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Abstract. The protein structure prediction is one of the most challeng-
ing problems in Structural Bioinformatics. In this paper, we present some
variations of the artificial bee colony algorithm to deal with the problem’s
multimodality and high-dimensionality by introducing multi-objective
optimization and knowledge from experimental proteins through the use
of protein contact maps. Obtained results regarding measures of struc-
tural similarity indicate that our approaches surpassed their previous
ones, showing the real need to adapt the method to tackle the problem’s
complexities.
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1 Introduction

The protein structure prediction (PSP) remains as one of the most challenging
problems in Bioinformatics. Proteins are in all living systems and are responsi-
ble for a massive set of functions, participating in almost all cellular processes.
Knowing the protein structure allows one to study biological processes more
thoroughly. The PSP is classified as NP-hard problem in accord with the com-
putational complexity theory [19], due to the multi-modal search space and high
dimensionality, presenting an exponential growth of difficulty as the protein’s
size increases. Problem complexity relies on protein conformations’ explosion,
where a long amino acid (aa) chain can give rise to few conformations around a
native state among numerous existing possibilities.

An extensive range of computational methods has been presented for the
PSP problem. The existing methods can be classified into two major categories
in accordance with the target protein characteristics [7,15]: (i) template-based
modeling (TBM); and (ii) free-modeling (FM). So the first one encompasses aa
sequences that have detectable evolutionary similarities to the experimentally
determined ones, making it possible to identify similar structural models and
ease prediction process. Differently, FM represents aa sequences which do not
exhibit similarities to the experimentally determined proteins. Difficulty relies on
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the target modeling through ab initio methods which may incorporate protein
structural information from databases. Methods under this classification gener-
ally represent hybrid approaches that use aa fragments combined to a purely ab
initio strategy. Ab initio methods are based only on thermodynamic concepts
and physicochemical properties of the folding process of proteins in nature.

It is well known that the energy function inaccuracies and the multi-modal
search space are enough factors in expanding efforts to develop new strategies
to obtain not only better structural results but insights about intrinsic and
hidden problem properties. Multi-objective (MO) strategies aim to deal with
optimization problems from different perspectives. Generally, complex problems
present objective functions with several terms, many of them conflicting with
each other, which, in turn, makes it hard to simultaneously optimize them prop-
erly [13]. Also, such problems may have specific properties that are not often
considered in optimization processes, for reasons of simplicity or even inability
to integrate them into the evaluation function when single-objective optimiza-
tion [9]. In this sense, we adapted the Mod-ABC algorithm [5] to deal with the
PSP by introducing MO strategies [9,13], in order to minimize the existing con-
flicts between energy function terms and reach an acceptable balance among
them, and evaluate the MO algorithms in the face of a quite difficult problem.
These new algorithms incorporated another experimentally determined protein
structures’ knowledge strategy besides the ones already integrated into the Mod-
ABC. Encouraged by the latest CASP results [18], we modeled the information
of contact maps (CMs) [12,18] as a term added to the energy function. CMs
are predicted from analysis of correlated evolutionary mutations achieved from
multiple sequence alignments. In this work, it was used as constraints in the algo-
rithm calculation to support the heuristic, deal with the search space roughness
and reduce its size. An assessment of CMs contribution to the solution quality
was carried out regarding single and multi-objective optimization. Our major
contribution in this work is the development and assessment of the ABC algo-
rithm adaptation to work with MO strategies and also handle the information
of CMs as constraints in optimization to reach better prediction results.

2 Problem Background

The methods described in this work are variants of the Mod-ABC algorithm [5].
All of them adopt the same computational protein representation and the Angle
Probability List technique. Methods accept as input parameters the protein pri-
mary structure, its expected secondary structure (SS) and the generated CMs.

