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Abstract. This paper demonstrates the use of machine learning tech-
niques to study the uncertainty in numerical weather prediction models
due to the interaction of multiple physical processes. We aim to address
the following problems: (1) estimation of systematic model errors in out-
put quantities of interest at future times and (2) identification of specific
physical processes that contribute most to the forecast uncertainty in
the quantity of interest under specified meteorological conditions. To
address these problems, we employ simple machine learning algorithms
and perform numerical experiments with Weather Research and Fore-
casting (WRF) model and the results show a reduction of forecast errors
by an order of magnitude.
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Model errors · Machine learning

1 Introduction

Computer simulation models of the physical world, such as numerical weather
prediction (NWP) models, are imperfect and can only approximate the complex
evolution of physical reality. Some of the errors are due to the uncertainty in
the initial and boundary conditions, forcings, and model parameter values. Other
errors, called structural model errors, are due to our incomplete knowledge about
the true physical processes; such errors manifest themselves as missing dynamics
in the model [11]. Examples of structural errors include the misrepresentation
of sea-ice in the spring and fall, errors affecting the stratosphere above polar
regions in winter [22], and errors due to the interactions among (approximately
represented) physical processes. Data assimilation improves model forecasts by
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fusing information from both model outputs and observations of the physical
world in a coherent statistical estimation framework [1,15]. While traditional
data assimilation reduces the uncertainty in the model state and model parame-
ter values, however, no methodologies to reduce the structural model uncertainty
are available to date.

In this study we consider the Weather Research and Forecasting (WRF)
model [24], a mesoscale atmospheric modeling system. The WRF model includes
multiple physical processes and parametrization schemes, and choosing different
model options can lead to significant variability in the model predictions [4,
14]. Among different atmospheric phenomena, the prediction of precipitation is
extremely challenging and is obtained by solving the atmospheric dynamic and
thermodynamic equations [14]. Model forecasts of precipitation are sensitive to
physics options such as the microphysics, cumulus, long-wave, and short-wave
radiation [5,9,14].

This paper demonstrates the potential of machine learning techniques to help
solve two important problems related to the structural or physical uncertainty in
numerical weather prediction models: (1) estimation of systematic model errors
in output quantities of interest at future times, and the use of this information to
improve the model forecasts, (2) identification of those specific physical processes
that contribute most to the forecast uncertainty in the quantity of interest under
specified meteorological conditions.

The application of machine learning techniques to problems in environmental
science has grown considerably in recent years. In [6] a kernel-based regression
method is developed as a forecasting approach with performance close to an
ensemble Kalman filter (EnKF). Krasnopol et al. [8] employ an artificial neu-
ral network (ANN) technique for developing an ensemble stochastic convection
parameterization for climate models.

This study focuses on the uncertainty in forecasts of cumulative precipita-
tion caused by imperfect representations of the physics and their interaction
in the WRF model. The total accumulated precipitation includes all phases of
convective and non-convective precipitation. Specifically, we seek to use the dis-
crepancies between WRF forecasts and measured precipitation levels in the past
in order to estimate the WRF prediction uncertainty in advance. The model-
observation differences contain valuable information about the error dynamics
and the missing physics of the model. We use this information to construct two
probabilistic functions. The first maps the discrepancy data and the physical
parameters onto the expected forecast errors. The second maps the forecast error
levels onto the set of physical parameters that are consistent with them. Both
maps are constructed by supervised machine learning techniques, specifically,
using ANN and Random Forests (RF) [13].

The remainder of this study is organized as follows. Section 2 covers the
definition of the model errors. Section 3 describes the proposed approach of error
modeling using machine learning. Section 4 reports numerical experiments with
the WRF model that illustrate the capability of the new approach to answer two
important questions regarding model errors. Conclusions are drawn in Sect. 5.
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2 Model Errors

First-principles computer models capture our knowledge about the physical laws
that govern the evolution of a real physical system. The model evolves an initial
state at the initial time to states at future times. All models are imperfect, for
example, atmospheric model uncertainties are associated with subgrid modeling,
boundary conditions, and forcings. All these modeling uncertainties are aggre-
gated into a component that is generically called model error [7,17,18]. In the
past decade considerable scientific effort has been spent in incorporating model
errors and estimating their impact on the best estimate in both variational and
statistical approaches [1,20–22].

