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Abstract. Recently, some studies have suggested methods to com-
bine variational probabilistic inference with Monte Carlo sampling. One
promising approach is via local optimal transport. In this approach, a
gradient steepest descent method based on local optimal transport prin-
ciples is formulated to deterministically transform point samples from
an intermediate density to a posterior density. The local mappings that
transform the intermediate densities are embedded in a reproducing ker-
nel Hilbert space (RKHS). This variational mapping method requires
the evaluation of the log-posterior density gradient and therefore the
adjoint of the observational operator. In this work, we evaluate nonlin-
ear observational mappings in the variational mapping method using two
approximations that avoid the adjoint, an ensemble based approximation
in which the gradient is approximated by the sample cross-covariances
between the state and observational spaces the so-called ensemble space
and an RKHS approximation in which the observational mapping is
embedded in an RKHS and the gradient is derived there. The approxi-
mations are evaluated for highly nonlinear observational operators and in
a low-dimensional chaotic dynamical system. The RKHS approximation
is shown to be highly successful and superior to the ensemble approxi-
mation for non-Gaussian posterior densities.

Keywords: Variational inference · Stein discrepancy ·
Data assimilation

1 Introduction

There is a large number of applications in which the process of interest is not
directly measured, a latent process, but it is related through a map to another
process which is the one observed. This problem can be framed in the classical
Bayesian inference, in which the latent process is inferred from indirect noisy
observations [19]. The mapping between the two processes will here be referred
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to as the observational mapping. Depending on the application, the observa-
tional mapping may be (partially) known through the knowledge of the physical
processes involved. An example of particular interest in this work is the inference
of atmospheric state variables from satellite measurements of radiation. In other
applications, the map is unknown and needs to be estimated. This is one of the
central aims in machine learning applications [20].

In modeling and predicting the atmosphere, clouds play a central role. Mea-
surements from spaceborne radars may give information on cloud properties. In
this case, the observed variables are radar reflectivity and microwave radiances,
while the variables of interest are cloud particle concentrations and distributions.
This mapping is represented in models through parameterizations which relate
cloud microphysical processes to precipitation and radiative fluxes. In several
situations, the joint posterior density of model parameters and the output vari-
ables is bimodal [12]. The main factor responsible for the bimodal density is the
extremely nonlinear response of model output variables to changes in microphys-
ical parameters. The parameter prior density and observation uncertainty only
play a secondary role in the resulting complexity of the posterior density.

If the latent process is governed by a time evolving stochastic dynamical sys-
tem, the inference is sequential. The time evolution of the latent state is given
by a Markov process–the dynamical system– while an observational mapping
relates observations with the latent state. These are known as state-space mod-
els or hidden Markov models. A rather general method for inference in hidden
Markov models is based on Monte Carlo sampling of the prior density, referred
to as sequential Monte Carlo or particle filtering [4]. One of the major chal-
lenges in high-dimensional particle filtering is to concentrate sample points in
the high-probability regions of the posterior density, the so-called typical set. In
this case, they produce a non-negligible contribution to expectation estimations.
Therefore, sample points are required to be located in the typical set to make
the most of them.

Recent works propose to combine variational inference with Monte Carlo
sampling [17]. A rigorous well-grounded framework to combine them is via local
optimal transport [11,16]. Optimal transport relates a given density with a target
density trough a mapping that minimizes a risk. Hence, optimal transport con-
cepts may be used to move sample points to locations where they maximize the
amount of Shannon information they can provide. If the mapping function space
is constrained to a reproducing kernel Hilbert space, the local direction that
minimizes the risk, in terms of the Kullback-Leibler divergence, is well defined.
This direction minimizes the Stein discrepancy [10]. An application of the vari-
ational mapping using the Stein gradient to sequential Monte Carlo methods in
the framework of hidden Markov models was recently developed [16] and has
been referred to as variational mapping particle filter (VMPF).

The gradient of the observation likelihood depends on the adjoint of the
observational mapping. Thus, most of the approximations used for posterior
inference including MAP estimation, the Kalman filter, and the stochastic
and square-root ensemble Kalman filters (e.g. [1,7]) require this adjoint of the
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observational mapping. However, there is a rather large number of complex
observational mappings for which the adjoint is not available. In the context
of the ensemble Kalman filter, an ensemble approximation of the adjoint of the
observational mapping is used [6,7]. However, this approximation may have a
detrimental effect in the inference for the highly nonlinear observational map-
ping of e.g. cloud parameter estimation [13–15] and in other geophysical appli-
cations [3].