A. Protein Representation: From a structural perspective, a peptide is
formed by two or more amino acids joined by a chemical bond known as a
peptide bond. Larger peptides are known as polypeptides or proteins. So the
proteins are represented by linear aa sequences, responsible for determining their
conformations. The protein folding gives the protein-specific properties, which
dictate its role in the cell. The amino acids found in proteins present all the
same main structure, the backbone, and differ in the side chain structure. In
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an aa chain, the peptide bond, known as Omega angle (C-N, ω), has a partial
double bond character which does not allow the free molecule rotation around
it. Conversely, the free molecule rotation is allowed over the bonds known as
Phi (N-Cα) and Psi (Cα-C) dihedral angles, ranging under a continuous domain
from −180◦ to +180◦. Such free rotation is mostly responsible for the 3-D struc-
ture assumed by the protein, whereas the amino acids’ stable local arrangements
define the SS. As the polypeptide backbone, side chains present dihedral angles
too, known as Chi angles (χ). Their conformations contribute to the stabilization
and packing of the protein structure. The Chi angles number in an aa is con-
cerned to its type, varying from 0 to 4, ranging under a continuous domain from
−180◦ to +180◦. Thereby, the protein’s set of dihedral angles form its 3-D struc-
ture. In this paper, the protein structure was computationally represented by its
dihedral angles as a way to reduce the use complexity of all-atom representation
of the protein.

B. Objective Function: To assess the quality of a modeled protein struc-
ture, we adopted as fitness function the Rosetta energy function (all-atom high-
resolution and minimization function) [17] provided by the PyRosetta toolkit
https://www.rosettacommons.org. The Rosetta energy function considers more
than 18 energy terms, most of them derived from knowledge-based poten-
tials [17]. The function has terms based on Newtonian physics, inter-atomic
electrostatic interactions and hydrogen bonding energies dependent on the ori-
entation. According to the CASP experiments, Rosetta methods have reached
one of the best results in the competition [15]. The final energy value of the
Rosetta function (Erosetta) is given by the sum of all weighted terms considered
in the calculation. The terms’ weights are defined based on the energy func-
tion Talaris2014, that is the standard Rosetta function used to assess all-atom
protein structures. Additionally to the Rosetta terms, the solvent accessible sur-
face area from the PyRosetta was included as a term (SASAterm) into the final
energy function [5] with an atomic radius of 1.4 Å, to assist the 3-D structures
packing given the difficulties presented by Talaris2014 in such task. Also, to sup-
port the secondary structures formation, the SS term (Eq. 1) was added to the
fitness function. The procedure gives: (i) a positive reinforcement to the energy
function, adding a negative constant (−1000) to the sum of amino acids of the
protein structure P , if the SS (zpi) corresponding to the i-th amino acid (aai)
is equal to the SS (zii) of the same aa informed as input to the method; or (ii)
gives a negative reinforcement to the sum, adding a positive constant (+1000),
when the SS of the corresponding amino acids are not the same. All protein
amino acids are compared throughout the model evaluation. We used the DSSP
method (https://swift.cmbi.umcn.nl/gv/dssp/) to assign the secondary struc-
tures. Finally, the terms previously described were integrated to the Rosetta
function composing the evaluation function (Efinal) (Eq. 3) used in this work.

SSterm =
∑

aa∈P

V (aai, zpi, zii) (1)

https://www.rosettacommons.org
https://swift.cmbi.umcn.nl/gv/dssp/
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V (aa, zp, zi) =
{
–const, zp = zi
+const, zp �= zi

(2)

Efinal = Erosetta + SASAterm + SSterm (3)

C. Amino Acids Conformational Preferences: The methods in this paper
use the knowledge of experimental protein structures in the Protein Data Bank
(PDB) (https://www.rcsb.org). The main benefit of using this information is
to reduce the search space size and increase the effectiveness of the method.
In the Mod-ABC [5], the authors incorporated the structural information of
known protein templates to determine the conformational preferences of a target
protein using the Angle Probability List (APL) strategy [4]. Such technique
assigns the dihedral angles to the target amino acids by the conformational
preferences analysis of such amino acids in experimental structures, regarding
the secondary structures and the neighboring amino acids. To use it, according to
the authors, they built histograms of [−180◦, 180◦]× [−180◦, 180◦] cells for each
amino acid and SS, generating combinations up to 9 amino acids (1–9) and their
secondary structures, and taking into account the reference aa’s neighborhood
for combinations larger than 1. We note that the angle values are attributed only
to the reference aa. Each histogram cell (i,j) has the number of times that a given
aa (or combination of amino acids) presents a torsion angles pair (i ≤ φ < i+1,
j ≤ ψ < j + 1) concerning a SS. The angle probability list was calculated for
each histogram, representing the normalized frequency of each cell. APL was
incorporated in the methods to create short combinations of amino acids aiming
the use of high-quality individuals as a starting point and after a restarting
function. A weighted random selection was employed to select the angle values
from APL. It gives greater chances to the histograms’ cells that present a higher
relative frequency of occurrence. Furthermore, for a full APL description, we
point out our web server NIAS-Server [4] created to investigate the amino acids
conformational preferences.

