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Abstract. Many design problems in engineering have highly nonlinear
constraints and the proper handling of such constraints can be important
to ensure solution quality. There are many different ways of handling
constraints and different algorithms for optimization problems, which
makes it difficult to choose for users. This paper compares six different
constraint-handling techniques such as penalty methods, barrier func-
tions, ε-constrained method, feasibility criteria and stochastic ranking.
The pressure vessel design problem is solved by the flower pollination
algorithm, and results show that stochastic ranking and ε-constrained
method are most effective for this type of design optimization.
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1 Introduction

A vast majority of problems in engineering and science can be formulated as
optimization problems with a set of inequality and equality constraints. How-
ever, such problems can be challenging to solve, not only because of the high
nonlinearity of problem functions, but also because of the complex search domain
shapes enclosed by various constraints. Consequently, both the choice of opti-
mization algorithms and the ways of handling complex constraints are crucially
important. Efficient algorithms may not exist for a given type of problem. Even
with an efficient algorithm for a given problem, different ways of handling con-
straints may lead to varied accuracy. Thus, in addition to the comparison of
different algorithms, a systematic comparison of constraint-handling techniques
is also needed [3,9,18,19,29].

There are many different algorithms for solving optimization problems [6,11].
One of the current trends is to use nature-inspired optimization algorithms to
solve global optimization problems [28], and the algorithms such as genetic
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algorithm, differential evolution [24], particle swarm optimization [15], firefly
algorithm and cuckoo search [28], and flower pollination algorithm [26] have
demonstrated their flexibility and effectiveness. Thus, we will mainly use nature-
inspired metaheuristic algorithms in this paper, and, more specifically, we will
use the recent flower pollination algorithm (FPA) because its effectiveness and
proved convergence [13,26,27]. In addition, even with any efficient algorithm,
the constraints of optimization problems must be handled properly so that fea-
sible solutions can be easily obtained. Otherwise, many solution attempts may
be wasted and constraints may be violated [11,29]. There are many different
constraint-handling techniques in the literature [8,12,16,17,23,32], and our focus
will be on the comparison of different constraint-handling techniques for solving
global optimization problems using metaheuristic algorithms.

Therefore, this paper is organized as follows. Section 2 provides a general
formulation of optimization problems with a brief introduction to the flower pol-
lination algorithm (FPA). Section 3 outlines different constraint-handling tech-
niques. Section 4 uses FPA to solve a pressure vessel design problem with differ-
ent ways of handling constraints where comparison of results will be presented.
Finally, Sect. 5 concludes with some discussions.

2 Optimization

2.1 General Formulation

Though optimization problems can take many different forms in different appli-
cations, however, it can be formulated as a mathematical optimization problem
in a D-dimensional design space as follows:

minimize f(x), x = (x1, x2, ..., xD) ∈ R
D, (1)

subject to
φi(x) = 0, (i = 1, 2, ...,M), (2)

ψj(x) ≤ 0, (j = 1, 2, ..., N), (3)

where x is the vector of D design variables, and φi(x) and ψj(x) are the equality
constraints and inequality constraints, respectively. Classification of different
optimization problems can be based on the problem functions. If these functions
(f(x), φi(x) and ψj(x)) are all linear, there are some efficient algorithms such as
simplex methods. If problem functions are nonlinear, they may be more difficult
to solve, though there are a wide range of techniques that can be reasonably
effective [6,15,29]. However, global optimality may not be guaranteed in general.

2.2 Flower Pollination Algorithm

The flower pollination algorithm (FPA) as a population-based algorithm has
been inspired by the characteristics of the pollination processes of flowering
plants [26,27]. The main steps of the FPA have been designed to mimic some key
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characteristics of the pollination process, including biotic and abiotic pollination,
flower constancy co-evolved between certain flower species and pollinators such
as insects and animals, and the movement ranges of flower pollen of different
flower species.

Briefly speaking, if x is the position vector that represents a solution in the
design space to an optimization problem, this vector can be updated by

xt+1
i = xt

i + γL(ν)(g∗ − xt
i), (4)

which mimics the global step in the FPA. Here g∗ is the best solution found
so far in the whole population of n different candidate solutions, while γ is a
scaling parameter, and L(ν) is a vector of random numbers, drawn from a Lévy
distribution characterized by an exponent of ν.

Though the Lévy distribution is defined as

L(s) =

{√
γ
2π e− γ

2(s−μ) 1
(s−μ)3/2 , (0 < μ < s < +∞),

0, otherwise,
(5)

which has an exponent of 3/2, it can be generalised with an exponent of 1 ≤ ν ≤ 2
in the following form:

L(s, ν) ∼ AνΓ (ν) sin(πν/2)
π|s|1+ν

, (6)

where s > 0 is the step size, and A is a normalization constant. The Γ -function
is given by

Γ (z) =
∫ ∞

0

uz−1e−udu. (7)

In the special case when z = k is an integer, it becomes Γ (k) = (k − 1)!. The
average distance dL or search radius covered by Lévy flights takes the form

d2L ∼ t3−ν , (8)

which increases typically faster than simple isotropic random walks such as Brow-
nian motion because Lévy flights can have a few percent of moves with large steps
in addition to many small steps [21].