A description of the VMPF in the context of observational mapping is given
in Sect. 2. Two approximations of the adjoint of the observational mapping
based on sample points evaluations of the observational operator are derived
in Sects. 2.1 and 2.2). Details of the experiments are given in Sect. 3. The VMPF
with the exact gradient of the logarithm of the posterior density and the devel-
oped approximations is evaluated with nonlinear observational operators in low-
dimensional spaces (Sect. 4). The performance of the VMPF in a chaotic dynam-
ical system with a nonlinear observational mapping is also discussed.

2 Observational Function with Variational Mappings

Suppose we want to determine a stochastic latent process x in R
Nx , only sparse

observations of another related process y in R
Ny are available. The relationship

between the processes is given through a known nonlinear observational operator
H such that

yk = H(xk) + ηk, (1)

where ηk is the random observational error which consists of realizations from
a density, p(η), that describes the measurement and representation error, k
denotes different realizations of the stochastic process. We assume the obser-
vational errors are unbiased, E(η) = 0.

Using Bayes rule, the density of the latent process conditioned on the real-
izations of the observed process is

p(x|y) ∝ p(y|x)p(x). (2)

Let us assume the prior knowledge of x is through a sample {xj , j =
1, · · · , Np} � x1:Np . A standard importance sampling technique for Bayesian
inference assumes that the prior density p(x) is a proposal density of p(x|y) so
that this posterior distributions is written as the sample points of the prior den-
sity with weights given by the likelihood of the sample at the points [4]. A better
proposal density may be considered assuming knowledge of the observation. In
this case, weights are expected to be more equally distributed within sample
points so that the variance of the weights is smaller.

Our aim is to find a sequence of mappings, xi = Ti(xi−1) that transforms
from sample points of p(x) to sample points of p(x|y). Considering these map-
pings, the relationship between the transformed density after the mappings and
the initial density is

q(xI(x0)) =
I∏

i=1

|∇Ti| q(x0), (3)
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where the initial density q(x0) is in principle the prior density, while the target
density of the transformations is the posterior density p(x0|y) and |∇Ti| are the
Jacobians of the transformations.

Therefore, in order to get equally-weighted sample points that optimally rep-
resent the posterior density, we have to find a series of maps T that transforms
the prior into the posterior density. In terms of the particles, the goal is to drive
them from the prior density to the posterior density. In this work, sample points
will also be referred to as particles interchangeably. This process, of driving the
particles from one to other density, could be framed as maximizing the likelihood
of the particles. Alternatively, it can be formulated as a Kullback-Leibler diver-
gence (KLD) optimization given the well-known equivalence between marginal
likelihood maximization and KLD minimization. The KLD between the inter-
mediate density and the target density is

DKL(qT ‖p) =
∫

qT (x) log
[

qT (x)
p(x|y)

]
dx (4)

The aim is to determine the local transformation T that produces the deep-
est descent in KLD. The derivation of the steepest descent gradient has been
already given in previous works [10,16]. Assuming the transformation T is in a
reproducing kernel Hilbert space (RKHS), the gradient of the KLD is given by

∇DKL(x) = −
∫

[K(x′,x)∇ log p(x′|y) + ∇x′K(x′,x)] dx′ (5)

where K(x′,x) is the reproducing kernel and the gradient is at x where the local
transformation is produced.

Each of the particles is moved along the steepest descent direction v(x) =
−∇DKL,

xj
i+1 = Ti+1(x

j
i ) = xj

i + εv(xj
i ). (6)

The particles are tracers in a flow given by the KLD gradient. In essence, the
objective is to determine the direction of steepest descent at each sample point
and to move them along these directions. The pseudo-time step ε in (6) should be
small enough so that the particle trajectories do not intersect and therefore the
smoothness of the flow is conserved. The overall performance of the variational
mapping in a sequential Monte Carlo algorithm is evaluated in [16] and is termed
as the variational mapping particle filter (VMPF).