D. Protein Contact Maps: The prediction of protein contact maps is based
on the knowledge discovery from experimental protein structures data and tries
to probabilistically determine which residues are in contact. There are several
proposed contact map predictors in the literature [18]. Most of them explore
strategies of machine learning, such as deep learning networks and support vec-
tor machines with classical biological features, like SS, solvent accessibility and
sequence profile [2]. Ultimately, the incorporation of contact predictions from
coevolution-based methods as additional features also significantly improved
their performance [2,18]. In the last years, contact predictions were shown to
be a valuable addition to the PSP methods [18]. As reported, improved con-
tact methods can lead to improved FM model accuracy [1]. However, despite
the improvement in the residue-residue contact prediction, its use in an effi-
cient way into the PSP algorithms configures the major challenge [18]. Various
factors determine the methods’ performance, such as the number of contacts
considered and how they are incorporated into the modeling. Hence, the most

https://www.rcsb.org
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suitable contact prediction technique and the number of contacts to consider are
dependent on the PSP algorithm. As pointed out by the last CASP report [18],
the use of size lists of L/2 contacts can improve the performance, reducing the
false positives and taking into account the predicted residue contacts with higher
probabilities of being in contact. L represents the target aa sequence length. By
the prediction results carried out in the experiments, list sizes of L/2 seemed to
be one of the best choices. In this paper, we used a reduced list of L/2 predicted
contacts. The CMs were predicted by the MetaPSICOV predictor [10].

In a CM, two amino acids are close enough or in contact, if the distance
between their Cβ side chain atoms, or Cα of backbone for Glycine, is less than
or equal to a distance threshold, generally 8 Å. A term of distance constraint is
generally used to get the information from CMs and to overcome some inaccu-
racies of the energy function [12]. In this paper, besides the terms of the fitness
function described in Eq. 3, we proposed a scheme to employ the information
of CMs in the problem as a new term in the energy function. This term was
idealized based on an atom distance constraint function presented in the work
of Kim et al. [12]. It was modified to follow the same idea of weighting used in
the SS term (Eq. 1). The CM term is a function of the distances between the aa
contained into the CMs, and it aims to positively reinforce the aa pairs that are
within the contact bounds or to penalize the ones that are out of the threshold,
according to Eq. 4.

CMterm =
CMpairsL/2∑

i,j

=

⎧
⎨

⎩

p × −c, d(i, j) ≤ ub
p × −c ÷ 2, ub < d(i, j) ≤ ub + 2
p × +c, d(i, j) > ub + 2

(4)

where p denotes the probability of the residues are in contact, c is a constant, ub
is a residue contact upper bound and d(i, j) represents the Euclidean distance
between a pair of amino acids in the predicted contact list. The MetaPSICOV
considers the ub contact threshold of 8 Å, so in this paper, we adopted the same
threshold of distance. For the constant c, we adopted c = 1000 to follow the
reinforcement values defined in the SS term (Eq. 1). So for a target protein, the
procedure goes through the L/2 aa pairs in the predicted CM, measuring the
distances between these pairs regarding a given protein model. It gives (i) a
positive reinforcement to the term summation, adding a negative constant (−c)
multiplied by the probability of the residues are being in contact, if the distance
between them is less than or equal to the ub threshold; (ii) also a positive
reinforcement to the term summation but considering the negative constant
divided by 2 (−c ÷ 2), if the distance between the amino acids is greater than
the ub but does not exceed ub + 2 (tolerance threshold); and (iii) a negative
reinforcement to the term summation, adding a positive constant (+c) multiplied
by the probability of the residues are being in contact, if the distance between
the residues is greater than the threshold ub + 2.
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E. Multi-objectivization: The multi-objectivization avoids conflicting terms
compete to reach the best solutions and also favors the regarding of new proper-
ties about the problem, to aggregate information to the evaluation terms already
considered in the optimization and better guide the search through new visions
of the state space. In such approaches, the final optimization result encom-
passes a set of good solutions, called Pareto front (PF) [13]. PF represents a
set of so-called non-dominated solutions. It comprises solutions where there is
no possibility to improve one objective without disfavor another. Switching from
one non-dominated solution to another will always result in a trade-off between
objectives. The method’s solutions can still be evaluated under different aspects,
such as emerging features and unknown properties about the problem and input
data.

