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Abstract. Quasi-Newton methods are popular gradient-based opti-
mization methods that can achieve rapid convergence using only first-
order derivatives. However, the choice of the initial Hessian matrix upon
which quasi-Newton updates are applied is an important factor that can
significantly affect the performance of the method. This fact is especially
true for limited-memory variants, which are widely used for large-scale
problems where only a small number of updates are applied in order to
minimize the memory footprint. In this paper, we introduce both a scalar
and a sparse diagonal Hessian initialization framework, and we investi-
gate its effect on the restricted Broyden-class of quasi-Newton meth-
ods. Our implementation in PETSc/TAO allows us to switch between
different Broyden class methods and Hessian initializations at runtime,
enabling us to quickly perform parameter studies and identify the best
choices. The results indicate that a sparse Hessian initialization based on
the diagonalization of the BFGS formula significantly improves the base
BFGS methods and that other parameter combinations in the Broyden
class may offer competitive performance.

1 Introduction

Quasi-Newton methods are a variation of Newton’s method where the Jacobian
or the Hessian is approximated using the secant condition. Since their inception
in the late-1950s by Davidon [10,11] and Fletcher and Powell [19], quasi-Newton
methods have been widely used in solving nonlinear systems of equations, espe-
cially in optimization applications. For a comprehensive review of these methods,
see Dennis and Moré [15] and Nocedal and Wright [32].

Our interest in quasi-Newton methods is motivated by the computational
cost and difficulty in calculating exact Hessians for large-scale or partial dif-
ferential equation (PDE)-constrained optimization problems. In particular, for
reduced-space methods for PDE-constrained problems where the PDE constraint
is eliminated via the implicit function theorem, constructing exact second-order
information at each iteration requires as many adjoint solutions as the num-
ber of optimization variables [33]. Computing Hessian-vector products without
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computing the Hessian itself can be computationally cheaper [3,24,28], but the
matrix-free nature of this approach poses additional difficulties in precondition-
ing the systems [13,14].

Limited-memory quasi-Newton methods circumvent these issues by directly
constructing approximations to the inverse Hessian using only first-order infor-
mation; however, they also typically exhibit slower convergence than truncated-
Newton methods [27]. Our goal is to investigate the so-called restricted Broyden
class of quasi-Newton methods and develop new strategies to accelerate their
convergence in order to minimize the number of function and gradient evalua-
tions.

For a given bound-constrained optimization problem,

minimize
x

f(x),

s.t. xl ≤ x ≤ xu,
(1)

with f : Rn → R as the objective function and gk = ∇f(xk) as its gradient at
the kth iteration, Broyden’s method [4] constructs the approximate Hessian with
the update formula,

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

+ φ(sT
k Bksk)vkvT

k , (2)

where sk = xk+1 − xk, yk = gk+1 − gk,

vk =
yk

yT
k sk

− Bksk

sT
k Bksk

,

and φ is a scalar parameter. In the active-set approach, the inverse of this approx-
imate Hessian is applied to the negative gradient and a projected line search is
performed along the resulting step direction. The process repeats until the pro-
jected gradient norm is reduced below a prescribed tolerance or an iteration
limit is reached. Many methods are available for estimating the index set of
active variables [2,7,26,31]; however, our focus in the present work is the quasi-
Newton approximation.

Methods in the Broyden class are defined by the different scalar values of the
parameter φ. The restricted Broyden class, in particular, limits the choice of φ
to the range [0, 1], which guarantees that the updates are symmetric positive-
definite provided that sT

k yk > 0. The most well-known methods of this type
are the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [5,18,22,34] and Davidon-
Fletcher-Powell (DFP) [11] methods, which are recovered with φ = 0 and φ = 1,
respectively. The restricted Broyden-class formulation in (2) can also be rewrit-
ten as a convex combination of the BFGS and DFP methods, such that

Bk+1 = (1 − φ)BBFGS
k+1 + φBDFP

k+1 . (3)