To obtain the gradient of the Kulback-Leibler divergence at a sample point
(5), we require an analytical expression of the log-posterior gradient, which
can be expressed in terms of the prior density and the observation likelihood
using (2),

∇ log p(x|y) = ∇ log p(x) + ∇ log p(y|x) (7)

Assuming Gaussian observational errors, p(η) ∼ N (0,R), and using (2), the
log-observation likelihood gradient is

∇ log p(y|x) = (∇H(x))�R−1(y − H(x)). (8)
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The observational operator has a major role in (8). For a linear observational
mapping, a linear log observation likelihood gradient results. On the other hand,
a nonlinear mapping produces a nonlinear likelihood gradient. Therefore, it
induces a non-Gaussian posterior distribution. In the case of a non-injective
mapping, more than one root of (8) are expected, which results in a multimodal
posterior density. This rather common feature in the observational mapping is
examined exhaustively in the experiments.

2.1 Observational Mapping in the RKHS

For many applications in geophysical systems, the observational operator is a
rather complex mapping that involves physical processes, for instance as men-
tioned the transformation from cloud properties to observed radar reflectivity.
Even when the observational operator is available, the tangent-linear and adjoint
operators of the observational mapping are often not available and their develop-
ment and use could be costly in terms of human resources and computationally
demanding in its evaluation. In this work, we derive a Monte Carlo approx-
imation of the term (∇H(x))� in (8). In coherence with the formulation of
the variational mapping, we now also assume that the process H(x) is in the
reproducing kernel Hilbert space (RKHS). This assumption is similar to that in
support vector machines, where the mapping is also assumed to lie in an RKHS
[20]. In that case, we can use the reproducing property for H(x),

H(x) = 〈H(x′)| K(x,x′)〉 . (9)

where 〈·| ·〉 is the RKHS inner product. Using the Np particles x1:Np to generate
a finite Hilbert space, the Monte Carlo approximation of the gradient of (9) is

∇H(x) ≈ 1
Np

Np∑

j=1

H(xj)∇xK(x,xj). (10)

We have now an expression of the gradient of the observational operator that
only depends on its evaluation at the particle positions. From the RKHS theory,
we know that the approximated value in (10) will converge towards the exact
one when Np → ∞ assuming H(x) is sufficiently smooth. Convergence of the
gradient in the RKHS has been examined in [21].

The expression of the gradient of the Kullback-Leibler divergence of the
VMPF (5) using a Monte Carlo integration is

∇DKL(x) = − 1
Np

Np∑

l=1

[
K(xl,x)∇ log p(xl|y) + ∇xlK(xl,x)

]
. (11)

using (7) and (10) in (11), the gradient becomes

∇DKL(x) = − 1
Np

Np∑

l=1

{
K(xl,x)

[
∇ log p(xl) +

(
1

Np
ΣjH(xj)∇xlK(xl,xj)

)�

R−1(y − H(x))
]
+ ∇xlK(xl,x)

}
. (12)
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This expression depends only on the evaluation of the observational operator
at the sample points. Therefore, the number of evaluations of the observational
operator in (12) is Np at each mapping iteration. No extra evaluations from the
original variational mapping are required. The Gram matrix and the gradient of
the kernels are already available since they are required in the second right-hand
side term of (11). In conclusion, the main complexity of the algorithm is still of
order N2

p as in the original VMPF.
There is a problem for the RKHS approximation of the observational map-

ping (10) in the regions where the sample points are sparse. An experiment to
illustrate this drawback is shown in Sect. 3. This problem appears because the
kernel values between those sparse points and the rest of the sample points have
only few points (the closest ones to the one in consideration) with non-negligible
contributions and all the other kernel values are (close to) 0. Note that the square
of the bandwidth is chosen to be smaller than the trace of the sample covariance
to allow for more detailed structures in the density of H(x). One way to solve
this problem could be using an adaptive kernel bandwidth based on the distance
to the k-nearest neighbors. A simpler solution is to normalize the contributions
of the kernels

H(x) ≈
∑Np

j=1 H(xj)K(x,xj)
∑Np

l=1 K(x,xl)
(13)

In this way, the contribution of the kernel functions evaluated at each sample
point is normalized. This approximation to the gradient of the observational
mapping is evaluated in the experiments.