In PSP, there are often conflicts between different terms of the energy func-
tion, as demonstrated by Cutello et al. [6]. The modeling of the energy function
terms as independent objectives can provide a new exploration of the search
space. Another interesting point is the possibility of inserting additional objec-
tives containing information and constraints on the problem more naturally,
avoiding the use of weighting coefficients, as it happens when inserted in tra-
ditional single objective approaches. Thus, the multi-objectivization of the pre-
diction methods tends to ease the process of knowledge incorporation about the
problem. An unconstrained MO optimization problem can be mathematically
formulated as follows. Let x = [x1, x2, ..., xn] be a n-dimensional vector of deci-
sion variables, X be the search space (decision space) and Z be the objective
space:

Minimize z = f(x) = [f1(x), f2(x), ..., fm(x)], x ∈ X, z ∈ Z (5)

where m ≥ 2 is the number of objectives. Considering that during the opti-
mization exists more than one single solution, the solutions are compared based
on Pareto dominance, and the final answer is a set of non-dominate solutions
(Pareto set). Let M = [1, 2, ...,m] be the set of objectives, the Pareto set is
defined according to the Eq. 6. A solution x ∈ X dominates y ∈ X (x < y) if
and only if:

∀i ∈ M : fi(x) ≤ fi(y) ∧ ∃i ∈ M : fi(x) < fi(y), fi(.) ∈ Z (6)

To incorporate MO optimization in our algorithms and sort the solutions
based on multiple objectives, we used the Pareto rank definition integrated into
the evaluation function [16]. The Pareto rank of a solution measures the number
of solutions that dominate it overall considered optimization objectives, regard-
ing strict comparison (<), as shown in Eq. 6. So less the Pareto rank, less domi-
nated is the solution. To order a set of solutions by Pareto rank as a minimization
function, first the solutions are ordered from low to high Pareto rank and within
this sorted order, those with the same Pareto rank are further ordered from low
to high based on their energy values scored by an energy function.
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3 Proposed Strategies

In this paper, we presented some ABC algorithm variations to tackle the
PSP problem. We started from a previously proposed work, presented by
Corrêa et al. [5], which has shown an ABC algorithm variation [11] implemented
from suggested improvements in literature for the original ABC but never tested
for the problem under study. It is called Mod-ABC and was designed to explore
the specific properties of the problem. So the proposed algorithm variations were
designed from the Mod-ABC based on an incremental development approach, in
an attempt to improve the previously reached results. It was done by exploring
additional features about the problem and adapting it to MO optimization to
restrict the conformational space and overcome some energy function inaccura-
cies. In the following sections, Mod-ABC and the designed variations of it are
presented.

A. Artificial Bee Colony Algorithm: ABC consists of a swarm intelligence
based metaheuristic. It mimes the foraging process of honeybee swarms and is
suitable for multi-numerical and multi-modal optimization [3,11]. Various works
and ABC variations have been proposed indicating the algorithm competitive-
ness concerning other metaheuristics, such as genetic and differential evolution
algorithms, particle swarm optimization and swarm-based algorithms [11]. It is
said the key advantage of the heuristic is the use of a few control parameters [8].
In the ABC, the solution exploration and exploitation (refinement) are crucial
optimization components. But the method has some inefficiencies, such as to per-
form well at the exploration but not so much at the solution refinement step [8].
This causes the heuristic’s convergence slower and can be a problem on some
occasions. To overcome it, improved ABC versions have been proposed in the
literature. It was shown that these modified variations could be able to perform
better than the original ABC [14]. Thus, the Mod-ABC assembles two proposed
strategies for the algorithm. The first component, introduced in the work of Akay
and Karaboga [3], concerns changes in the mechanisms that control the muta-
tion frequency of variables of an individual and at the use of the most reasonable
parameterization in the exploration ABC stage. The second one, presented by
Zhu and Kwong [20], is related to the gbest-guided ABC (GABC). It uses the
information regarding the best population’s solution in the individual’s mutation
equation to improve the exploitation step. Authors of both methods pointed out
that the ABC could be considered a promising metaheuristic regarding global
and local optimization.

