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Abstract. Transient molecular-continuum coupled flow simulations
often suffer from high thermal noise, created by fluctuating hydrody-
namics within the molecular dynamics (MD) simulation. Multi-instance
MD computations are an approach to extract smooth flow field quan-
tities on rather short time scales, but they require a huge amount of
computational resources. Filtering particle data using signal processing
methods to reduce numerical noise can significantly reduce the number
of instances necessary. This leads to improved stability and reduced com-
putational cost in the molecular-continuum setting.

We extend the Macro-Micro-Coupling tool (MaMiCo) – a software to
couple arbitrary continuum and MD solvers – by a new parallel interface
for universal MD data analytics and post-processing, especially for noise
reduction. It is designed modularly and compatible with multi-instance
sampling. We present a Proper Orthogonal Decomposition (POD) imple-
mentation of the interface, capable of massively parallel noise filtering.
The resulting coupled simulation is validated using a three-dimensional
Couette flow scenario. We quantify the denoising, conduct performance
benchmarks and scaling tests on a supercomputing platform. We thus
demonstrate that the new interface enables massively parallel data ana-
lytics and post-processing in conjunction with any MD solver coupled to
MaMiCo.

Keywords: Multiscale · Fluid dynamics · HPC · Noise filter ·
Parallel · Transient · Coupling · Software design ·
Molecular dynamics · Simulation · Data analytics · Multi-instance ·
POD · Molecular-continuum

1 Introduction

Multiscale methods in computational fluid dynamics, in particular coupled
molecular-continuum simulations [6,7,12,22], allow to go beyond the limita-
tions imposed by modelling accuracy or computational feasibility of a particular
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single-scale method. They are frequently applied for instance for nanostructure
investigation in chemistry, especially for research in lithium-ion batteries [15].

In the molecular-continuum context, MD regions and continuum flow regions
are coupled to extend the simulation capability over multiple temporal and
spatial scales. This is useful for many challenging applications involving e.g.
nanomembranes [20] or polymer physics [1,18].

Due to applications that often require large domains, long time spans, or fine
resolution, parallelism and scalability constitute important aspects of molecular-
continuum methods and software. Several codes for massively parallel execution
of molecular-continuum simulations on high performance computing (HPC) sys-
tems exist, for instance the CPL library [22], MaMiCo [14] or HACPar [19].

Many coupling schemes for molecular-continuum simulations have been inves-
tigated [2,8,12,16,24], based amongst others on the internal-flow multiscale
method [2] or the heterogeneous multiscale method [8]. In the steady state case,
time-averaging of hydrodynamic quantities sampled from MD is sufficient for
the coupling to a continuum solver [7]. But a transient simulation with short
coupling time intervals can easily become unstable due to fluctuating MD flow
field quantities.

One approach to tackle this is multi-instance sampling [13], where averaged
information comes from an ensemble of MD systems. This approach, however,
is computationally very expensive.

It has been shown that noise removal techniques, i.e. filters, are another
effective approach to reduce thermal fluctuations in the molecular-continuum
setting. Grinberg used proper orthogonal decomposition (POD) of MD flow field
data, demonstrating also HPC applicability of their method by running a coupled
atomistic-continuum simulation on up to 294,912 compute cores [11]. Zimoń
et al. [26] have investigated and compared different kinds of noise filters for
several particle based flow simulations, such as harmonically pulsating flow or
water flow through a carbon nanotube. They pointed out that the combination
of POD with one of various other noise filtering algorithms yields significant
improvements in denoising quality.

One of the main challenges in the field of coupled multiscale flow simulation
is the software design and implementation, since goals such as flexibility, inter-
changeability of solvers and modularity on an algorithmic level often contradict
to hardware and high performance requirements. Some very generic solutions
exist, such as MUI [23] or the MUSCLE 2 [3] software, which can be used for var-
ious multiscale settings. We recently presented the MaMiCo coupling framework
[13,14]. It is system-specific for molecular-continuum coupling, but independent
of actual MD and CFD solvers. MaMiCo provides interface definitions for arbi-
trary flow simulation software, hides coupling algorithmics from the solvers and
supports 2D as well as 3D simulations.

