface.
Then

V∗
h =

(
V0

h,1 ⊕ V0
h,2 ⊕ VΓ

h

)
.

Consider equations
(
K−1uh,v

)
M,T

= (ph,∇ · v) ∀v ∈ VΓ
h . (15)

These allow us to express uΓ
h in terms of the one-element layers along Γ , it is

shown in Fig. 3:
uΓ

h = A1pL + A2pR. (16)
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Fig. 3. The spatial domain and illustration of Enhanced Velocity values on the inter-
face.

Now we consider each subdomain separately with ghost layers. We define L2-
projection of Enhanced Velocity space at interface Γi,j to each subdomain space
∂Ωi ∩ Γi,j such that Pi

h : V∗
h → Vh,i.

Pi
h : V∗

h(Γ ) → Vh,i(Γi) for ψ ∈ L2(Γ ), 〈(ψ − Pi
hψ

) · ν i,v · ν i〉Γ = 0 ∀v ∈ Vh,i.

We denote

uΓ
h,i = Pi

hu
Γ
h , i = L or R

In subdomain Ωi, we define pe
i in the following way

(
K−1ũh,v

)
M,T,Ωi

= (ph, ∇ · v)Ωi
− 〈pe

i ,v · ν〉Γ ∀v ∈ VΓ
h,i s.t.v · ν = 0 on ∂Ω∗

i ,

(17)

where Ω∗ is union of all elements T that shares edge (2D) or face (3D) with
Γi and pe

i ghost layers pressure values, and ũh = Pi
h(uh). Such ghost layers are

depicted in the Fig. 4. Then, for i = L, we have

uΓ
h,L = AL

1 pL + AL
2 pe

L. (18)

We compare Eq. (18) and the pressure Eq. (16) which is projected to Ωi:

PL
huΓ

h = PL
hA1pL + PL

hA2pR. (19)

Since uΓ
h,L = PL

huΓ
h , AL

1 = PL
hA1, we have the following

AL
2 pe

L = PL
hA2pR. (20)

AL
2 is non-singular and diagonal matrix, since K is SPD.

pe
L =

(
AL

2

)−1
PL

hA2pR. (21)
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Fig. 4. Example of left (ΩL) and right (ΩR) domains with ghost layers.

Similarly, we can obtain

pe
R =

(
AR

1

)−1
PR

h A1pL. (22)

In non-linear problems including slightly compressible flow or multiphase flow
in heterogeneous porous media, this approach could be applied analogously by
taking into account ghost layers values arising from ei in each Newton iteration.
So during Block Jacobi iteration variables pe,k−1

L , pe,k−1
R is computed by utilizing

given pk−1
L , pk−1

R and then solve decoupled subdomain problems with Dirichlet
boundary conditions pe,k−1

i , i = L,R to find uk, pk.

3 Methods

We use the postprocessing procedure associated to pressure and velocity. We
first apply locally postprocessing algorithm for given pressure ph and velocity
uh which was previously proposed in [5] and then Oswald interpolation operator
[1,11,12,16] to have better pressure values. At the interface, we use two-point
flux computation method in order to have better approximation of pressure. As
a result, the Enhanced Velocity scheme solution of velocity can be improved by
using a post-processed pressure. The key idea is illustrated in Fig. 5 for resulting
approximation of EV scheme that is shown in Fig. 3.

The velocity at the edge or face is computed by using pressure values between
subdomains Ωi and Ωj . To be specific, ph ∈ Ω∗ is required in the original veloc-
ity for constructing in Enhanced Velocity MFEM. However, the post-processed
pressure leads to the improved velocity and the visual representation is in Fig. 5.
In case of multiscale setting, it is important to be able to approximate bet-
ter pressure values nearby the interface. The recovery of velocity computation
requires three steps
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1. Compute locally p̃h from given (ph,uh),
2. Obtain sh by using Oswald operator,
3. Compute the velocity at the interface using the two-point flux scheme for sh.

We describe construction of p̃h and then sh below.

Fig. 5. The illustration of the velocity improvement at the interface using
postprocessing.