B. Mod-ABC Algorithm: In the ABC [3,11], each food source is a problem
solution, and the solution quality is defined by the fitness value. Concerning the
PSP, the food source means a possible solution for the protein under study and
the quality of it is given by the energy value. The food sources are exploited by
employed bees. Thus, the number of employed bees is the same number of food
sources, i.e., the size of the population. The onlooker bees amount in the swarm
is the same employed bees amount. Suppose that SN is the food sources amount
(population’s solutions), eb and ob the number of employed and onlooker bees,
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respectively. So SN = eb = ob. The algorithm mimics the foraging behavior of
honeybees regarding three steps: (i) in the employed bees’ step (Algorithm 1,
lines 3 to 10) each algorithm’s solution represents a food source that is updated
by a mutation procedure; (ii) in the onlooker bees’ step (Algorithm 1, lines 18 to
27), ob individuals are randomly selected through the rank-based selection and
the update procedure of the preceding stage is performed in the selected indi-
viduals; and (iii) in the scout bees’ step (Algorithm 1, line 28) the most inactive
population’s individual is discarded and a new one is generated. An inactive
individual is a solution that did not suffer improvements (fitness value) for a
given number of generations. The update procedure (Algorithm1, lines 5 and
21) used in the first two stages is responsible for generate a new individual from
an existing one. So the generation of an individual υi = [υi1, υi2, ..., υin] from
the i-th individual xi = [xi1, xi2, ..., xin], such that xi = υi, is described by (7).

υij = xij + δij(xij − xkj) + γij(yj − xij), (7)

where i = [1, ..., SN ], j = [1, ..., n]. SN represents the population size and n is
the problem dimensionality. xij represents the j-th variable of individual xi, υij

is the new xij value, xkj represents the j-th variable of the k-th population’s
individual (k = [1, ..., SN ]) randomly chosen, and δij means a random value
in the continuous range [−1, 1]. The last term of 7 considers the population’s
best solution in the mutation operation. yj denotes the j-th variable of the best
individual and γij represents a random value in the continuous range [0, 1.5].
Thus, the term presented by Zhu and Kwong [20] tries to guide the individual
towards the population’s best solution, increasing the algorithm convergence.
Each variable j of the individual xi is mutated regarding the control param-
eter MR (Algorithm 1, lines 4 and 20). Mod-ABC was set with MR = 0.4,
according to the work of Akay and Karaboga [3]. So the update of a variable
is done under the probability of 40%. The updating procedure concludes with
a greedy selection between υi and xi (Algorithm 1, lines 8 and 24). Following
the representation adopted in the paper (Sect. 2-A), each variable is an aa of
the protein which has up to seven angles. Thus, the dihedral angles of the same
variable are mutated in the same manner. To adjust the algorithm to the specific
problem’s characteristics, the Mod-ABC incorporates the function of angle ver-
ification (Algorithm 1, lines 6 and 22) into the updating procedure concerning
the new generated values. The function verifies, at each angle mutation of the
variable υij , if the newly generated value is in APL-1. It defines the aa confor-
mational preferences regarding the variable υij and is used to avoid unfavorable
state space regions or out of interval [−180, 180]. If the procedure verifies that
the new value is not in the APL-1 or is out of the allowed interval, this value is
discarded and the previous value is maintained. Lastly, in the scout bees’ stage,
if some population’s individual did not suffer improvements over l generations, it
is discarded and a new solution is included in the population (Algorithm1, line
28). Suppose that l is the discarding threshold. We have used l = 200 according
to Akay and Karaboga [3] and SN = 300 as population size, according to Corrêa
et al. [5].
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Irregular regions of proteins, such as coils and turns, are the hardest ones to
predict because of the solvent exposure, configuring then structures with high
flexibility level and low stability. Regarding the Mod-ABC, the algorithm focuses
its search effort solely in such protein regions, excluding the more stable sec-
ondary structures, as β-sheets and α-helices, from the refinement process. Thus,
the updating function (Algorithm1, lines 5 and 21) is performed just in vari-
ables concerned the amino acids which present irregular secondary structures. To
enhance the exploration aspect of the algorithm and increase the solutions diver-
sity, as the updating of variables (Algorithm1, lines 5 and 21) is constrained to
the protein irregular secondary structures, the algorithm incorporates a crossover
operation between two solutions of the population (Algorithm1, line 14). The
crossover was included between the first two Mod-ABC stages. The parents are
selected through the rank-based strategy of selection (Algorithm 1, lines 12 and
13) and the operation is performed over the SS uniform crossover. The crossover
concludes with a greedy selection between the generated solution and its parents
(Algorithm 1, line 16). It is noteworthy that the Mod-ABC was implemented to
assess in which way the knowledge-based strategies contribute to the algorithm
performance facing a complex problem. The authors have shown by the obtained
results that the method was able to outperform the ABC algorithm, corroborat-
ing the necessity of adapting the method to tackle the problem.