Consider the following NWP computer model M that describes the time-
evolution of the state of the atmosphere:

xt = M (xt−1,Θ) , t = 1, · · · , T. (1a)

The state vector xt ∈ Rn contains the dynamic variables of the atmosphere such
as temperature, pressure, precipitation, and tracer concentrations, at all spatial
locations covered by the model and at t. All the physical parameters of the model
are lumped into Θ ∈ R�.

Formally, the true state of the atmosphere can be described by a physical
process P with internal states υt, which are unknown. The atmosphere, as an
abstract physical process, evolves in time as follows:

υt = P (υt−1) , t = 1, · · · , T. (1b)

The model state seeks to approximate the physical state:

xt ≈ ψ(υt), t = 1, · · · , T, (1c)

where the operator ψ maps the physical space onto the model space, for exam-
ple, by sampling the continuous meteorological fields onto a finite-dimensional
computational grid [11].

Assume that the model state at t − 1 has the ideal value obtained from the
true state via (1c). The model prediction at t will differ from reality:

ψ(υt) = M(
ψ(υt−1),Θ

)
+ δt

(
υt

)
, t = 1, · · · , T, (2)

where the discrepancy δt ∈ Rn between the model prediction and reality is the
structural model error. This vector lives in the model space.

Although the global physical state υt is unknown, we obtain information
about it by measuring a finite number of observables yt ∈ Rm as follows:

yt = h(υt) + εt, εt ∼ N (0,Rt), t = 1, · · · , T. (3)

Here h is the observation operator that maps the true state of atmosphere to
the observation space, and the observation error εt is assumed to be normally
distributed.
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To relate the model state to observations, we also consider the observation
operator H that maps the model state onto the observation space. The model-
predicted values ot ∈ Rm of the observations (3) are

ot = H(xt), t = 1, · · · , T. (4)

We note that the measurements yt and the predictions ot live in the same space
and therefore can be directly compared. The difference between the observations
(3) of the real system and the model predicted values of these observables (4)
represent the model error in observation space:

Δt = ot − yt ∈ Rm, t = 1, · · · , T. (5)

For clarity, in what follows we make the following simplifying assumptions [11]:

– The physical system is finite dimensional υt ∈ Rn.
– The model state lives in the same space as reality; i.e., xt ≈ υt, and ψ(·) ≡ id

is the identity operator in (1c).
– H(·) ≡ h(·) in (3) and (4).

These assumptions imply that the discretization errors are very small and that
the main sources of error are the parameterized physical processes represented by
Θ and the interaction among these processes. Uncertainties from other sources,
such as boundary conditions, are assumed to be negligible.

With these assumptions, the evolution equations for the physical system (1b)
and the physical observations Eq. (3) become, respectively,

υt = M(
υt−1,Θ

)
+ δt

(
υt), t = 1, · · · , T, (6a)

yt = h(υt) + εt. (6b)

The model errors δt (2) are not fully known at any time t, since having
the exact errors is akin to having a perfect model. However, the discrepancies
between the modeled and measured observable quantities (5) at past times have
been computed and are available at the current time t.

Our goal is to use the errors in observable quantities at past times, Δτ for
τ = t − 1, t − 2, · · · , in order to estimate the model error δτ at future times
τ = t, t + 1, · · · . This is achieved by unraveling the hidden information in the
past Δτ values. Good estimates of the discrepancy δt, when available, could
improve model predictions by applying the correction (6a) to model results:

vt ≈ xt + δt. (7)

3 Approximating Model Errors Using Machine Learning

We propose a multivariate input-output learning model to predict the model
errors δ, defined in (2), stemming from the uncertainty in parameters Θ. To this
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end, we define a probabilistic function φ that maps every set of input features
F ∈ Rr to output target variables Λ ∈ Ro:

φ(F ) ≈ Λ, (8)

and approximate the function φ using machine learning.
In what follows we explain the problems we wish to address, function mapping

φ, the input features, and the target variables for each of these problems.

3.1 Problem One: Estimating in Advance Aspects of Interest of the
Model Error

Forecasts produced by NWP models are contaminated by model errors. These
model errors are highly correlated in time; hence historical information about the
model errors can be used as an input to the learning model to gain insight about
model errors. We are interested in the uncertainty caused by the interactions
between the various components in the physics-based model; these interactions
are lumped into the parameter Θ that is supplied as an input to the learning
model. We define the following mapping:

φerror (Θ,oτ ,Δτ ,ot) ≈ Δt τ < t. (9)