Construction of p̃h . In the Enhance Velocity setting, we may identify V̂h be
spaces omitting interface constraints VΓ , so V̂h,i :=

⊕n
i=1 Vh,i(T ) and then

V̂h :=
⊕n

i=1 V̂h,i. Let uh, ph be the solution of Eqs. (8)–(9). Initially, Lagrange
multipliers can be computed in each element. In other words, we define λh,T ∈
Λh, which is piecewise constant polynomials at edge or face,

〈λh,T ,vh · nT 〉e :=
(
K−1uh, vh

)
T

− (ph,∇ · vh)T ∀vh ∈ V̂h (T ) , (23)

where the element T ∈ Th and its side e. We employ the L2 projected veloc-
ity from the interface, which has a finer enhanced velocity approximation, to
the edge or face of subdomain element and the formulation is provided in Sub-
sect. 2.2. We denote polynomial space W̃h in the following manner

W̃h = {ϕh : 〈�ϕh�, ψh〉e = 0 ∀e ∈ Eint
h ∪ Eext

h ,∀ψh ∈ Qm(e)}, (24)

where Qm is standard polynomial space that is defined in [5,8,12]. We next set
the post-processed p̃h which is proposed in [5] and the construction is performed
with the following properties, for each T ∈ Th

(p̃h, wh)T = (ph, wh)T ∀wh ∈ W̃h(T ) (25)
〈p̃h, μh〉e = 〈λh, μh〉e ∀μh ∈ Λh(e),∀e ∈ ∂T. (26)

Construction of sh . We propose to construct sh in each subdomain Ωi that
has the conforming mesh in order to be a computational efficient. Construction
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of sh involves the averaging operator Iav : Qk(Th) → Qk(Th) ∩ H1
0 (Ωi). For def-

inition of Qm we refer reader to [8]. The operator is called Oswald operator and
appeared in [1,11,12,16] and the analysis can be found in [7,11]. It is interesting
to note that the mapping of the gradient of pressure through Oswald operator
also considered in [18]. For given ϕh ∈ Qm(Th), we regard the values of Iav(ϕh)
as being defined at a Lagrange node V ∈ Ω by averaging ϕh values associated
this node,

Iav(ϕh)(V ) =
1

|Th|
∑

T∈Th

ϕh|T (V ), (27)

where |A| is cardinality of sets A and Th is all collection of T ∈ Th for fixed V .
One can see that Th(V ) = ϕ(V ) at those nodes that are inside of given T ∈ Th.
We set the value of Iav(ϕh) is zero at boundary nodes. Now in our setting we
define recovered pressure sh for the locally post-processed p̃h as follows:

sh := Iav(p̃h).

3.1 Implementation Steps

For simplicity, we provide key steps of numerical implementation of post-
processed pressure in two dimensional case. However, it can be extended for
general cases. Based on piecewise pressure and velocity from the lowest order
Raviart-Thomas spaces over rectangles our aim to reconstruct smoother pressure
sh. For given element T ∈ Th(Ωi), the main steps are

1. Evaluate λh,T at edge ej , j = 1, ..4 based on (uh, ph),
2. Compute p̃h from known λh,T , and ph by using (23),
3. Based on p̃h compute sh Eq. (27) at Lagrange nodes in Ωi.

Step 1 is standard computation of Lagrange multiplier for each element.
In step 2, we are relying on higher order polynomial, in our case, it is
Span{1, x, y, x2, y2}. It is sufficient to store coefficients of polynomials. In step 3,
we use Span{1, x, y, x2, y2, xy, x2y, xy2, x2y2} and 9 Lagrange nodes of rectangle
elements that are four rectangle nodes, four midpoints at edge and center of
rectangle. This case each node requires to find neighboring elements values to
compute coefficients of sh.

Remark 1. It would be interesting to see the possibility of extension of the pro-
posed method to high order polynomial approximation.

