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Abstract. When the heat released by a flame is sufficiently in phase
with the acoustic pressure, a self-excited thermoacoustic oscillation can
arise. These nonlinear oscillations are one of the biggest challenges faced
in the design of safe and reliable gas turbines and rocket motors [7]. In the
worst-case scenario, uncontrolled thermoacoustic oscillations can shake
an engine apart. Reduced-order thermoacoustic models, which are non-
linear and time-delayed, can only qualitatively predict thermoacoustic
oscillations. To make reduced-order models quantitatively predictive, we
develop a data assimilation framework for state estimation. We numer-
ically estimate the most likely nonlinear state of a Galerkin-discretized
time delayed model of a horizontal Rijke tube, which is a prototypi-
cal combustor. Data assimilation is an optimal blending of observations
with previous system’s state estimates (background) to produce optimal
initial conditions. A cost functional is defined to measure (i) the sta-
tistical distance between the model output and the measurements from
experiments; and (ii) the distance between the model’s initial conditions
and the background knowledge. Its minimum corresponds to the opti-
mal state, which is computed by Lagrangian optimization with the aid
of adjoint equations. We study the influence of the number of Galerkin
modes, which are the natural acoustic modes of the duct, with which the
model is discretized. We show that decomposing the measured pressure
signal in a finite number of modes is an effective way to enhance state esti-
mation, especially when nonlinear modal interactions occur during the
assimilation window. This work represents the first application of data
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assimilation to nonlinear thermoacoustics, which opens up new possibil-
ities for real-time calibration of reduced-order models with experimental
measurements.

Keywords: Data assimilation ·
Nonlinear time-delayed dynamical systems · Thermoacoustics

1 Nonlinear Time-Delayed Thermoacoustic Model

We investigate the acoustics of a resonator excited by a heat source, which is a
monopole source of sound. The main assumptions of the reduced-order model
are [7]: (i) the acoustics evolve on top of a uniform mean flow; (ii) the mean-flow
Mach number is negligible, therefore the acoustics are linear and no flow inho-
mogeneities are convected; (iii) the flow is isentropic except at the heat-source
location; (iv) the length of the duct is sufficiently larger than the diameter, such
that the cut-on frequency is high, i.e., only longitudinal acoustics are considered;
(v) the heat source is compact, i.e., it excites the acoustics at a specific loca-
tion, xf ; (vi) the boundary conditions are ideal and open-ended, i.e., the acous-
tic pressure at the ends is zero. Under these assumptions, the non-dimensional
momentum and energy equations read, respectively [5]

∂u

∂t
+

∂p

∂x
= 0, (1)

∂p

∂t
+

∂u

∂x
+ ζp − Q̇δD(x − xf ) = 0, (2)

where u is the acoustic velocity; p is the acoustic pressure; t is the time; x is
the axial coordinate of the duct; δD(x − xf ) is the Dirac delta distribution at
the heat source location, xf ; ζ is the damping factor, which models the acoustic
energy radiation from the boundaries and thermo-viscous losses; and Q̇ is the
heat release rate (or, simply, heat release). The heat release, Q̇, is modelled by
a nonlinear time delayed law [10]

Q̇ ≡ βPoly(uf (t − τ)), (3)

where τ is the time delay; β is the strength of the heat source; and Poly(u(t)) =
a1u

5(t) + · · · + a5u(t). The time delay and strength of the heat source are the
two key parameters of a reduced-order model for the flame [3]. Physically, τ is
the time that the heat release takes to respond to a velocity perturbation at
the flame’s base; while β provides the strength of the coupling between the heat
source and the acoustics. Velocity, pressure, length and time are nondimension-
alized as in [5]. The set of nonlinear time-delayed partial differential Eqs. (1)–(2)
provides a physics-based reduced-order model for the nonlinear thermoacoustic
dynamics. Owing to the assumptions we made, the model can only qualitatively
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replicate the nonlinear thermoacoustic behaviour. In this paper, we propose a
Lagrangian method to make a qualitative model quantitatively more accurate
any time that reference data can be assimilated. Such data can come, for exam-
ple, from sensors in experiments or time series from high-fidelity simulations.