We use a machine learning algorithm to approximate the function φerror. Using
a supervised learning process, the learning model identifies the effect of physical
packages, historical WRF forecast, historical model discrepancy, and the current
WRF forecast on the available model discrepancy at the current time. After
the model gets trained on the historical data, it yields an approximation to
the mapping φerror, denoted by φ̂error. During the test phase the approximate
mapping φ̂error is used to estimate the model discrepancy Δ̂t+1 in advance. We
emphasize that the model prediction (WRF forecast) at the time of interest t+1
(ot+1) is available, whereas the model discrepancy Δ̂t+1 is an unknown quantity.
In fact the run time of WRF is much smaller than the time interval between t
and t+1; in other words, the time interval is large enough to run the WRF model
and obtain the forecast for the next time window, estimate the model errors for
the next time window and improve the model forecast by combining the model
forecast and model errors. At the test time we predict the future model error as
follows:

Δ̂t+1 ≈ φ̂error (Θ,oτ ,Δτ ,ot+1) , τ < t + 1.

As explained in [11], the predicted error Δ̂t+1 in the observation space can be
used to estimate the error δt+1 in the model space as follows:

Δt+1 ≈ Ht · δt+1, δ̂t+1 ≈ Ht

(
HT

t Ht

)−1
HT

t · Δ̂t+1, (10a)

where we use the linearized observation operator at the current time, Ht =
h′(xt). A more complex approach is to use a Kalman update formula:

δ̂t+1 ≈ cov(xt,ot) (cov(ot,ot) + Rt)
−1

Δ̂t+1, (10b)

where Rt is the covariance of observation errors.
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3.2 Problem Two: Identifying the Physical Packages that
Contribute Most to the Forecast Uncertainty

Typical NWP models incorporate an array of different physical packages to rep-
resent multiple physical phenomena that interact with each other. Each physical
package contains several alternative configurations (e.g., parameterizations or
numerical solvers) that affect the accuracy of the forecasts produced by the
NWP model. A particular scheme in a certain physical package best captures
the reality under some specific conditions (for example time of the year, repre-
sentation of sea-ice). The primary focus of this study is to accurately forecast
the cumulative precipitation; therefore we seek to learn the impacts of all the
physical packages that affect precipitation. To this end, we define the following
mapping:

φphysics (Δt) ≈ Θ, (11)

which estimates the configuration Θ of the physical packages such that the WRF
run generates a forecast with an error consistent with the prescribed level Δt

(where Δt defined in Eq. (5) is the forecast error in observation space at time t.)
We train the model to learn the effect of the physical schemes on the mis-

match between WRF forecasts and reality. The input data required for the train-
ing process is obtained by running the model with various physical package con-
figurations Θtrain

i and comparing the model forecast against the observations
at all past times τ to obtain the corresponding errors Δtrain

τ,i for τ ≤ t and
i ∈ {training data set}. The output data is the corresponding physical combi-
nations Θ that leads to the input error threshold.

To estimate the physics configuration that contribute most to the uncer-
tainty in predicting precipitation, we take the following approach. The dataset
consisting of the observable discrepancies during the current time window Δt

is split into a training part and a testing part. In the test phase we use the
approximated function φ̂physics to estimate the physical process settings Θ̂1

j that

are consistent with the observable errors Δ
{1}
t,j . Here we select Δ

{1}
t,j = Δtest

t,j for
each j ∈ {test data set}. Note that in this case, since we know what physics has
been used for the current results, we can take Θ̂

{1}
j to be the real parameter val-

ues Θ
{1}
j used to generate the test data. In general, Δ

{1}
t,j is chosen appropriately

for a given application and the corresponding parameters are estimated.
Next, we reduce the desired forecast error level to Δ

{2}
t,j = Δ

{1}
t,j /2 and use

the approximated function φ̂physics to estimate the physical process setting Θ̂
{2}
j

that corresponds to this more accurate forecast. To identify the package setting
that has the largest impact on the observable error, we monitor the variability
in the predicted parameters Θ̂{2} − Θ̂{1}. Specifically, the number of times the
setting of a physical process in Θ̂2

j is different from its setting in Θ̂1
j is an indicator

of the variability in model prediction when that package is changed. A higher
variability in predicted physical packages implies a larger contribution to the
model errors as estimated by the learning model.
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3.3 Machine Learning Algorithms

To approximate the functions (9) and (11), we use regression machine learn-
ing methods. Choosing the right learning algorithm is challenging; it largely
depends on the problem and the data available [2,3,10,12]. Here, we use RF and
ANN as our learning algorithms [13]. Both RF and ANN algorithms can handle
nonlinearity in regression and classification. Given that the physical phenom-
ena governing precipitation are highly nonlinear, and atmospheric dynamics is
chaotic, we believe that RF and ANN approaches are well suited to capture the
associated features. Although there are several other advanced machine learning
algorithms that can be deployed here, we note that our aim here is to demon-
strate the potential of machine learning approaches and hence the use of sim-
ple learning models such as RFs and ANN. Advanced techniques such as long
short term memory (LSTM), convolutional neural networks (CNN), and gated
recurrent units (GRU) are typically used for handling time series data and we
defer such a study with these techniques to our future research. We describe the
details regarding the training procedure, selection of the algorithm parameters,
obtaining training data, and validation procedure in Sect. 4.