The current solution xt
i as a position vector can be modified locally by varying

step sizes
xt+1

i = xt
i + U(xt

j − xt
k), (9)

where U is a vector with each of its components being drawn from a uniform
distribution. Loosely speaking, xt

j and xt
k can be considered as solutions repre-

senting pollen from different flower patches in different regions.
Due to the combination of local search and long-distance Lévy flights, FPA

can usually have a higher capability for exploration. A recent theoretical anal-
ysis using Markov chain theory has confirmed that FPA can have guaranteed
global convergence under the right conditions [13]. There are many variants of
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the flower pollination algorithm and a comprehensive review can be found in
[2]. Due to its effectiveness, FPA has been applied to solve a wide range of opti-
mization problems in real-world applications such as economic dispatch, EEG
identification, and multiobjective optimization [1,22,27].

3 Constraint-Handling Techniques

There are many different constraint-handling techniques in the literature, rang-
ing from traditional penalty methods and Lagrangian multipliers to more sophis-
ticated adaptive methods and stochastic ranking [8,18,23]. In essence, penalty
methods neatly transform a constrained optimization problem into a correspond-
ing, unconstrained one by transforming its constraints in the revised objective,
in terms of some additional penalty terms, and these penalty terms are usually
functions of constraints. The advantage of this is that the optimization problem
becomes unconstrained and thus the search domain has a regular shape without
changing the locations of the optimality, but this modifies its original objec-
tive landscape, which may become less smooth. In addition, more parameters
such as the penalty constants are introduced into the problem, and their values
need to be set or tuned properly. In many cases, they can work surprisingly well
if proper values are used, and the transformed unconstrained problem can be
solved effectively by various optimization methods very accurately [11,29].

In this study, we aim to compare a few methods of handling constraints,
and they are barrier functions, static penalty method, dynamic penalty method,
feasibility method, ε-constrained method, and stochastic ranking.

3.1 Static Penalty and Dynamic Penalty Methods

Among various forms of the penalty method, the Powell-Skolnick approach [20]
incorporates all the constraints with feasibility

ρ(x) =
{

1 + μ
[ ∑N

j=1 max{0, ψj(x)} +
∑M

i=1 |φi(x)|], if not feasible,
f(x), if feasible,

(10)

where the constant μ > 0 is fixed, and thus this method is a static penalty
method. This approach ranks the infeasible solution with a rank in the range from
1 to ∞, assuming the lower ranks correspond to better fitness for minimization
problems.

In general, the penalty-based method transform the objective f(x) into a
modified objective Θ in the following form:

Θ(x) = f(x)[objective] + P (x)[penalty], (11)

where the penalty term P (x) can take different forms, depending on the actual
ways or variants of constraint-handling methods. For example, a static penalty
method uses

P (x) =
M∑
i=1

μiφ
2
i (x) +

N∑
j=1

νj max{0, ψj(x)}2, (12)
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where μi > 0, νj > 0 are penalty constants or parameters. In order to avoid too
many penalty parameters, a single penalty constant λ > 0 can be used, so that
we have

P (x) = λ
[ M∑

i=1

φ2
i (x) +

N∑
j=1

max{0, ψj(x)}2
]
. (13)

Since λ is fixed, independent of the iteration t, this basic form of penalty is the
well-known static penalty method.

Studies show that it may be advantageous to vary λ during iterations [14,17],
and the dynamic penalty method uses a gradually increasing λ in the following
form [14]:

λ = (αt)β , (14)

where α = 0.5 and β = 1, 2 are used.
There are other forms of penalty functions. Recent studies suggested that

adaptive penalty can be effective with varying penalty strength by considering
the fitness of the solutions obtained during iterations [4,5,10].

3.2 Barrier Function Method

Though the equality constraints can be handled using Lagrangian multipliers,
the inequalities need to be handled differently. One way is to use the barrier
function [6], and the logarithmic barrier functions can be written as

L(x) = −μ
N∑

j=1

log
[

− ψj(x)
]
, (15)

where μ > 0 can be varied during iterations (t). Here, we will use μ = 1/t in our
implementations.

3.3 Feasibility Criteria

A feasibility-based constraint-handling technique, proposed by Deb [12], uses
three feasible criteria as selection mechanisms: (1) the feasible solution is chosen
first among one feasible solution and one infeasible solution; (2) the solution
with a better (lower for minimization) objective value is preferred if two feasible
solutions are compared; and (3) among two infeasible solutions, the one with the
lower degree of constraint violation is preferred.