1.1 Numerical Discretization with Acoustic Modes

We use separation of variables to decouple the time and spatial dependencies
of the solution. The spatial basis on to which the solution is projected con-
sists of the natural acoustic modes. When decomposed on the natural acoustic
eigenfunctions, the acoustic velocity and pressure read, respectively

u(x, t) =
Nm∑

j=1

ηj(t) cos(jπx), (4)

p(x, t) =
Nm∑

j=1

(
η̇j(t)
jπ

)
sin(jπx), (5)

where the relationship between ηj and η̇j has yet to be found and Nm is the
number of acoustic modes considered. This discretization is sometimes known as
the Galerkin discretization [12]. The state of the system is provided by the ampli-
tudes of the Galerkin modes that represent velocity, ηj , and those that represent
pressure, η̇j/(jπ). The damping has modal components, ζj = C1j

2 + C2

√
j,

where C1 and C2 are damping coefficients [1,5,6,8,9]. In vector notation,
η ≡ (η1, · · · , ηN )T and η̇ ≡ (η̇1/π, · · · , η̇N/(Nπ))T. The state vector of the
discretized system is the column vector x ≡ (η; η̇). The governing equations
of the Galerkin modes are found by substituting (4)–(5) into (1)–(3). Equa-
tion (2) is then multiplied by sin(kπx) and integrated over the domain x = [0, 1]
(projection). In so doing, the spatial dependency is removed and the Galerkin
amplitudes are governed by a set of nonlinear time-delayed differential equations

F1j ≡ d

dt
(ηj) − jπ

(
η̇j

jπ

)
= 0 t > 0, (6)

F2j ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
= 0 t ∈ [0, τ), (7)

F2j ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
+ 2sjβ Poly(uf (t − τ)) = 0 t ∈ [τ, T ], (8)

where uf (t − τ) =
∑Nm

j=1 ηj(t − τ)cj ; sj ≡ sin(jπxf ) and cj ≡ cos(jπxf ). The
labels F• are introduced for the definition of the Lagrangian (Sect. 3.2). Because
the Galerkin expansions (4)–(5) are truncated at the Nm-th mode, we obtain
a reduced-order model of the original thermoacoustic system (1)–(2) with 2Nm

degrees of freedom (6)–(8). The reduced-order model is physically a set of 2Nm

time-delayed oscillators, which are nonlinearly coupled through the heat release
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term. In the following sections, we employ 4D-Var data assimilation to improve
the accuracy of such a reduced-order model1.

2 Data Assimilation as a Constrained Optimization
Problem

The ingredients of data assimilation are (i) a reduced-order model to predict
the amplitude of thermoacoustic oscillations, which provides the so-called back-
ground state vector xbg at any time, t (red thick line in Fig. 1); (ii) data from
external observations, yi, which is available from high-fidelity simulations or
experiments at times tiobs (grey diamonds in Fig. 1); and (iii) an educated guess
on the parameters of the system, which originates from past experience. The
uncertainties on the background solution and observations are here assumed
normal and unbiased. B and R are the background and observation covariance
matrices, respectively, which need to be prescribed. For simplicity, we assume
that B and R are diagonal with variances B and R (i.e., errors are statistically
independent). A cost functional is defined to measure the statistical distance
between the background predictions and the evidence from observations. First,
we want the state of the system to be as close as possible to the observations.
Second, we do not want the improved solution to be “too far” away from the
background solution. This is because we trust that our reduced-order model pro-
vides a reasonable solution. Mathematically, these two requirements can be met,
respectively, by minimizing the following cost functional

J =
1
2
||x0 − xbg

0 ||2B
︸ ︷︷ ︸

Jbg

+
1
2

Nobs∑

i=1

||Mxi − yi||2R
︸ ︷︷ ︸

Jobs

over [0, T ], (9)

where Nobs is the number of observations over the assimilation window [0, T ]. M
is a linear measurement operator, which maps the state space to the observable

space (see Eqs. (4)–(5)). Moreover, ||x0−xbg
0 ||2B ≡

(
x0 − xbg

0

)T

B−1
(
x0 − xbg

0

)
.