SS Uniform Crossover: From the proteins’ structural preferences, it was
created to support the secondary structures formation. The operator gives pri-
ority to the solutions that formed the appropriate arrangement concerning the
SS input parameter. The crossover aims to maintain the similarity found so
far between the solutions’ secondary structures that are being optimized and
the previously informed SS to create offspring with suitable secondary arrange-
ments. Analogous to the uniform crossover, for each aa (specific positions of the
angles in the vector solution), all the angles related to it are considered either
from parent 1 or 2. The probability of 0.5 is used if both the secondary structures
regarding the individuals’ amino acids are equal or different from the previously
informed SS. If only one of them is equal to the SS sequence parameter, the
dihedral angles related to this amino acid are attributed to the offspring.

C. First Variation of the Mod-ABC Algorithm: The first variation of the
Mod-ABC encompass modification just in the energy function used to assess the
quality of a given protein structure. This version is called Mod-ABC-CM and
incorporates the CM term (Eq. 4), already described in Sect. 2-D, into the final
evaluation function. The CM term was designed to consider the information of
protein contact maps in the PSP. The term was idealized in a way that penalizes
violation of a predefined contact threshold regarding the distance of aa pairs in
the CMs. In this sense, the CM term is added to the summation of all the terms
already considered in the energy function (Rosetta energy function, SASA term,
and SS term) (Sect. 2-B), forming then the final scoring function (Eq. 8) for the
Mod-ABC-CM.
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D. MO Versions of the Mod-ABC Algorithm

MO-ABC-1 Algorithm: The first MO version adapted from the Mod-ABC
algorithm, called as MO-ABC-1, considers two objectives in the optimization
process (bi-objective optimization). As first objective, the algorithm uses the
final evaluation function (Efinal) (Eq. 3) defined in Sect. 2-B. This scoring func-
tion is the summation result of three different terms, that is, Rosetta energy,
SASA, and SS term. It is the fitness function used in the Mod-ABC algorithm.
The second objective used in the MO-ABC-1 is the CM term (Eq. 4).

EfinalCM = Erosetta + SASAterm + SSterm + CMterm (8)

Algorithm 1. MO-ABC-1 algorithm’s pseudocode.
Require: number of energy evaluations, primary and secondary aa sequence
Ensure: best individual found
1: initialize population using APL
2: while stop criteria not satisfied do
3: for each individual in population do //Employed bees’s step
4: if rand(0, 1) ≤ MR then
5: update individual by (7)
6: apply the angle verification function
7: calculate the Pareto rank of individual
8: apply a greedy selection between the new and old individual
9: end if

10: end for
11: Sort population by Pareto rank and energy value (tiebreaker criterion)
12: bee1 ← select an individual through rank-based selection //Crossover step
13: bee2 ← select an individual through rank-based selection
14: beeoffspring ← SSUniformCrossover(bee1, bee2)
15: calculate the Pareto rank of beeoffspring