In this paper, we present extensions of the MaMiCo tool for massively par-
allel particle simulation data analytics and noise reduction. We introduce a
new interface that is intended primarily for MD flow quantity noise filtering,
but in the same way usable for any kind of MD data post-processing for the
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molecular-continuum coupling. We also present an implementation of a HPC
compatible and scalable POD noise filter for MaMiCo. Our interface is compat-
ible with multi-instance MD computations in a natural way, thus it enables a
novel combination of noise filtering and multi-instance sampling: A small ensem-
ble of separate MD simulations delivers information about the behaviour of the
simulated system on a molecular level, while the filtering efficiently extracts a
smooth signal for the continuum solver. The goal of this paper is to investigate
this new combination and to discuss the related software design issues.

In Sect. 2 we introduce the relevant theoretical background on MD (Sect. 2.1),
the considered molecular-continuum coupling (Sect. 2.2) and POD (Sect. 2.3).
Section 3 focuses on the implementation of the MaMiCo data analytics and fil-
tering extension. In Sect. 4, we quantify the denoising quality of the filtering. We
further analyse signal-to-noise ratios (SNR) for a three-dimensional oscillating
Couette flow with synthetic noisy data (Sect. 4.1). To validate the resulting tran-
sient coupled molecular-continuum simulation, we use a Couette flow setup and
examine its startup (Sect. 4.2). We also conduct performance measurements and
scaling tests (Sect. 4.3) of our new coupled flow simulation on the LRZ Linux
Cluster1 platforms CoolMUC-2 and CoolMUC-3. Finally, we give a summary
and provide an outlook to future work in Sect. 5.

2 Theoretical Background

2.1 Molecular Dynamics (MD)

For the sake of simplicity we restrict our considerations to a set of Lennard-
Jones molecules here, without loosing generality since the coupling and noise
reduction methodology and software is compatible with other particle systems
such as dissipative particle dynamics [9] systems in the same way.

For a number N of molecules with positions xi, velocities vi, mass m and
interacting forces F i, the behaviour of the system is determined by a Verlet-type
numerical integration, using a particle system time step width dtP, of Newton’s
equation of motion

d

dt
vi =

1
m
F i,

d

dt
xi = vi. (1)

F i is defined by Lennard-Jones parameters ε, σ and a cut-off-radius rc, see [13]
for details.

The method is implemented using linked cells [10]. The implementation is
MPI-parallelized in the simulation software SimpleMD [14] which is part of
MaMiCo; note that this solver choice is for simplicity only as it has been shown
that MaMiCo interfaces various MD packages, such as LAMMPS, ls1 mardyn,
and ESPResSo/ESPResSo++.

1 https://www.lrz.de/services/compute/linux-cluster/overview/.

https://www.lrz.de/services/compute/linux-cluster/overview/
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2.2 Coupling and Quantity Transfer

The method used here to couple continuum and MD solver is based on [13,16].
The simulation setup and overlapping domain decomposition is shown in

Fig. 1. Nested time stepping is used, i.e. the particle system is advanced over n
time steps during every time step of the continuum solver, dtC := n · dtP.

Fig. 1. Coupled Couette simulation transfer region setup. 2D slice through 3D domain,
H is the wall distance. Here, only the four outer cell layers close to the MD boundary
are shown. At the outer MD domain boundary, an additional boundary force Fb(r) is
applied to the molecules. In the green outer MD cells, mass fluxes are transferred from
continuum to MD. On the two blue cell layers, velocity values are imposed to MD.
Finally, inside the red cells (arbitrarily large region), velocity and density values are
sampled, post-processed, and sent back to the continuum solver. (Color figure online)

Particle → continuum data transfer: Continuum quantities for the coupling,
such as average velocity u, are sampled cell-wise over a time interval dtC:

u =
dtP

NdtC

dtC
dtP

−1∑

k=0

N∑

i=1

vi(t0 + kdtP) (2)

Afterwards, these quantities are optionally post-processed (separately for every
MD instance), accumulated from all instances together, and represent the molec-
ular flow field at continuum scale.