Likewise, ||Mxi − yi||2R ≡ (
Mxi − yi

)T
R−1

(
Mxi − yi

)
.

The objective of state estimation is to improve the prediction of the state,
x, over the interval [0, T ], by reinitializing the background initial conditions,
xbg
0 , with optimal initial conditions. These optimal initial conditions are called

analysis initial conditions, xanalysis
0 , which are the minimizers of the cost func-

tional (9). We start from a background knowledge of the model’s initial con-
ditions, xbg

0 , which is provided by the reduced-order model when data is not
assimilated. By integrating the system from xbg

0 , we obtain the red trajectory
in Fig. 1, xbg(t). The set of observations is assumed to be distributed over an
1 Although different from our study, it is worth mentioning that a study that combined

4D-Var data assimilation with reduced-order models of the Navier-Stokes equations
based on proper orthogonal decomposition can be found in [4].



160 T. Traverso and L. Magri

assimilation window at some time instants. Pictorially, the analysis trajectory
corresponds to the green thin line in Fig. 1, which is the minimal statistical
distance between the background initial condition (magenta thick arrow) and
observations (blue thin arrows). This algorithm is known as 4D-Var in weather
forecasting [2]. State estimation enables the adaptive update of reduced-order
thermoacoustic models whenever data is available.

St
at
e

Time

Obs.

Background
(previous forecast)

(corrected forecast)
Analysis Assimilation

window

Fig. 1. Pictorial representation of data assimilation. The background error, Jbg, is
proportional to the length of the magenta thick arrow, while the observation error,
Jobs, is proportional to the sum of the blue thin arrows. The vertical cyan line marks
the end of the assimilation window, after which the forecast begins. (Color figure online)

3 Data Assimilation for Nonlinear Thermoacoustic
Dynamics

We propose a set of cost functionals to perform data assimilation with the ther-
moacoustic model introduced in Sect. 1. We also introduce the formalism to per-
form Lagrangian optimization, in which adjoint equations enable the efficient
calculation of the gradients of the thermoacoustic cost functionals with respect
to the initial state.

3.1 Thermoacoustic Cost Functionals

Crucial to data assimilation is the definition of the cost functionals Jbg and Jobs.
Three physical thermoacoustic cost functionals are proposed and compared to
reproduce different scenarios. For the background error
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Ja
bg =

1
2B

(p(0) − p(0)bg)
2
, (10)

Jb
bg =

1
2B

Nm∑

j=1

{ [(
η̇j0

jπ

)
−

(
η̇j0

jπ

)

bg

]
sin(jπxm)

}2

, (11)

Jc
bg =

1
2B

Nm∑

j=1

[(
η̇j0

jπ

)
−

(
η̇j0

jπ

)

bg

]2

+
1

2B

Nm∑

j=1

[ηj0 − ηj0,bg]
2
. (12)

For the observation error

Ja
obs =

Nobs∑

i=1

Ja
obs,i =

1
2R

Nobs∑

i=1

(
p(tiobs) − p

(i)
obs

)2

, (13)

Jb
obs =

Nobs∑

i=1

Jb
obs,i =

1
2R

Nobs∑

i=1

Nm∑

j=1

{ [(
η̇j(tiobs)

jπ

)
−

(
η̇j

jπ

)(i)

obs

]
sin(jπxm)

}2

,

(14)

where xm is the location where the measurement is taken and tiobs is the instant
at which the i−th observation is assimilated. On the one hand, by using Ja

bg and
Ja

obs the analysis solution is optimized against the background pressure at t = 0
and the measured pressure at t = tiobs, i = 1, . . . , Nobs. Physically, this means
that the acoustic pressure is the model output, p(0)bg, and the observable from
the sensors, pi

obs. On the other hand, Jb
bg and Jb

obs constrain the pressure modes.
Physically, this means that every pressure mode provided by the background
solution is a model output, (η̇j0/(jπ))bg, and it is assumed that the modes of

the acoustic pressure, (η̇j/(jπ))(i)obs, can be calculated from the sensors on the
fly. For the background cost functional, we also defined Jc

bg as a norm of the
modes, which does not have a corresponding observation cost functional because
the spatial dependency is not explicit.