The limited-memory variant of the restricted Broyden update takes the form

Bk+1 = B0 +
∑

m

[
ymyT

m

yT
msm

− BmsmsT
mBm

sT
mBmsm

+ φ(sT
mBmsm)vmvT

m

]
, (4)
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where B0 is an initial Hessian, m = {max(0, k − M + 1) . . . k} is the index set
for the sequence of quasi-Newton updates, and M is the maximum number of
updates to be applied to the initial Hessian (i.e.: the “memory” size). Since
Newton-type optimization algorithms seek to apply the inverse of the Hessian
matrix to the gradient, the Sherman-Morrison-Woodbury formula [25] is utilized
to update an approximation to the inverse of the Hessian matrix directly, such
that

Hk+1 = H0 +
∑

m

[
smsT

m

sT
mym

− HmymyT
mHm

yT
mHmym

+ ψm(yT
mHmym)wmwT

m

]
, (5)

where

wm =
sm

yT
msm

− Hmym

yT
mHmym

and

ψm =
(1 − φ)(yT

msm)2

(1 − φ)(yT
msm)2 + φ(yT

mHmym)(sT
mBmsm)

.

In practice, the limited-memory formula is often implemented in a matrix-
free fashion where only M of the (sk, yk) vector pairs are stored and the action
of the approximate Hessian – the product between the approximate inverse of
the Hessian and a given vector – is defined by multiplying (5) with a vector.
With this approach, the Hm terms inside the summation recurse into their own
quasi-Newton formulas and are implemented with nested loops. Some special
cases, such as the BFGS formula, can be unrolled into two independent loops
that minimize the number of operations [8]. For a more comprehensive look at
this approach, we refer the reader to [17].

In this paper, we investigate a framework for constructing scalar or sparse
diagonal choices for the initial Hessian B0 in (4). Our software implementation of
(5) including the sparse Hessian initialization is available as part of PETSc/TAO
Version 3.10 [1,12]. We leverage PETSc extensibility to explore values of φ and
other parameters associated with the initial Hessian at runtime to study the
convergence and performance of our approach on the complete set of 119 bound-
constrained CUTEst test problems [23].

2 Hessian Initialization

The choice of a good initial Hessian H0 in limited-memory quasi-Newton meth-
ods is critically important to the quality of the Hessian approximation. It has
been well documented that the scaling of the approximate Hessian depends on
this choice and dramatically affects convergence [21,29]. Our goal is to develop a
modular framework that can generate effective initializations that preserve the
symmetric positive-definite property of the restricted Broyden class methods
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and are easily invertible as part of efficient matrix-free applications of limited-
memory quasi-Newton formulas (e.g., two-loop L-BFGS inversion [8]). To that
end, we construct our initial Hessians in scalar and sparse diagonal forms, the
latter of which is based on the restricted Broyden-class formula.

The first step is to address the starting point x0 when there is no accumulated
information with which to construct either scalar or diagonal initializations. It
is common for the matrix at iteration 0 to be set to a multiple B0 = ρ0I of
the identity that promotes acceptance of the unit-step length by the line search;
however, no good general strategy exists for choosing a suitable value for ρ0.
Gilbert and Lemaréchal [20] proposed ρ0 = 2Δ/||g0||22, where Δ is a user-supplied
parameter that represents the expected decrease in f(x) at the first iteration.
We use

ρ0 =

{
2/||g0||22 for f(x0) = 0
2|f(x0)|/||g0||22 otherwise,

(6)

which has proven to be an effective choice across our numerical experiments
and eliminates a user-defined parameter from the algorithm. This choice also
appears to be related to more recent investigations into scaled gradient descent
steps with an a priori estimation of the local minimum [9], with f(x∗) = 0 where
x∗ is the minimizer. Both the scalar and sparse diagonal B0 constructions we
introduce below leverage this initial scalar choice.