Continuum → particle data transfer: Velocities coming from overlapping cells
of the continuum flow solver are used to accelerate the molecules in the corre-
sponding grid cells, they are applied via an additional forcing term with shifted
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time intervals, see [13] for details. Mass flux from the continuum into the particle
simulation is realised by particle deletion and insertion with the USHER algo-
rithm [5]. As boundary conditions for the MD-continuum boundary reflecting
boundaries are used. We add the boundary force Fb(r) proposed by Zhou et al.
[25]. It is given as an analytic fitting formula and estimates missing intermolec-
ular force contributions over a wide range of densities and temperatures.

2.3 Noise Reduction: POD

The proper orthogonal decomposition (POD), also known as principal compo-
nent analysis, is a general statistical method for high-dimensional data analysis
of dynamic processes and a main technique for data dimensionality reduction. It
was already used and investigated for analysis of velocity fields from atomistic
simulations [11,26]. Here we employ POD as a fast standard method and basic
example to demonstrate the capabilities of our data analytics and noise reduction
interface. However, note that various algorithms are known to yield significantly
stronger denoising, such as the POD+ methods proposed by Zimoń et al. [26],
e.g. POD together with wavelet transform or Wiener filtering. Also many multi-
dimensional image processing filters like non-local means, anisotropic filtering or
total variation denoising [4,17] are promising for CFD data. They can be applied
with the noise reduction interface in the same way as POD.

Based on the method of snapshots [21] to analyse a space-time window of fluc-
tuating data, consider a window of N discrete time snapshots t ∈ {t1, ..., tN} ⊂
R. A finite set Ω of discrete sampling points x ∈ Ω ⊂ R

3 defines a set of signal
sources u(x, t). POD describes the function u(x, t) as a finite sum:

u(x, t) ≈
kmax∑

k=1

φk(x)ak(t) (3)

where the orthonormal basis functions (modes) φk(x) and ak(t) represent the
temporal and spatial components of the data, such that the first kmax modes
are the best approximation of u(x, t). Choosing a sufficiently small kmax will
approximate only the dominating components of the signal u and exclude noise.
The temporal modes ak(t) can be obtained by an eigenvalue decomposition of
the temporal auto-correlation covariance matrix C,

Cij =
∑

x∈Ω

u(x, ti)u(x, tj) i, j = 1, 2, ..., N. (4)

They in turn can be used to compute the spatial modes φk(x) with orthogonality
relations.

In case of parallel execution, i.e. when subsets of Ω are distributed over sev-
eral processors, Eq. (4) can be evaluated by communicating local versions of
C in a global reduction operation. Although this is computationally expensive
compared to purely local, independent POD executions, it is helpful to pre-
vent inconsistencies between subdomains and enforce smoothness, especially in
a coupled molecular-continuum setting. Every other step of the algorithm can
be performed locally.
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3 Implementation: MaMiCo Design and Extension

The MaMiCo tool [13,14] is a C++ framework designed to couple arbitrary
massively parallel (i.e., MPI-parallel) continuum and particle solvers in a mod-
ular and flexible way, employing a Cartesian grid of so-called macroscopic cells
to enable the data exchange. It also provides interfaces to coupling algorithms
and data exchange routines. In this paper we employ only the built-in MD sim-
ulation, called SimpleMD on the microscopic side. On the macroscopic side, a
simple Lattice Boltzmann (LB) implementation, the LBCouetteSolver and an
analytical CouetteSolver are used. The necessary communication between Sim-
pleMD ranks and the ranks of the LBCouetteSolver, where the respective cells
are located, is performed by MaMiCo.

The extended system design of MaMiCo is shown in Fig. 2, where the lat-
est developments have been marked in the central red box: A newly introduced
interface NoiseReduction (Listing 1) is part of the quantity transfer and cou-
pling algorithmics bundle. It is primarily intended for noise filtering, but able
to manage arbitrary particle data analytics or post-processing tasks during the
coupling, independently of the coupling scheme, actual particle and continuum
solver in use. It is designed to be compatible with multi-instance MD compu-
tations in a natural way, as separate noise filters are instantiated for each MD
system automatically. This yields a strong subsystem separation rather than
algorithmic interdependency. However, explicit cross-instance communication is
still possible if necessary.