2.2 Observational Operator in the Ensemble Space

Instead of constraining the observational operator to the RKHS, it can be
expressed in the ensemble perturbation space. This type of approximations is
common in ensemble Kalman filtering. Indeed, the whole estimation problem
may be transformed and determined in the ensemble perturbation space [7].
Here, we derive an approximate expression for the tangent-linear model, i.e.
the gradient of the observational mapping, and its adjoint model based on the
perturbations of the particles (ensemble members) to the mean.

The increments are approximated with a first-order Taylor series around the
mean x

y − H(x) ≈ y − H(x) − H(x − x), (14)

where H is the tangent-linear operator of H at x. The perturbation matrices in
the state and observational spaces are composed by the differences between the
ensemble members and the mean, namely

X =
1√

Np − 1

(
x(1) − x,x(2) − x, · · · ,x(Np) − x

)
, (15)

Y =
1√

Np − 1

(
H(x(1)) − H(x), · · · ,H(x(Np)) − H(x)

)
. (16)
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where X is an Nx × Np matrix and Y is Ny × Np. The included normalization
factor is

√
Np − 1 to avoid bias in the sample covariance. Thus, the prior sample

covariance is P = XX�.
The approximated tangent-linear operator of H at the ensemble space is then

given by
∇H(x) = H ≈ YX†, (17)

where Pyx � YX�. For the adjoint approximation, the transpose of non-
Gaussianity in the posterior density for the inverse model is the nonlinearity
in the observational operator. The prior density is N (0.5, 1). The observation
corresponds to a true state of 3 with an observational error of R = 0.5. The
approximations are evaluated with two nonlinear observation operators. We use
a quadratic relationship, H(x) = x2, which is expected to lead to a bimodal poste-
rior density because of its non-injectivity. Non-injective observational operators
associate an observation with more than one state. The observation likelihood
function then contains several maxima. Therefore, if the prior density is non-null
for these states associated to the likelihood maxima, they result in a multimodal
posterior density. For a challenging evaluation of the of (17) is used,

∇H(x)� ≈ H� = (X†)�Y�.

3 Experiments

In the observational mapping experiments, an iid sample from the prior density
is given, which for simplicity is assumed in general to be normally distributed.
Furthermore, observational errors are assumed Gaussian. Thus, the only source
of non-Gaussianity in the posterior density for the inverse model is the nonlinear-
ity in the observational operator. The prior density is N (0.5, 1). The observation
corresponds to a true state of 3 with an observational error of R = 0.5.

The approximations are evaluated with two nonlinear observation operators.
We use a quadratic relationship, H(x) = x2, which is expected to lead to a
bimodal posterior density because of its non-injectivity. Non-injective observa-
tional operators associate an observation with more than one state. The obser-
vation likelihood function then contains several maxima. Therefore, if the prior
density is non-null for these states associated to the likelihood maxima, they
result in modes of the posterior density. For a challenging evaluation of the gradi-
ent approximations of the observational operator, we also use the absolute value
y = |x| which contains a discontinuity in its derivative. Representations of the
observational mapping through a small number of basis functions is expected
to give an inaccurate approximation of this derivative. Although these obser-
vational operators are only motivated in evaluating the approximations, they
are indeed found in several applications. In particular, the absolute value is a
frequent operator that appears when measuring wind and current speeds with
instruments that are not able to distinguish flow direction.

Note that the prior density we use is not symmetric around 0, while the chosen
observational operators are. Besides, the true state is in a region of very small
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prior density. These choices have been taken so that the gradient approximation
from sample points represents a challenge.

Algorithm 1 . Variational mapping
algorithm

Input: Given x
(1:Np)
0 , y, H(·), and p(η)

repeat � Mapping iterations
for j = 1, Np do

x
(j)
i ← x

(j)
i−1 − ε ∇DKL(x

(j)
i−1) �

∇DKL using different particle approxi-
mations (11), (12). � ε obtained with
ADAM.

end for
i ← i+1

until Stopping criterion met
|∇DKL|/|∇DKL0| < δ

Output: x
(1:Np)
i

Algorithm 2. VMPF algorithm

Input: Given x
(1:Np)

k−1 , yk, H(·), M(·),
and p(η)
for j = 1, Np do

x
(j)
k,0 ← M(x

(j)
k−1, ηk) � Forecast

stage
end for
repeat � Mapping iterations

for j = 1, Np do

x
(j)
k,i ← x

(j)
k,i−1 − ε ∇DKL(x

(j)
k,i−1)