4 Numerical Experiments

We apply the proposed learning models to the WRF model [24] to (1) predict the
bias in precipitation forecast caused by structural model errors, (2) predict the
statistics associated with the precipitation errors, and (3) identify the specific
physics packages that contribute most to precipitation forecast errors for given
meteorological conditions.

4.1 WRF Model

In this study we use the non hydrostatic WRF model version 3.3. The simulation
domain, shown in Fig. 1, covers the continental United States and has dimensions
of 60 × 73 horizontal grid points in the west-east and south-north directions,
respectively, with a horizontal grid spacing of 60 km [23]. The grid has 60 vertical
levels to cover the troposphere and lower part of the stratosphere between the
surface to approximately 20 km. In all simulations, the six-hourly analysis from
the National Centers for Environmental Prediction (NCEP) are used as the
initial and boundary conditions of the model [16]. The stage IV estimates are
available at an hourly temporal resolution over the continental United States.
For experimental purposes, we use the stage IV NCEP analysis as a proxy for
the true state of the atmosphere. The simulation window begins at 6am UTC
(Universal Time Coordinated) on May 1, 2017.

The model configuration parameters Θ represent various combinations of
microphysics schemes, cumulus parameterizations, short-wave, and long-wave
radiation schemes. Specifically, each process is represented by the schema values
of each physical parameter it uses, as detailed in WRF model physics options
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and references [25]. A total of 252 combinations of the four physical modules
are used in the simulations. For each of the combinations, the effect of each
physics combination on precipitation is investigated. The NCEP analysis grid
points are 428 × 614, while the WRF computational model have 60 × 73 grid
points. To obtain the discrepancy between the WRF forecast and NCEP analysis,
we linearly interpolate the analysis to transfer the physical variables onto the
model grid. Figure 1 shows the NCEP analysis at 12pm on May 1, 2017 which
is used as “true” (verification) state. Figure 2 shows the forecast at 12pm on
May 1, 2017. For the initial conditions, we use the NCEP analysis at 6pm on
May 1, 2017. The WRF forecast corresponding to the physics microphysics:
Kessler, cumulus physics: Kain-Fritsch, long-wave radiation physics: Cam, shirt-
wave radiation physics: Dudhia is illustrated in Fig. 2. Figures 5 and 6 shows
contours of discrepancies at 12pm (Δt=12pm) discussed in Eq. (5) for two physical
combinations, which illustrates the effect that changing the physical schemes has
on the forecast.

4.2 Experiments for Problem One: Predicting Pointwise
Precipitation Forecast Errors over a Small Geographic Region

We demonstrate our learning algorithms to forecast precipitation in the state of
Virginia on May 1, 2017, at 6pm. Our goal is to use the learning algorithms to
correct the bias created due to model errors and hence improve the forecast for
precipitation. As described in Sect. 3.1, we learn the function φerror of Eq. (9)
using the training data from the previous forecast window (6am to 12pm):

φerror (Θ,oτ ,Δτ ,ot=12pm) ≈ Δt=12pm, 7am ≤ τ < 12pm.

We use two learning algorithms to approximate the function φerror. Specifically,
the RF with ten trees and CART learning tree algorithm in the forest and an
ANN with four hidden layers and hyperbolic tangent sigmoid activation function
in each layer are employed by using Scikit-learn, a machine learning library in
Python [19]. For training purposes, we use the NCEP analysis of May 1, 2017 at
6am as initial conditions for the WRF model. The forecast window is 6 h, and
the WRF model forecast final simulation time is 12pm. The input features are
as follows

– The physics combinations (Θ).
– The hourly WRF forecasts projected onto observation space oτ , am ≤ τ ≤

12pm. The WRF state (xt) includes all model variables such as temperature,
pressure, and precipitation. The observation operator extracts the precipi-
tation portion of the WRF state vector, ot ≡ xprecipitation

t . Accordingly, Δt

is the discrepancy between WRF precipitation forecast ot and the observed
precipitation yt.