Fig. 2. Extended MaMiCo system design. (Color figure online)
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We provide a dummy implementation, IdentityTransform, that performs no
filtering at all, of the NoiseReduction interface, as well as our own massively par-
allel implementation of a particle data noise filter using POD. The POD imple-
mentation employs Eigen2 to perform linear algebra tasks such as the eigenvalue
decomposition. It involves a single invocation of a global (per MD instance)
MPI reduction operation to enable detection of supra-process flow data correla-
tion and its separation from thermal noise. It is fully configurable using XML
configuration files, where you can specify kmax and N .

1 template<unsigned int dim> class

coupling::noisereduction::NoiseReduction {↪→

2 public: [...]

3 /** Is called for every macroscopic cell right before sending the
macroscopicMass and -Momentum data to the macroscopic solver,
but after the call to TransferStrategy::[...] */

↪→

↪→

4 virtual void processInnerMacroscopicCell(

5 coupling::datastructures::MacroscopicCell<dim> &cell, const

unsigned int &index ){}↪→

6 virtual void beginProcessInnerMacroscopicCells(){}

7 virtual void endProcessInnerMacroscopicCells(){}

8 [...]

9 }; // Excerpts from main coupling loop:
10 for (int cycles = 0; cycles < couplingCycles; cycles++){

11 couetteSolver->advance(dt_C); // Run one continuum step.
12 // Extract data from couette solver and send them to MD.
13 fillSendBuffer(*couetteSolver,sendBuffer,...);

14 multiMDCellService.sendFromMacro2MD(sendBuffer,...);

15 for (int i = 0; i < mdInstances; i++) // Run MD instances.
16 simpleMD[i]->simulateTimesteps(dt_P,...);

17 // Send back data from MD instances and merge it into recvBuffer of
this rank. This automatically calls the noise filter.↪→

18 multiMDCellService.sendFromMD2Macro(recvBuffer,...); }

Listing 1: Code snippets from C++ noise reduction interface and main coupling
loop, outlining its callback methodology, structure and basic usage.

4 Analysis of Simulation Results

Our test scenario, the Couette flow, consists of flow between two infinite parallel
plates. A cubic simulation domain with periodic boundaries in x- and y-direction
is used. The upper wall at a distance of z = H is at rest, while the lower wall at
z = 0 moves in x-direction with constant speed uwall = 0.5. The analytical flow
solution for the start-up from unit density and zero velocity everywhere can be
derived from the Navier–Stokes equations and is given by:

2 http://eigen.tuxfamily.org.

http://eigen.tuxfamily.org
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ux(z, t) = uwall

(
1 − z

H

)
− 2uwall

π

∞∑

k=1

1
k

sin
(
kπ

z

H

)
e−k2π2νt/H2

(5)

where ν is the kinematic viscosity of the fluid and uy = 0, uz = 0.
We refer to the smallest scenario that we frequently use as MD-30, because

it has a MD domain size of 30 × 30 × 30, embedded in a continuum simulation
domain with H = 50. We always use a continuum (and MD) cell size of 2.5
and time steps of dtC = 0.5, dtP = 0.005. The Lennard-Jones parameters and
the molecule mass are set to m = σ = ε = 1.0. The MD domain is filled with
28 × 28 × 28 particles, this yields a density value ρ ≈ 0.813 and a kinematic
viscosity ν ≈ 2.63. MD-60 and MD-120 scenarios are defined by doubling or
quadrupling domain sizes and particle numbers in all spatial directions, keeping
everything else constant.

For a fluctuating x-velocity signal u(x, t) we define the signal-to-noise ratio

SNR = 10 log10

( ∑
∀x,t û(x, t)2

∑
∀x,t(û(x, t) − u(x, t))2

)
dB (6)

with the analytical noiseless x-velocity û. As SNR is expressed using a loga-
rithmic scale (and can take values equal to or less than zero - if noise level is
equal to or greater than signal), absolute differences in SNR correspond to rela-
tive changes of squared signal amplitude ratios, so we define the gain of a noise
reduction method as

gain = SNROUT − SNRIN, (7)

with SNROUT and SNRIN denoting the signal-to-noise ratios of denoised data
and original fluctuating signal, respectively.