� ∇DKL using different particle approx-
imations (11), (12). � ε obtained with
ADAM.

end for
i ← i+1

until Stopping criterion met
|∇DKL|/|∇DKL0| < δ

Output: x
(1:Np)

k,i

In a last set of experiments, we evaluate the use of a nonlinear observation
operator in a chaotic dynamical system. The state of the 3-variable Lorenz-63
dynamical system corresponds to the latent process. Observations are obtained
with the absolute observational mapping from the latent state and a Gaussian
noise. The results from the VMPF using 100 particles are compared with the
SIR particle filter [4] using 1000 and 10000 particles.

The pseudo-code of the variational mapping methodology for the observa-
tional mapping is shown in Algorithm 1. A single posterior density is estimated
through the mapping iterations. The particles are moved along the steepest
descent direction as in traditional multidimensional optimization. However, mul-
tiple points of the cost function, i.e. KL divergence, are followed at the same time.
Furthermore, the distribution of these sample points defines the gradient of the
cost function in each iteration. In other words, the particles –sample points–
interact during the optimization. The termination criterion of the optimization
is based on the mean value of the modulus of the KLD gradient (considering all
the points). The pseudo-code of the variational mapping particle filter includes
the estimation of a posterior density for each cycle–each time observations are
available. The posterior density at one cycle is propagated through the set of
particles using the dynamical model to obtain the sample prediction density at
the next observation time. Algorithm 2 shows the variational mapping particle
filter pseudo-code. A detailed description of the VMPF may be found in [16].

The optimization in the VMPF is conducted through ADAM [9], a second-
moment optimization method. The tuning parameters are set to the recom-
mended values, first moment parameter β1 = 0.9 and second moment parameter
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β2 = 0.99. The learning rate was set to 0.03. The maximum number of opti-
mization iterations is set to 500 (this is not reached in any of the experiments),
and the criterion for termination is based on the mean value of |∇DKL|, the
required threshold is |∇DKL|/|∇DKL1| < 0.01 where |∇DKL1| corresponds to
the first iteration. The required number of iterations under these settings is about
100–150 in the observational mapping experiments and about 50 iterations in
the dynamical experiments, however a few cycles may require more than 200
iterations. For more computationally consuming experiments, a higher learning
rate may be more efficient. However, we have priorized the smoothness of the
mappings in these proof-of-concept experiments.

Fig. 1. The gradient of a quadratic observational operator, H(x) = x2, represented
by the samples of the prior density for the exact calculation (left upper panel), the
approximation using unnormalized kernels (middle upper panel) and using normalized
kernels (right upper panel). The gradient of the log-observation likelihood, (8) with
exact gradient (left lower panel), normalized RKHS approximation (middle lower panel)
and ensemble approximation (right lower panel).

For all the experiments, radial basis functions are used as kernels. A Maha-
lanobis distance is taken, K(x,x′) = exp

(−‖x − x′‖2A
)
. The Mahalanobis

matrix A, hereinafter referred to as kernel covariance, is chosen proportional
to the prior sample covariance in the observational mapping experiments and
the model error covariance in the dynamical system experiment. The propor-
tionality factor, which could be interpreted as the bandwidth of an isotropic
kernel, is determined with the Scott rule. However, some extra manual tuning
of it was required for some of the experiments.
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4 Results

Figure 1 shows the results of the derivative of the quadratic observational oper-
ator (upper panels) represented by using the sample points of the prior density.
The exact calculation is shown in left upper panel of Fig. 1. The approximation
in the RHKS using unnormalized kernel functions in the finite space, (10), is
in the middle panel and the one using normalized kernels, (13), in the right
upper panel. The approximation to the mapping gives small values in isolated
sample points because of only a few points contribute to the kernel integra-
tion in sparse areas. The normalization factor incorporates weights according to
the density of points around the samples, producing a better estimate of the
functional representation of the mapping and its derivative. However, note that
some smoothing is still found in the extremes which results in approximated
derivative values smaller that the true ones. This effect in the sparse sample
points should manifest in strong convex functions as the one used in the eval-
uation. The normalized kernel approximation–apart from the amplitude– gives
a rather good functional dependence. There are some minor deviations in the
functional dependence mainly produced by the asymmetry introduced between
the sampling and the observational mapping.