To attain a minimum of J , a necessary condition is that the gradient van-
ishes, i.e.,

∇x0(J) = ∇x0(Jbg) +
Nobs∑

i=1

∇x0(Jobs,i) = 0, (15)

where ∇x0 is the gradient with respect to the initial conditions. There exists
x0 such that ∇x0(J) = 0 because of the convexity of the cost functionals in
the neighbourhood of a local extremum. To compute ∇x0(Jbg) and ∇x0(Jobs,i),
we use calculus of variation (Sect. 3.2). The Lagrange multipliers, also known as
adjoint, or dual, or co-state variables (Sect. 3.3), provide the gradient information
with respect to the initial state.
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3.2 Lagrangian of the Thermoacoustic System

The governing equations and their initial conditions are rewritten in the form
of constraints, F, which hold over time intervals, while G are the constraints
that hold for a specific time only, i.e., t = t0. Together with Eqs. (6)–(8) and by
defining the auxiliary variable η̄(t) ≡ uf (t − τ), they read

F3 ≡ η̄(t) = 0, t ∈ [0, τ) (16)
F3 ≡ η̄(t) − uf (t − τ) = 0, t ∈ [τ, T ]. (17)

The constraints for the initial conditions read

G1j ≡ ηj(0) − ηj0 = 0, (18)

G2j ≡
(

η̇j(0)
jπ

)
−

(
η̇j0

jπ

)
= 0. (19)

By defining an inner product

[a, b] =
1
T

T∫

0

ab dt (20)

where a and b are arbitrary functions, the Lagrangian of the nonlinear system
can be written as

L ≡ Jbg + Jobs,i +
Nm∑

j=1

Lj − [
ξ̄(t),F3

]
, (21)

where each Lj is

Lj ≡ −
[

ξj

jπ
,F1j

]
− [νj ,F2j ] − b1jG1j − b2jG2j , (22)

where ξ̄, ξj/jπ, νj and b•j are the Lagrange multipliers, or adjoint variables, of
the corresponding constraints. Because we wish to derive the adjoint equations
for the cost functional Jobs,i, we consider the time window to be T = tiobs.

3.3 Adjoint Equations

We briefly report the steps to derive the evolution equations of the Lagrange
multipliers (adjoint equations) [7]. First, the Lagrangian (21) is integrated by
parts to make the dependence on the direct variables explicit. Secondly, the first
variation is calculated by a Fréchet derivative
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[
∂L
∂x

, δx
]

≡ lim
ε→0

L(x + εδx) − L(x)
ε

. (23)

Thirdly, the derivatives of (21) are taken with respect to the initial condition
of each variable of the system, ∂L/∂x0. These expressions will be used later
to compute the gradient. Finally, to find the set of Lagrange multipliers that
characterizes an extremum of the Lagrangian, L, variations with respect to δx
are set to zero. The adjoint equations and their initial conditions are derived by
setting variations of δηj , δ (η̇j/(jπ)) and δη̄ to zero over [0, T ].

3.4 Gradient-Based Optimization

The optimization loop consists of the following steps:

(1) Integrate the system forward from t = 0 to t = T from an initial state x0;
(2) Initialize the adjoint variables;
(3) Evolve the adjoint variables backward from t = T to t = 0;
(4) Evaluate the gradient using the adjoint variables at t = 0.

Once the gradient is numerically computed, the cost functional can be minimized
via a gradient based optimization loop. The conjugate gradient [11] is used to
update the cost functional until the condition ∇x0(J) = 0 is attained to a relative
numerical tolerance of 10−4. By using a gradient based approach, we find a local
minimum of J . We verify that there is no other local minimum by computing
J = J(x0) in the vicinity of xanalysis

0 .