2.1 Scalar Formulation

Scalar Hessian initializations restrict the estimate to a positive scalar multiple of
the identity matrix, such that B0 = ρkI during iteration k. For BFGS matrices,
a common and well-understood choice has been

ρk =
yT

k yk

yT
k sk

, (7)

which is an approximation to an eigenvalue of ∇2f(xk) [32].
Our scalar construction begins with the recognition that (7) is the positive

solution to the scalar minimization problem

ρk = argmin
ρ>0

||1
ρ
yk − sk||22, (8)

which is also a least-squares solution to the secant equation B−1
0 yk = sk with

B0 = ρI [6]. We then introduce a new parameter α ∈ [0, 1] such that B0 = ρ2α−1I
and we solve the modified least-squares problem,

ρk = argmin
ρ>0

||ρ−αyk − ρ−(1−α)sk||22. (9)

After constructing the optimality conditions and solving for ρ, we arrive at the
following values:
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1. If α = 0, then

ρk =
yT

k sk

sT
k sk

2. If α = 1/2, then

ρk =

√
yT

k yk

sT
k sk

3. If α = 1, then

ρk =
yT

k yk

yT
k sk

Note: this value corresponds to the commonly used eigenvalue estimate in
(7).

4. Otherwise, ρk is the positive root of the quadratic equation,

α(yT
k yk)ρ2 − (2α − 1)(yT

k sk)ρ + (α − 1)(sT
k sk) = 0.

Since sT
k sk and yT

k yk cannot be negative and are zero only for a zero step
length, the scalar Hessian approximation preserves symmetric positive-definite-
ness for any (sk, yk) update that satisfies the Wolfe conditions.

2.2 Sparse Diagonal Formulation

The sparse diagonal formulation constructs an initial Hessian as a diagonal
matrix, B0 = diag(bk), at iteration k defined by and stored as the vector of
diagonal entries bk. Specifically, we construct this diagonal vector using the full-
memory restricted Broyden formula in (2), such that

bk+1 = bk + (1 − θ)
[
yk ◦ yk

yT
k sk

− (bk ◦ sk)2

sT
k (bk ◦ sk)

]

+ θ

[(
1

yT
k sk

+
sT

k (bk ◦ sk)
(yT

k sk)2

)
(yk ◦ yk) − 2(sk ◦ bk ◦ yk)

yT
k sk

]
.

(10)

This expression is the expanded version of the convex combination notation
in (3), where (1 − θ) and θ correspond to the BFGS and DFP components,
respectively. Since we compute only diagonal entries, all matrix-vector products
have been replaced by Hadamard products with the previous diagonal. As in
Broyden’s method, θ = 0 corresponds to a pure BFGS formulation, while θ = 1
recovers DFP.

This initialization is a full-memory approach; the diagonal entries of B0 are
explicitly stored in bk and updated with every accepted new iterate. Conse-
quently, B0 contains information from all iterates traversed in the optimization
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instead of only the last M iterates stored for the limited-memory formula, but
without the large memory cost of storing dense matrices.

Gilbert and Lemaréchal have explored a similar initial Hessian using diago-
nalizations of the BFGS formula only [20] and reported the need to rescale the
diagonal to account for the inability to rapidly modify it in large steps. To that
end, we redefine the initial Hessian as B0 = σ2α−1

k diag(bk) and compute the
rescaling factor σk by seeking the least-squares solution to the secant equation,
B−1

0 yk = sk, such that

σk = argmin
σ

||σ−α(b−0.5
k ◦ yk) − σ−(1−α)(b0.5

k ◦ sk)||22. (11)

Note that the expression inside the l2-norm is equivalent to the secant equation
in residual form, restructured so that the solution can be more easily expressed
in the form of quadratic roots. The solution yields the following values:

1. If α = 0, then

σk =
yT

k sk

sT
k (bk ◦ sk)

.

2. If α = 1/2, then

σk =

√
yT

k (b−1
k ◦ yk)

sT
k (bk ◦ sk)

.

3. If α = 1, then

σk =
yT

k (b−1
k ◦ yk)

yT
k sk

.