Fig. 2. Gradient of the observation mapping H(x) = |x| for the exact calculation,
the approximation using kernels and the approximation using perturbations in the
ensemble space. Two kernel bandwidths, γ = 1 (blue dots) and γ = 0.3 (orange dots)
are shown for the RKHS approximation. (Color figure online)

The impact of approximating ∇H on the gradient of the observation like-
lihood is shown in the lower panels of Fig. 1. The overall structure using the
RKHS approximation is recovered. However, the amplitude of the gradient is
underestimated. The ensemble space approximation gives a constant gradient
of the observational mapping independent of the sample points, (17), which is
expected to give the mean gradient of the mapping. In terms of the gradient
of the observation likelihood, it results in a quadratic function, because of the
increment term in (8) between observations and the particles. This would only
be a good approximation of the true observation likelihood gradient (left panel)
close to the observation. For methods that only give the maximum a posteriori
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solution, a relatively coarse representation of the gradient of the log-likelihood
function may be enough to give a good estimation. Thus, they only require a pre-
cise gradient of the observational operator close to the observation. On the other
hand, an accurate representation in a larger region is required if the inference
problem also deals with uncertainty quantification.

Results for the absolute observational operator are shown in Fig. 2. Gaussian
kernels act as smoothers (e.g. [20]), so that the approximation with Gaussian
kernels to the absolute function is a smooth function and so the derivative is
similar to a tanh-function with a smooth transition between the positive and
negative values. The transition can be more abrupt if the kernel bandwidth is
reduced from γ = 1 to 0.3 (middle panel in Fig. 2). However, the sampling noise
is increased in that case. Note also that the amplitude of the function approxi-
mation is closer to the true one for the narrower kernel bandwidth. A narrower
kernel bandwidth uses less sample points to approximate the mapping. Hence, it
diminishes the smoothing. The ensemble space average produces a correct gradi-
ent of the log-likelihood close to the observations in the positive state values, but
a wrong one for negative state values (lower right panel). Because the amplitude
in ∇H results from an average of all the sample points, it is underestimated in
the absolute mapping and so in the gradient of the log-likelihood.

Fig. 3. Evolution in pseudo-time of the sample points for a quadratic observational
mapping (upper panels) for the experiment with exact gradient (left panel), RKHS
approximation (middle panel) and ensemble approximation (right panel). Posterior
density (lower panels) for the exact quadratic observational mapping (red line) and
the one obtained with VMPF (black line) (Color figure online)

Figure 3 exhibits the trajectories of the sample points as a function of pseudo-
time between the initial iteration of the filter (representing the prior density)
and up to the convergence criterion is met which is based on the module of
the gradient of the Kullback-Leibler divergence. The experiment corresponds to
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the quadratic mapping. In both the exact and the RKHS approximation, sam-
ples are attracted to two different positive/negative regions which represent a
bimodal posterior density. Because of the asymmetry in the prior density (whose
the mean is 0.5) more particles are attracted to the positive region. The parti-
cles finish more disperse in the RKHS approximation than in the exact gradient
calculation. The ensemble space approximation for the gradient of the observa-
tional mapping removes the bimodality of the posterior density and the particles
are only attracted by the dominant mode (right panel). Lower panels in Fig. 3
compare the analytical posterior density with the one obtained with the VMPF,
representing the final sample with kernel density estimation in coherence with
the RKHS used in the mappings. The VMPF using the exact observational map-
ping is shown in the left panel of Fig. 3, the one using the RKHS approximation
(middle panel) and the ensemble approximation (right panel). The exact case
shows some smoothing of the main mode mainly because the observation is at
a low density region of the likelihood. Tests with a narrower kernel bandwidth
diminish the effect but it does not disappear. In the case of the RKHS approx-
imation, there is some spread of the sample points toward lower values. This
effect may be linked to the lower values of the gradient of the likelihood in this
approximation. The ensemble approximation removes the smaller mode and only
represents the main one. The slightly wider representation of uncertainty around
the main mode is mainly controlled by the kernel bandwidth.