4 Results

We validate the data-assimilation algorithm by twin experiments: The true state
solution, xtrue(t), is produced by perturbing the unstable fixed point at the
origin of the phase space2; the background trajectory, xbg(t), is obtained by
perturbing each true mode initial condition with Gaussian error with variance
B = 0.0052; the i−th observation is produced by adding Gaussian error with
variance R = 0.0052 to xtrue(tiobs). The outcome of twin experiments is summa-
rized by the error plots shown in Figs. 3 and 4. The cyan vertical line indicates
the end of the assimilation window, the red thick line is the difference between
the true pressure and the background pressure, the green thin line is the differ-
ence between the true pressure and the analysis pressure. First, it is shown how
the number of computed acoustic modes affects the solution of the system. Sec-
ondly, we investigate the effects that the different cost functionals have on the
analysis solution. Finally, we discuss the effects that the number of observations
have on the analysis.

The parameters we use are β = 1, τ = 0.02, C1 = 0.05, C2 = 0.01 and
(a1, a2, a3, a4, a5) = (−0.012, 0.059,−0.044,−0.108, 0.5) for the heat release term
Q̇. The position of the heat source is xf = 0.3 and all the measurements are
taken at xm = 0.8.
2 Strong constraint 4D-Var assumes that the model is perfect and the uncertainty is

only in the initial conditions, therefore, the true trajectory can be a model output.



164 T. Traverso and L. Magri

4.1 Remarks on the Thermoacoustic Nonlinear Dynamics

The thermoacoustic model is a set of 2Nm nonlinearly coupled oscillators, which
we initialize by imposing non-equilibrium initial conditions. We compare two
solutions, using Nm = 3 and Nm = 10 in Fig. 2a and b, respectively. Higher
modes are quickly damped out, thus, after a transient where strong nonlinear
modal coupling occurs, the solution obtained with Nm = 10 is qualitatively sim-
ilar to the solution obtained with Nm = 3. During the transient, if sufficient
modes are computed, the dynamics are more unpredictable because of the intri-
cate modal interaction. The twin experiments are performed with Nm = 10,
which provide a more accurate solution. It is shown that state estimation is
markedly affected depending on whether we observe the system during the tran-
sient or at regime.

Effect of the Observation Error. We can simulate two main scenarios,
depending on the choice of Jobs (Sect. 3.1). Figure 3a is obtained using Ja

obs,
i.e., by modelling observations on the pressure only. The analysis pressure error
slightly deviates from zero in the assimilation window. When the forecast win-
dow starts, the analysis suddenly approaches the background again. Figure 3b is
obtained using Jb

obs, therefore the observations contain information about every
pressure modes. The forecast quality is considerably enhanced. The assimilation
window is Tas = 0.4, thus, the observations are obtained during the transient,
which lasts up to t ≈ 2, where the dynamics are more unpredictable due to
nonlinear interactions between modes. As we will show in the next subsection,
increasing Nobs is not an effective strategy to improve the forecast during the
transient when the pressure is observed.

Effect of the Background Error. From a numerical standpoint, the back-
ground error, Jbg, acts as an observation at t = 0. The analysis trajectory is
an optimal blending of the information from the measurements and the previ-
ous educated model output. Therefore, we emphasize that the outcome of twin
experiments is improved if the cost functionals of the background knowledge and
observations are consistent. In the present framework, it means that Ja

bg should
be used with Ja

obs and Jb
bg should be used with Jb

obs. On the one hand, if the
source of assimilated data favours the background knowledge (e.g. using Jb

bg or
Jc

bg together with Ja
obs), the analysis trajectory will be closer to the background.

On the other hand, if the source of assimilated data favours the observations (e.g.
using Jb

obs with Ja
bg), the analysis trajectory will be closer to the observations.