4 Numerical Examples

In this section, numerical results are presented to demonstrate challenging prob-
lems of velocity approximation at the interface of non-matching multiblock grids.
We have conducted tests for several examples and we concentrate our attention
on the interface error for heterogeneous permeability coefficients. We set same
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domain Ω = (0, 1) × (0, 1) for all tests and for some the ratio is H/h = 4.
Initial subdomains grids Th are chosen in way that has a checkerboard pattern
for subdomains. Example of such discretization is shown in Fig. 6. The discrete
L2 velocity error euh,Γ is based on the values of the normal component at the
midpoint of the edges and is normalized by the analytical solution.

Fig. 6. Example of non-matching grids for subdomains.

Numerical Test 1

We consider the a diagonal oscillating tensor coefficient as follows.

K =
[
15 − 10 sin(3πx) sin(3πy) 0

0 15 − 10 sin(3πx) sin(3πy)

]

We impose the source term f and Dirichlet boundary condition according to the
analytical solution

p(x, y) = sin(2πx) sin(2πy).

We set the ratio H/h = 4 for the result that is shown in Table 1. We reported
the velocity error and the improved velocity error.

From Table 1, we see a significant increase on the convergence rate for recov-
ered velocity O(h1.5) while the convergence rate of provided velocity stays
O(h1.0). We observe that the numerical method is an effective way to improve
velocity at the interface between subdomains.

Numerical Test 2

We consider the heterogeneous porous media and impose the no-flow bound-
ary conditions for the flow problem, which is formulated in Eqs. (3)–(5). The
permeability distribution profile in the log scale is shown in Fig. 7.
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Table 1. Convergence test 2: velocity and recovered velocity error using the post-
processed pressure at interface.

n euh,Γ eũh,Γ

Error Order Error Order

8 1.78e−01 —– 3.78e−01 —–

16 8.89e−02 1.00 1.00e−01 1.91

32 4.43e−02 1.00 2.87e−02 1.81

48 2.96e−02 1.00 1.56e−02 1.51

Fig. 7. The fine permeability distribution in log scale.

In our simple scenario, a rate specified injection well and a pressure specified
production well are located at the bottom left and top right corners, respectively.
The fine scale subdomain dimension is 40 × 40 grid-blocks and the coarse scale
subdomain dimension is 20 × 20 grid-blocks. The injection rate was assumed to
be 1 m3/s. The initial reservoir pressure is taken to be 1000 Pa. As reference solu-
tion we consider fine scale solution of the flow problem with 80× 80 grid-blocks.
In the coarse scale subdomains, the permeability distribution was evaluated or
upscaled using numerical homogenization. We set the ratio H/h = 2, see Fig. 6.

The overall error at interface is euh,Γ = 0.254656 and the post-processed
error is eũh,Γ = 0.143014. We note that the error of post-processed velocity at
interface is less than the error of the original velocity, which is computed by the
EV scheme.

5 Conclusion

The present study of velocity in Enhanced Velocity Mixed Finite Element
Method was designed to investigate the effect of the post-processed pressure
on velocity in the interface of subdomains. In this paper, the focus of attention
is on the incompressible Darcy flow in the non-matching multiblock grid setting.
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Multiple numerical results demonstrate that the interface velocity approxima-
tion can be improved with using the post-processed pressure. These findings can
contribute in several ways to our approximation of velocity and provide a good
construction of velocity for a posteriori error analysis such as the recovery-based
estimate.
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16. Vohraĺık, M.: Unified primal formulation-based a priori and a posteriori error anal-
ysis of mixed finite element methods. Math. Comput. 79(272), 2001–2032 (2010)

17. Wheeler, J.A., Wheeler, M.F., Yotov, I.: Enhanced velocity mixed finite element
methods for flow in multiblock domains. Comput. Geosci. 6(3–4)

18. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for
practical engineerng analysis. Int. J. Numer. Meth. Eng. 24(2), 337–357 (1987)


	Recovery of the Interface Velocity for the Incompressible Flow in Enhanced Velocity Mixed Finite Element Method
	1 Introduction
	2 Model Formulation
	2.1 Governing Equations of the Incompressible Flow
	2.2 A Different View of the EVMFEM in the Discrete Variational Formulation

	3 Methods
	3.1 Implementation Steps

	4 Numerical Examples
	5 Conclusion
	References