4.1 Denoising Harmonically Oscillating Flow

To point out and quantify the filtering quality of MaMiCo’s new POD noise filter
component, we investigate a harmonically oscillating 3D Couette flow. We use
the MD-30 scenario and set uwall to a time dependent sine signal. Since we want
to investigate only the noise filter here but not the coupled simulation, we use
synthetic (analytical) MD data with additive Gaussian noise, without running
a real MD simulation. This is not a physically valid flow profile as it disregards
viscous shear forces caused by the time-dependent oscillating acceleration, but
it is eligible to examine and demonstrate noise filtering performance. We show
the influence of varying the POD parameters kmax and N in Fig. 3, where the
x-component of velocity, for clarity in only one of the cells in the MD domain,
is plotted over time; the SNR value is computed over all cells.

The number kmax of POD modes used for filtering is considered to be a fixed
simulation parameter in this paper, however note that the optimal value of kmax

depends on the flow features and several methods to choose kmax adaptively at
runtime by analysing the eigenspectra have been proposed [11,26].
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(a) Original noisy, Gaussian signal, with
zero mean and standard deviation 0.16,
SNR = 2.88 dB

(b) kmax = 3, N = 40, SNR = 11.68 dB

(c) kmax = 2, N = 10, SNR = 8.95 dB (d) kmax = 2, N = 80, SNR = 15.82 dB

(e) kmax = 1, N = 10, SNR = 12.28 dB (f) kmax = 1, N = 80, SNR = 19.93 dB

Fig. 3. SNR gain of our POD implementation in MaMiCo, for oscillating 3D Couette
flow, using synthetic MD data. Maximum uwall = 0.5. Red: x-component of velocity;
Black: True noiseless signal for this cell (Color figure online)

Figure 3f shows the best reduction of fluctuations with a SNR gain of 17.05
dB compared to the input signal Fig. 3a. Only one POD mode is sufficient here,
since the sine frequency is low and the flow close to a steady-state, so that higher
eigenvalues already describe noise components of the input.
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(a) Original noisy signal, SNR = 1.26 dB (b) 8 instances, kmax = 1, N = 80, SNR
= 21.10 dB

Fig. 4. Oscillating 3D Couette, coupled one-way into a real MD simulation instead of
using synthetic data.

We validate the synthetic MD data test series by repeating the same exper-
iment with a real one-way coupled molecular-continuum simulation. Figure 4a
shows the noisy x-velocity signal in one of the cells. In Fig. 4b we additionally
enable multi-instance sampling using 8 MD instances and observe a smooth sine
output with a SNR gain of 19.84 dB.

4.2 Start-Up of Coupled Couette Flow

We employ a one-way coupled LBCouetteSolver → SimpleMD simulation run-
ning on 64 cores in a MD-30 scenario. The MD quantities that would be returned
to the CouetteSolver are collected on the corresponding CouetteSolver rank.
They are compared to the analytical solution in Fig. 5.

Figure 5a shows a very high fluctuation level, because uwall = 0.5 is rela-
tively low compared to thermal fluctuations of MD particles. Figures 5b and c
compare multi-instance sampling and noise filtering. The 32 instance simula-
tion is computationally more expensive, but yields a strong gain of 14.73 dB.
Theoretically one would expect from multi-instance MD sampling with I = 32
instances a reduction of the thermal noise standard deviation by factor

√
I,

and a reduction of squared noise amplitude by factor I, so the expected gain
is 10 log10(I) dB = 15.05 dB, which is in good compliance with our exper-
imental result. The simulation with POD is using two modes here, which is
necessary as data in a singe mode does not capture the fast flow start-up. A
smaller comparable gain of 11.15 dB is obtained here, using much less computa-
tional resources (see Sect. 4.3). The best result is achieved using a combination
of multi-instance sampling and noise filtering shown in Fig. 5d. This novel app-
roach yields a signal-to-noise gain of 22.63 dB for this test scenario, so that the
experimentally produced velocity values closely match the analytical solution.

Thus the new combined coupling approach features benefits for both per-
formance and precision. Its ability to extract considerably smoother flow field
quantities permits coupling on shorter time scales.
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(a) 1 MD instance, no noise filter, SNR =
0.29 dB

(b) 32 MD instances, no noise filter, SNR
= 15.02 dB

(c) 1 MD instance, POD(kmax = 2, N =
40), SNR = 11.44 dB

(d) 32 MD instances, POD(kmax = 2, N =
40), SNR = 22.92 dB

Fig. 5. Couette startup flow profiles, one-way LB → SimpleMD coupling, multi-
instance MD versus noise filtering (Color figure online)

4.3 Performance and Scaling Tests

In Table 1 we investigate the performance of the noise filtering subsystem com-
pared to the other components of the coupled simulation. POD always runs with
same number of cores as MD. The MaMiCo time includes only efforts for cou-
pling communication – particle insertion and velocity imposition is counted as
MD time. The table entries are sampled over 100 coupling cycles each, excluding
initializations, using a Couette flow simulation on the LRZ Linux Cluster.