16: apply a greedy selection between beeoffspring and its parents
17: Sort population by Pareto rank and energy value (tiebreaker criterion)
18: for i ← 1 : ob do //Onlooker bees’s step
19: select an individual through rank-based selection
20: if rand(0, 1) ≤ MR then
21: update individual by (7)
22: apply the angle verification function
23: calculate the Pareto rank of individual
24: apply a greedy selection between the new and old individual
25: Sort population by Pareto rank and energy value (tiebreaker criterion)
26: end if
27: end for
28: Discard the most inactive individual //Scout bees’s step
29: Sort population by Pareto rank and energy value (tiebreaker criterion)
30: end while

One of the main reasons to consider the scoring function Efinal as a unique
objective besides the CM term is that SASA and SS terms tend to stabilize
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during the optimization, as the population reaches some degree of convergence.
Final solutions at the end of the process tend to present similar values for these
terms, as can be seen in Table 1, regarding the average and standard deviation
values for eight executions of the Mod-ABC algorithm for each listed target
protein [5]. So it indicates that both of the terms are more necessary at the
beginning of the optimization when the population is quite diversified. Both
terms improve the search space exploration providing well-formed SS and more
packing protein models. On the other hand, CMs were treated as a different
objective as the contacts consider punctual atom distances in a more locally point
of view, based on experimental protein knowledge, which can guide the search
during the entire process making finer adjustments even when the algorithm
reach some diversity degree. Another reason to categorize the objectives in this
fashion was to assess the potential of the MO-Mod-ABC face a complex problem
but including known and promising scoring potential. It is not so obvious how to
organize terms of an energy function or include new ones into MO optimization
for the PSP. However, it is indicated to keep the number of objectives small [16].

Algorithm 1 shows the MO-ABC-1 algorithm’s pseudocode. The main differ-
ence of the MO-ABC-1 concerning its previous versions consists of the use of
the Pareto rank strategy to compare and sort solutions during the optimization.
The Pareto rank strategy, as well as how it is applied to sort the population’s
solution was already described in Sect. 2-E. The energy function employed as
tiebreaker criterion when solutions present the same Pareto rank value was the
final scoring function (EfinalCM ) (Eq. 8) used in the Mod-ABC-CM.

MO-ABC-2 Algorithm: The MO-ABC-2 is the second MO version idealized
from the Mod-ABC algorithm. It is basically the same MO-ABC-1 algorithm.
However, it considers four objectives in the optimization process. The algorithm
models each term of the final evaluation function (Efinal) (Eq. 3), defined in
Sect. 2-B, as different objectives. Thus, the first objective is the Rosetta energy
function, the second is the SASA term, and the third is the SS term. The MO-
ABC-2 also considers the CM term as a fourth objective during the optimization
process. The energy function employed as tiebreaker criterion is the same used
in the MO-ABC-1.

4 Computational Experiments

The described algorithms in this paper were run 8 times with a stop criterion of
106 calculations of energy per run on each target protein. We have used as case
studies in our tests the aa sequences of 8 target proteins (Table 1) obtained from
the PDB. To classify our algorithms concerning the most significant methods
in the area, we have compared them to the Rosetta ab initio protocol [17].
Following the last CASP reports, Rosetta is one of the most relevant algorithms
used to tackle the PSP problem [1,15]. Obtained results are presented in the
next section.

Results and Discussion: For each case study, we have analyzed the best solu-
tions among the performed executions, regarding the root-mean-square devia-
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tion (RMSD, minimization measure) and the global distance total score test
(GDT TS, maximization measure) of the predicted structures in comparison
with their corresponding experimental ones. Table 2 summarizes the obtained
results of the Mod-ABC, Mod-ABC-CM, both MO Mod-ABC variations, and
method of Rosetta applied to the target proteins.

Table 1. Target aa sequences. Average and standard deviation values for SASA and
SS terms considering the best solutions of eight runs of the Mod-ABC algorithm [5]
for each target protein.

Protein Length SS Content SASA term SS term

Avg. Std. Avg. Std.