4. Otherwise, σk is the positive root of the quadratic equation,

α
[
yT

k (b−1
k ◦ yk)

]
σ2 − (2α − 1)(yT

k sk)σ + (α − 1)
[
sT

k (bk ◦ sk)
]

= 0.

As with the scalar initialization, the sparse diagonal B0 remains positive
definite for any (sk, yk) pair that satisfies the Wolfe conditions. Nonetheless,
we have encountered cases where numerical problems surface in finite precision
arithmetic. Therefore, we safeguard all the methods by checking whether the
denominators are equal to zero and setting their value to a small constant, 10−8,
if so.

3 Numerical Studies

We now investigate the numerical performance of our proposed scalar and sparse
Hessian initializations and study the parameter space of the user-controlled
scalar factors to determine useful recommendations. Our quasi-Newton imple-
mentation in PETSc/TAO utilizes an active-set estimation based on the work
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of Bertsekas [2] and is discussed in further detail in the TAO manual [12]. The
step direction is globalized via a projected Moré-Thuente line search [30], which
is capable of taking step lengths greater than 1.

Our numerical experiments are based on 119 bound-constrained problems
from the CUTEst test set [23], covering a diverse range of problems from 2 to
105 variables. In all cases presented in this section, we set the quasi-Newton
memory size to M = 5 updates, limit the maximum number of iterations to
1, 000, and require convergence to an absolute tolerance of ||g∗||2 ≤ 10−6.

Performance profiles are constructed by using the methodology proposed by
Dolan and Moré [16]. For a given CUTEst problem p ∈ P and solver configura-
tion c ∈ C, we define a cost measure

tp,c = function evaluations required to solve problem p with configuration c

and normalize it by the best configuration for each problem, such that

rp,c =
tp,c

min{tp,ĉ : ĉ ∈ C} .

Performance of each configuration is then given by

Pc(π) =
1
np

size{p ∈ P : rp,c ≤ π},

which describes the probability for configuration c ∈ C to have a cost ratio rp,c

that is within a factor of π ∈ R of the best configuration.
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φ = 1.0 (DFP)

Fig. 1. Parameter study for restricted Broyden convex combination factor.
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We begin our analysis with a sweep through the φ parameter space in the
restricted Broyden updates in Fig. 1. For this study we turn off all Hessian ini-
tialization (i.e., H0 = I) and investigate only the relative performances of the
raw Broyden-class methods. Note that φ = 0 and φ = 1 are included, which
correspond to the BFGS and DFP methods, respectively. The results indicate
that φ values in range (0, 0.5] produce Hessian approximations that outperform
BFGS, with φ = 0.5 yielding the best performance.
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(a) Scalar H0 initialization.
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(b) Diagonal H0 initialization.
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(c) Rescaling of diagonal H0.
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(d) Comparison of best H0 configurations.

Fig. 2. Parameter study for Hessian initialization with the L-BFGS update.

For the next study, we used the L-BFGS method as the basis for analyzing
the effects of different H0 initialization methods. We start with the scalar H0

in Fig. 2a and investigate the effect of the α parameter. Here, setting α = 1.0
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recovers the widely used yT
k sk/yT

k yk factor that approximates an eigenvalue of
∇2f(xk)−1. As expected, this choice yields the best scaled Hessian approxima-
tion and the lowest number of function evaluations on most problems. Surpris-
ingly, however, the results indicate that α = 0.75 remains competitive in cost,
while converging on two additional test problems.

Figure 2b shows the relative performances of the sparse diagonal H0 initial-
ization. For this study, we fix the rescaling parameter to α = 1.0. We investigate
the effect of the rescaling parameter below. Not surprisingly, the results indicate
that θ = 0.0, which corresponds to a “full-memory” BFGS diagonal, produce
the best convergence improvement for L-BFGS updates.