The filter parameter N (time window size) strongly influences the POD run-
time, as C ∈ R

N×N – and communication and eigenvalue decomposition is
performed on C. This leads in practice to a complexity in the order of O(N3).
Thus, choosing a sufficiently small N is important to limit the computational
demand of the method.
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Table 1. Impact of noise filter on overall coupled simulation performance. Ratios in the

form

[
MD LB

POD MaMiCo

]
– given as percentages of total runtime spent in the respective

simulation component.

domain size # cores N
LB MD LB MD 20 40 80

100x100x100 30x30x30 1 1
[
98.90 0.68
0.13 0.29

] [
98.69 0.67
0.35 0.29

] [
97.86 0.66
1.19 0.29

]

100x100x100 60x60x60 1 8
[
98.00 0.46
0.17 1.36

] [
97.84 0.46
0.33 1.36

] [
97.23 0.46
0.96 1.35

]

200x200x200 120x120x120 8 64
[
69.23 0.17
0.37 30.24

] [
69.15 0.17
0.46 30.22

] [
68.95 0.17
0.81 30.07

]

400x400x400 240x240x240 512 512
[
95.67 2.62
1.01 0.70

] [
95.30 2.70
1.32 0.68

] [
94.81 2.78
1.71 0.70

]

Fig. 6. Strong scaling of coupled simula-
tion, MD-120, including noise filtering. All
cores are used for LB, MD and POD,
respectively.

However, the noise reduction run-
time is always very low compared
to the other simulation components.
Particularly with regard to the high
gain in signal-to-noise ratio that is
reached with relatively little compu-
tational effort here, this is a very good
result.

The scalability of the coupled sim-
ulation, including the noise filter, is
evaluated on LRZ CoolMUC-3. The
strong scaling tests in Fig. 6 are per-
formed in a fixed MD-120 domain with up to 512 cores used. It is found that
our new POD implementation does not significantly impede the scaling, even
though it employs a MPI reduction operation. This operation is executed only
once per coupling cycle, i.e. every 100 MD time steps, and is restricted to a
single MD instance. These results demonstrate the eligibility of our MD data
post-processing approach and POD implementation for high-performance com-
puting applications.

5 Conclusions

We have introduced a new noise filtering subsystem into MaMiCo that enables
massively parallel particle data post-processing in the context of transient
molecular-continuum coupling. Thanks to MaMiCo’s modular design, it is com-
patible with any particle and continuum solver and can be utilized in conjunction
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with MD multi-instance sampling. Experiments with flow start-up profiles vali-
date our coupled simulation. SNR considerations for oscillating flow demonstrate
the filtering quality of our POD implementation. The noise filtering interface and
implementation are very scalable and have only a minimal impact on the overall
coupled simulation performance.

We observed SNR gains from the POD filter ranging roughly from 11 dB
to 17 dB. This corresponds to a potential simulation performance increase by
MD instance reduction by a factor of 10 to 50. However, we point out that a
combination of both, POD and multi-instance sampling, yields even more smooth
quantities and thus enables coupling on shorter time scales, while yielding a
higher level of parallelism than a POD-only approach.

As our interface is very generic and flexible, a possible future work suggesting
itself would be to conduct experiments with more noise filtering algorithms.
Especially the area of image processing offers many promising methods which
could be applied to CFD instead of image data. Besides, further data analytics
and particle analysis tasks may be tackled in the future, such as flow profile
extraction, pressure wave and density gradient detection, or specific molecular
data collection modules, e.g. for determination of radial distribution functions.
Resilient MD computations by a fault-tolerant multi-instance system with the
ability to recover from errors are also conceivable, as well as a machine learning
based extension extracting more smooth quantities by learning and detection of
prevalent flow features.
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