– The observed discrepancies at past times (Δτ , 7am ≤ τ < 12pm).

The output variable is the discrepancy between the NCEP analysis and the WRF
forecast at 12pm, that is, the observable discrepancies for the current forecast
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Fig. 1. NCEP analysis at 12pm pro-
vides a proxy for the true state of the
atmosphere.

Fig. 2. WRF forecast at 12pm.

Fig. 3. Original WRF prediction at
6pm on May 1, 2017. Zoom-in panels
show the predictions over Virginia.

Fig. 4. NCEP analysis at 6pm on May
1, 2017. Zoom-in panels show the pre-
dictions over Virginia.

window (Δt=12pm). In fact, for each of the 252 different physical configurations,
the WRF model forecast and the difference between the WRF forecast and the
analysis are provided as input-output combinations for learning the function
φerror. The number of grid points over the state of Virginia is 14× 12. Therefore
for each physical combination we have 168 grid points, and the total number of
samples in the training data set is 252 × 168 = 42, 336 with 15 features.

Both ANN and RF are trained with these input-output combinations to
obtain an approximation of the function φerror, denoted by φ̂error, during the
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Fig. 5. Microphysics scheme: Kessler;
cumulus physics: Kain-Fritsch; short
wave radiation: Cam; long wave radi-
ation: Dudhia
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Fig. 6. micro-physics scheme: Lin;
cumulus physics: Kain-Fritsch; short
wave radiation: RRTM Mlawer; long
wave radiation: Cam

training phase. In the testing phase we use the function φ̂error to predict the
future forecast error Δ̂t=6pm given the combination of physical parameters as
well as the WRF forecast at time 6pm as input features.

Δ̂t=6pm ≈ φ̂error (Θ,oτ ,Δτ ,ot=6pm) , 1pm ≤ τ < 6pm.

To quantify the accuracy of the predicted error we calculate the root mean
squared error (RMSE) between the true and predicted discrepancies at 6pm:

RMSE =

√√
√
√ 1

n

n∑

i=1

(
Δ̂i

t=6pm − Δi
t=6pm

)2

, (12)

where n = 168 is the number of grid points over Virginia. Δ̂i
t=6pm is the predicted

discrepancy and Δi
t=6pm is the actual discrepancy at the grid point i. The actual

discrepancy is obtained as the difference between the NCEP analysis and the
WRF forecast at time t = 6pm. This error metric is computed for each of the
252 physics configurations. The minimum, maximum, and average RMSE over
the 252 runs is reported in Table 1.

Table 1. Minimum, average, and maximum RMSE between the predicted ̂Δt=6pm and
the true Δt=6 over 252 physics combinations.

Minimum RMSE Average RMSE Maximum RMSE

ANN 1.264 × 10−3 1.343 × 10−3 5.212 × 10−3

RF 1.841 × 10−3 1.931 × 10−3 7.9 × 10−3
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Figure 3 shows the WRF forecast for 6pm for the state of Virginia using
the following physics packages (the physics options are given in parentheses):
Microphysics (Kessler), cumulus-physics (Kain), short-wave radiation physics
(Dudhia), and long-wave radiation physics (Janjic).

Table 2. Minimum and average of Δt=6pm for the original WRF forecast vs the
improved forecast

Minimum(Δt=6pm) Average(Δt=6pm)

Original forecast 6.751 × 10−2 5.025 × 10−1

Improved forecast 2.134 × 10−4 6.352 × 10−2

Figure 4 shows the NCEP analysis at time 6pm, which is our proxy for the
true state of the atmosphere. The discrepancy between the NCEP analysis and
the raw WRF forecast is shown in the Fig. 7. Using the model error prediction
we can improve the WRF result by adding the predicted bias to the WRF
forecast. The discrepancy between the corrected WRF forecast and the NCEP
analysis is shown in the Fig. 8. The results show a considerable reduction of
model errors when compared with the uncorrected forecast of Fig. 7. Table 2
shows the minimum and average of original model error vs the improved model
errors.

4.3 Experiments for Problem Two: Identifying the Physical
Processes that Contribute Most to the Forecast Uncertainty

The interaction of different physical processes greatly affects the precipitation
forecast, and we are interested in identifying the major sources of model errors
in WRF. To this end we construct the physics mapping (11) using the norm
and the statistical characteristics of the model-data discrepancy (over the entire
U.S.) as input features:

φphysics
(
Δ̄t=12pm, ‖Δt=12pm‖2

) ≈ Θ.