Fig. 4. The temporal evolution of the true state variables of the stochastic Lorenz-
63 dynamical system (green line) and trajectories (40) of the particles resulting from

the VMPF (orange dots), namely x
(1:40)
1:K as resulting from the output of Algorithm 2.

Panels show each variable of the Lorenz 63 system. Time units are cycles. (Color figure
online)

Figure 4 shows the evolution of the three variables of the Lorenz-63 system
for a selected set of particles from VMPF (orange dots) and the true trajec-
tory (green line). Because the apriori density at the initial time is prescribed as
Gaussian, the posterior density evolves as unimodal until the true state changes
of attractor. This occurs at about the cycle 300. From that time, trajectories of
the VMPF particles are located in both attractors because the absolute obser-
vations cannot distinguish in which attractor the system is. In other words, the
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Fig. 5. Marginalized sequential posterior density represented through kernel density
estimation, obtained with the VMPF using the exact (VPMF-EXA), RKHS (VMPF-
RKHS) and ensemble calculations (VMPF-ENS) of the adjoint. The densities from SIR
particle filter with 1000 (SIR-1k) and 10000 particles (SIR-10k) are also shown. Panels
show marginalized density as a function of each variable for the Lorenz 63 system at
the 500 cycle.

subsequent posterior density evolution from t = 300 undergoes a transition to a
bimodal density. Figure 5 shows the marginal posterior densities in each variable
for the VMPF at cycle 500. Both the exact calculation and the RKHS approxi-
mation in the observation likelihood gradient in the VMPF are able to capture
the bimodality of the posterior density using 100 particles. On the other hand,
the ensemble approximation only gives an unimodal density. For comparison we
also show in Fig. 5 the corresponding marginalized posterior density of the SIR
particle filter with 1000 and 10,000 particles. The SIR filter requires 10,000 par-
ticles to capture the bimodal structure of the posterior density while VMPF only
requires 100 particles.

5 Conclusions

This work evaluates the use of a nonlinear observational operator in the vari-
ational mapping particle filter. Non-injectivity of the observational mappings
leads to multimodal posterior densities which is known to represent a challenge
for inference methods. The variational mapping particle filter is able to cap-
ture multimodes in the density in offline and online experiments. Particles are
attracted to the modes in coherence with the gradient of the posterior density
and local optimal transport principles.

Two approximations of the gradient of the observation mapping are eval-
uated. The representation of the observational mapping in the RKHS which
overall exhibits a good performance in non-Gaussian densities. Because of the
smoothing associated with this representation, it may slightly shift the modes in
multi-modal densities for cases in which observations are in low-density regions
of the prior density. The evaluation with the Lorenz-63 shows that the impact
of this smoothing in a sequential scheme is negligible even for the absolute value
observational mapping–a discontinuous gradient. The ensemble approximation
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of the gradient as expected does not capture multimodality, but it gives a good
approximation of the main mode of the posterior density and its uncertainty.

We have not considered here other approximations which could require fur-
ther evaluations of the observational mapping apart from the sample points to
estimate the gradient of the mapping. One of these possibilities is the evalua-
tion of the gradient at each sample point from finite differences. For applications
of moderate dimensions and complex observational mapping the computational
cost of these further evaluations required at each iteration of the variational infer-
ence algorithm and at each sample is prohibitive. The RKHS approximation of
the observational operator is expected to be affected by the curse of dimension-
ality for high-dimensional states. A potential way to circunvent this limitation
could be to divide the state space in the variables which are close to linear
dependence from those state variables with a significant nonlinear observational
function response. In this case, the partial derivatives of quasi-linear variables
may be approximated with the ensemble approximation while the derivatives of
highly nonlinear variables may be obtained through the RKHS approximation
in the lower-dimensional subspace.

In all the experiments, radial basis functions are used as kernels. We took this
choice because the structure of errors was assumed Gaussian. On the other hand,
the kernel covariance and in particular the bandwidth are key hyperparameters
for a good performance of the inference. In the proof-of-concept experiments
an expensive trial-and-error methodology is used to manually tune the hyper-
parameters. Adaptative estimates of the hyperparameters are highly required.
Standard adaptative bandwidth selection [18] does not appear a good option for
non-injective observational mappings.
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