1AB1 (Fig. 1a) 46 1 β-sheet/2 α-helices 3022.81 184.91 −42500.0 1936.49

1ACW (Fig. 1b) 29 1 β-sheet/1 α-helix 2168.96 79.74 −27000.0 0.0

1AIL (Fig. 1c) 70 3 α-helices 4512.33 116.53 −70000.0 0.0

1DFN (Fig. 1d) 30 1 β-sheet 2610.51 100.2 −24500.0 1322.88

2MR9 (Fig. 1e) 44 3 α-helices 2698.88 93.02 −44000.0 0.0

2P5K (Fig. 1f) 64 1 β-sheet/3 α-helices 4581.71 282.31 −63000.0 0.0

3V1A (Fig. 1g) 48 2 α-helices 3329.42 97.05 −48000.0 0.0

T0820-D1 (Fig. 1h) 90 3 α-helices 6304.73 291.76 −89750.0 661.44

Fig. 1. Graphic representation of the experimental (red) and the predicted structures
(lowest RMSD) for the Mod-ABC (green), MO-ABC-1 (blue) and Rosetta (yellow)
(Color figure online).

According to the results summarized in the Table 2, we observe that the
Mod-ABC-CM outperformed its previous version in almost all cases regarding
lowest and average RMSD values, except for the 1ACW and T0820-D1. Sim-
ilar results are noticeable analyzing the average and highest GDT TS values,
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where Mod-ABC-CM performed better than Mod-ABC in 5 of the eight targets.
We strongly believe that Mod-ABC-CM surpassed Mod-ABC due to the use of
experimental protein knowledge through the protein CMs incorporated into the
fitness function. It reduced the size and complexity of the conformational space
and eased the search process. These results reinforce the need to incorporate
previous knowledge about the problem in the metaheuristics.

Regarding Table 2, we observe that the MO-ABC-1 reached better average
RMSD values in 5 targets in comparison with the Mod-ABC-CM, and in 4
cases regarding lowest RMSD values. Related to the GDT TS values, MO-ABC-
1 outperformed Mod-ABC-CM in 6 targets for average results and 4 cases for
highest ones. We should note the MO algorithm did not show great improvement
when compared to its previous version. However, these results indicate that the
MO strategy has great potential to be improved. It is observable that in this
work we did not explore more sophisticated strategies to improve the multi-
objectivation, and even though the algorithm was able to perform better in
some cases. One of the reasons for that is the MO strategies capability to keep
a set of non-dominated solutions over the PF. This sort of idea can increase
the solutions’ diversity by exploring different perspectives of the problem. It is
observable that MO-ABC-1 in average presented better results than MO-ABC-
2, corroborating that the arrangement of objectives also influences the search
process.

Table 2. Methods simulation results. The boldface numbers represent the best results
concerning RMSD and GDT TS. The (*) denotes the best results between only Mod-
ABC and its variations.
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Figure 1 shows the comparison between the 3-D topology of the models pre-
dicted by Mod-ABC (green), MO-ABC-1 (blue) and Rosetta (yellow) super-
imposed upon the experimentally determined structures (red). Analyzing the
Table 2, we notice that Rosetta surpassed all of the other algorithms regarding
the lowest and average RMSD values in 4 targets and related to the highest and
average GDT TS values in 3 and 4 cases, respectively. Although it is observable
by visual inspection of Fig. 1 that the MO-ABC-1 and Rosetta reached overall
target folding very similar to each other and comparable to the experimentally
determined structures. Finally, such results denote the importance of adapting
the metaheuristic to handle the specific complexities of the PSP problem.

5 Conclusion

In this paper, we proposed some variations of the artificial bee colony algorithm
to deal with the protein structure prediction problem by introducing multi-
objective strategies and exploration of knowledge from experimental proteins by
the use of protein contact maps. The obtained results showed that our algorithms
were able to find acceptable solutions concerning RMSD and GDT TS structural
measures and outperform their previous version in most of the cases, and also
reached comparable solutions to the state of the art method of Rosetta regarding
experimental protein structures. Besides that the obtained results are topolog-
ically similar to the experimentally determined structures, thus corroborating
the proposed strategies’ promising performance for the problem.
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