Effect of the Number of Observations. Generally speaking, the higher the
number of observations the more the optimal solution will be similar to the true
solution. This can be deduced by inspection of Fig. 4a and b. The value of Nobs

is increased from 50 to 250, over an assimilation window of 2.5 time units (the
observations are not shown in the figures), resulting in a smaller error amplitude
when more observations are available.
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Fig. 2. Time series of the pressure, p and velocity, u evaluated at xm = 0.8 using (a)
Nm = 3 and (b) Nm = 10. When 10 modes are computed, a transient region can be
identified for t � 2, which is characterized by irregular fluctuations due to nonlinear
modal coupling.

However, it is possible that increasing Nobs will not result in a better state
estimation. This happens if we measure the pressure during the transient, that
is, using Ja

obs and Tas < 2. In the transient, the measured pressure is a combina-
tion of all modes. Therefore, the same pressure level is associated with different
combinations of modes, hence, no useful information is assimilated to help deter-
mine the state of the system by knowing only the pressure (i.e., by using Ja

obs).
Under these circumstances, the forecast quality will remain poor, as shown in
Fig. 3a, regardless of the number of observations. When the assimilation window
is extended up to 2.5 time units, as shown in Fig. 4, the pressure is observed
also at regime, that is in t ∈ [2, 2.5], approximately. In this interval, the mea-
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Fig. 3. Time series of the background and analysis acoustic pressure deviation from the
true state (normalized with the true acoustic pressure at t = 0). Both twin experiments
are performed with Nobs = 100 (the observations are not shown). (a) The cost func-
tional measures the (a) pressure (Ja

obs), and (b) pressure modes (Jb
obs). (Color figure

online)
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Fig. 4. Error plots of two different twin experiments. The assimilation window is Tas =
2.5 time units and the observation error is measured using Ja

obs in both cases. The
choice of Tas implies that the system is observed also at regime. (a) Nobs = 50 and (b)
Nobs = 250. (Color figure online)
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sured pressure signal is produced chiefly by the first three modes because higher
modes are damped out. Therefore, the measured pressure becomes more effec-
tive information about the state to assimilate. At regime, as intuitively expected,
increasing the observation frequency produces a better forecast.

We conclude that having poor information about the system’s state cannot
be simply balanced by increasing the number of observations. Given a number
of observations with their time distribution, it is the synergy between an appro-
priate cost functional and the recognition of the type of dynamics (transient vs.
regime) to be the key for a successful data assimilation.

5 Conclusions and Future Work

Preliminary thermoacoustic design is based on simplified and computation-
ally cheap reduced-order models that capture the inception of thermoacoustic
instabilities (linear analysis) and their saturation to finite amplitude oscillations
(nonlinear analysis). We propose a Lagrangian method to make a qualitative
reduced-order model quantitatively more accurate any time that reference data
can be assimilated. Such data can come, for example, from sensors in experiments
or time series from high-fidelity simulations. To test the method we perform a
series of twin experiments with the thermoacoustic model of a resonator excited
by a heat source (horizontal Rijke tube). When sufficient modes are computed, a
clear distinction emerges between a transient state and the state at regime. The
former is characterized by irregular dynamics due to the interaction between all
modes, while at regime the dynamics are chiefly dominated by the first three
modes. We find that, at regime, it is possible to enhance the forecast by assim-
ilating data about the pressure. As intuitively expected, the higher the number
of observations, the better the forecast accuracy. While testing the effective-
ness of data assimilation during the transient, we find that it is not possible
to improve the forecast by measuring the pressure only. Moreover, the quality
of the forecast remains poor regardless of the number of observations. There-
fore, we propose a more effective cost functional, which takes into consideration
the spectral content of the measured signal to enable a successful state estima-
tion also during the transient. In state estimation, we implicitly assume that
the parameters are correct. However, this is rarely the case in thermoacoustics,
where the parameters are uncertain and need to be optimally calibrated. Ongo-
ing work includes simultaneous parameter and state estimation using Lagrangian
optimization with state augmentation. This work opens up new possibilities for
on-the-fly optimal calibration and state estimation of reduced-order models in
thermoacoustics for applications in propulsion and power generation.
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