Statistical characteristics include the mean, minimum, maximum, and variance
of the field across all grid points over the continental United States. Note that
this is slightly different from (11) where the inputs are the raw values of these
discrepancies for each grid point. The output variable is the combination of
physical processes Θ that leads to model errors consistent with the input pattern
Δ̄t=12pm and ‖Δt=12pm‖2.

In order to build the dataset, the WRF model is simulated for each of the
252 physical configurations, and the mismatches between the WRF forecasts and
the NCEP analysis at the end of the current forecast window are obtained. The
discrepancy between the NCEP analysis at 12pm and the WRF forecast at 12pm
forms the observable discrepancy for the current forecast window Δt=12pm. For
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each of the 252 physical configurations, this process is repeated and statistical
characteristics of the WRF forecast model error Δ̄t=12pm, and the norm of model
error ‖Δt=12pm‖2 are used as feature values of the function φphysics.

Validation of the Learned Physics Mapping. From all the collected data points,
80% (202 samples) are used for training the learning model, and the remain-
ing 20% (50 samples) are used for testing purposes. The learning model uses
the training dataset to learn the approximate mapping φ̂physics. This function
is applied to each of the 50 test samples Δtest

t=12pm to obtain the predicted phys-
ical combinations Θ̂1. To evaluate these predictions, we run the WRF model
again with the Θ̂1 physical setting and obtain the new forecast ôt=12pm and the
corresponding observable discrepancy Δ̂test

t=12pm. The RMSE between the norm of
actual observable discrepancies and the norm of predicted discrepancies is shown
in Table 3. The small values of the difference demonstrates the performance of
the learning algorithm.

Table 3. RMSE between estimated discrepancy using predicted physical combinations
̂Δtest
t=12pm and the reference discrepancy Δtest

t=12pm.

RMSE(‖Δ̂test
t=12pm‖2, ‖Δtest

t=12pm‖2)

ANN 4.1376 × 10−3

RF 5.8214 × 10−3

Fig. 7. Discrepancy between
original WRF forecast and
NCEP analysis

Fig. 8. Discrepancy bet-
ween the corrected WRF
forecast and the NCEP
analysis

Fig. 9. Frequency of cha-
nge in the physics with
respect to change in the
input data from Δtest

t=12pm

to Δtest
t=12pm/2. Each data

set contains 50 data poi-
nts, and we report the
number of changes of each
package.
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Analysis of Variability in Physical Settings. We repeat the test phase for each of
the 50 test samples with the scaled values of observable discrepancies Δtest

t=12pm/2
as inputs and obtain the predicted physical combinations Θ̂2. The large variabil-
ity in the predicted physical settings Θ̂ indicates that the WRF forecast error is
sensitive to the corresponding physical packages. We count the number of times
the predicted physics Θ̂2 is different from Θ̂1 when the input data spans the
entire test data set.

The results shown in Fig. 9 indicate that microphysics and cumulus physics
are not too sensitive to the change of input data, whereas short-wave and long-
wave radiation physics are quite sensitive to changes in the input data. Therefore
our learning model indicates that having an accurate short-wave and long-wave
radiation physics package will aid in greatly reducing the uncertainty in precip-
itation forecasts due to missing or incorrect physics.

5 Conclusions

This study proposes a novel use of machine learning techniques to understand,
predict, and reduce the uncertainty in the WRF model precipitation forecasts.
We construct probabilistic approaches to learn the relationships between the
configuration of the physical processes used in the simulation and the observed
model forecast errors. These relationships are then used to estimate the sys-
tematic model error in a quantity of interest at future times, and identify the
physical processes that contribute most to the forecast uncertainty in a given
quantity of interest under specified conditions.

Numerical experiments are performed with the WRF model using the NCEP
analysis as a proxy for the real state of the atmosphere. Ensembles of model
runs with different parameter configurations are used to generate the training
data. Random forests and Artificial neural network models are used to learn the
relationships between physical processes and forecast errors. The experiments
validate the new approach, and illustrate the ability to estimate model errors,
indicate the best model configuration, and choose the physical packages that
influence WRF prediction accuracy the most.

As part of our future work, we will explore other advanced machine learning
algorithms that fall under the broad category of recurrent neural nets (such as
LSTM, GRU, and CNN) and are known to capture the spatial and temporal
correlations well to reduce the uncertainty in medium and long-term forecasts.
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