Fixing θ = 0.0 as the best case for the sparse diagonal H0, we now perform
a parameter sweep through the rescaling term in Fig. 2c. The results indicate
that α = 1.0 produces the most well-scaled initialization for the sparse diagonal
case. Additional experiments not shown have failed to recover a better diagonal
initialization at different α and θ combinations.

Table 1. Select problems for comparison of H0 methods in L-BFGS.

# of vars. # of iterations

Total Free Active H0 = I H0 = ρkI H0 = σkdiag(hk)

EXPLIN 1200 52 1148 213 170 109

EXPQUAD 1200 1119 81 N/A 314 113

BDEXP 5000 5000 0 36 18 16

TORSIONB 5625 3624 1852 165 151 132

JNLBRNGA 10000 6359 3641 N/A 327 299

OBSTCLBL 10000 7057 2943 131 130 113

In Fig. 2d, we compare the best-case configurations for both H0 initializa-
tion types to the raw L-BFGS results. The sparse diagonal initialization enables
L-BFGS to solve over 90% of the bound-constrained CUTEst test set in under
1, 000 iterations and accelerates convergence on all problems, offering a sig-
nificant improvement over both the scalar and identity initialization methods.
Statistics for a subset of the problems from this plot are available in Table 1.

We also explore additional H0 parameters to accelerate convergence of DFP
and the best Broyden method at φ = 0.5. Figure 3a and b show the parameter
study for the scalar initialization in the Broyden and DFP methods, respectively.
The best case for DFP at α = 0 yields a scalar H0 that is the dual of the best
scalar term for BFGS (i.e.: interchanging roles for sk and yk). This mimics the
duality between the DFP and BFGS formulas themselves. Additionally, the best
case for Broyden’s method matches the α parameter to the convex combination
term of φ = 0.5. This observation suggests that the best scalar initialization
parameter, α, for any member of the Broyden-class method may be the same as
the convex combination term φ that defines the method.
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(a) Broyden method with φ = 0.5.
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(b) DFP method.

Fig. 3. Scalar Hessian initialization for Broyden (φ = 0.5) and DFP methods.
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Fig. 4. Comparison of best H0 definitions for selected quasi-Newton methods.

In Fig. 4, we compare these scalar H0 terms with one another and against the
best BFGS initializations above. Results show that selecting the correct scalar
H0 for each method significantly improves all quasi-Newton methods tested
and makes the φ = 0.5 Broyden method competitive with BFGS in the num-
ber of problems solved. Our observations indicate that a more comprehensive
parameter study may reveal other Broyden-class methods with different convex
combination and Hessian initialization terms that offer competitive or better
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performance than BFGS on some problems. Preliminary numerical experiments
we have conducted suggest that the DFP method does not benefit from a diag-
onal Hessian initialization; however, we aim to utilize our flexible quasi-Newton
framework to explore the diagonal H0 with other Broyden-class methods in the
near future.

4 Conclusions

We have introduced a flexible framework for constructing both scalar and sparse
diagonal, positive-definite Hessian initializations for limited-memory quasi-New-
ton methods based on the restricted Broyden-class updates. Our implementation
in PETSc/TAO allows us to rapidly change parameters and shift between differ-
ent members of the Broyden-class methods and select the form for the Hessian
initializations at runtime.

Our numerical experiments indicate that intermediate values of φ in the
Broyden-class outperform the base BFGS formula for a significant subset of the
bound-constrained CUTEst problems. We also compare different scalar initial-
izations for different quasi-Newton methods; the results suggest that the best
possible α parameter in our H0 formulation tracks with the convex combination
parameter φ that defines members of the Broyden-class.

We demonstrate that the diagonal Hessian initialization successfully accel-
erates BFGS convergence at minimal additional memory and algebra cost com-
pared with scalar initializations. Our preliminary experience testing similar ini-
tializations with DFP and other Broyden-class methods suggests that other
parameter values may reveal alternative quasi-Newton methods that are com-
petitive with BFGS on large-scale optimization problems. We hope to leverage
our flexible Broyden-class quasi-Newton algorithm to further investigate these
possibilities in the future.
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