The degree of the violation of constraints can be approximately measured by
the penalty term

P (x) =
M∑
i=1

|φi(x)| +
N∑

j=1

max{0, ψj(x)}2. (16)

Such feasibility rules can loosely be considered as fitness ranking and preference
of low constraint violation. Obviously, such feasibility rules can be absolute or
relative, and thus can be extended to other forms [17].
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3.4 Stochastic Ranking

Stochastic ranking (SR), developed by Runarsson and Yao in 2000 [23], is another
constraint-handling technique, which becomes promising. In stochastic ranking,
a control parameter 0 < pf < 0 is pre-defined by the user to balance feasibility
and infeasibility, while no penalty parameter is used. The choice and preference
between two solutions are mainly based on their relative objective values and the
sum of constraint violations. Ranking of solutions can be done by any sorting
algorithms such as the bubble sort.

The main step involves first to draw a uniformly-distributed u and compare
with the pre-defined pf . If u < pf or both solutions are feasible, then swap them
if f(xj) > f(xi). If both solutions are infeasible, swap if P (xj) > P (xi). The
aim is to select the minimum of the objective values and the lower degree of sum
of the constraint violations.

The ranking is carried out according to the probability ps

ps = popf + pv(1 − pf ), (17)

where po is the probability of individual winning, based on its objective value,
while pv is the probability of winning of that individual solution, based on the
violation of the constraints [23]. The probability of selection or winning among
k comparison pairs among n solutions is based on a binomial distribution

pw(k) =
n!

k!(n − k)!
pk

s(1 − ps)n−k. (18)

According to the value suggested by Runarsson and Yao [23], pf = 0.425 will be
used in this study.

3.5 The ε-Constrained Approach

Another technique for handling constraints, called the ε-constrained method, was
developed by Takahama and Sakai [25], which consists of two steps: the relax-
ation limits for feasibility consideration and lexicographical ordering. Basically,
two solutions xi and xj can be compared and ranked by their objective values
f(xi) and f(xj) and constraint violation (P (xi) and P (xj)). That is

{f(xi), P (xi)} ≤ ε{f(xj), P (xj)}, (19)

which is equivalent to the following conditions:⎧⎨
⎩

f(xi) ≤ f(xj), if both P (xi), P (xj) ≤ ε
f(xi) ≤ f(xj), if P (xi) = P (xj),
P (xi) ≤ P (xj), otherwise.

(20)

Loosely speaking, the parameter ε ≥ 0 controls the level of comparison. In case
of ε is very large, the comparison is mainly about objective values, while ε = 0
corresponds to an ordering rule so that the objective minimization is preceded
by lower or minimal degrees of the constraint violation [25,31].
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4 Numerical Experiments and Comparison

In order to compare how these constraint-handling methods perform, we should
use different case studies and different algorithms. However, due to the limit of
space, here we only present the results for a design case study solved by the flower
pollination algorithm. The optimal design of pressure vessels is a mixed integer
programming, and it is a well-known benchmark in metaheuristic optimization
for validating evolutionary algorithms.

4.1 Pressure Vessel Design

The pressure vessel design problem is a well-known benchmark that has been
used by many researchers, and this problem is a mixed-type with four design
variables. The overall design objective is to minimize the total cost of a cylindri-
cal vessel, subject to some pre-defined volume and stress constraints. The four
design variables are the thickness d1 and d2 for the head and body of the vessel,
respectively, the inner radius r of the cylindrical section, and the length W of
the cylindrical part [7,8]. The objective is to minimize the cost:

minimize f(x) = 06224rWd1 + 1.7781r2d2 + 19.64rd21 + 3.1661Wd2
1, (21)

subject to four constraints:

g1(x) = −d1 + 0.0193r ≤ 0, g2(x) = −d2 + 0.00954r ≤ 0, (22)

g3(x) = −4πr3

3
− πr2W − 1296000 ≤ 0, g4(x) = W − 240 ≤ 0. (23)

The simple limits for the inner radius and length are: 10.0 ≤ r,W ≤ 200.0.
However, due to some manufacturability requirements, it is necessary to set

the thickness (d1 and d2) to be the integer multiples of a basic thickness of
0.0625 in.. That is

1 × 0.0625 ≤ d1, d2 ≤ 99 × 0.0625. (24)

With four variables and four constraints, it seems not so hard to solve the prob-
lem. However, the first two variables are discrete, which makes the problem
become a mixed integer programming problem. This benchmark has been stud-
ied extensively by many researchers [7,28]. For many years, the true optimal
solutions were not known due to the nonlinearity in its objective and constraints.

Now the true global optimal solution [30], based on the analytical analysis,
is fmin = 6059.714335 with d1 = 0.8125, d2 = 0.4375, r = 40.098446 and
W = 176.636596. This allows us to compare the obtained solutions with the
true solution in this study.

4.2 Comparison

Most penalty methods used in the literature require a high number of iterations,
typically from 10 000 or 50 000 up to even 250 000 or 500 000 so as to get
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sufficient accurate results [8,12]. However, in order to see how these methods
evolve throughout iterations, a much lower number of iterations will be used
here. In fact, we will use tmax = 10000, this allows us to see how errors will
evolve over time for different methods. Other parameters are: λ = 105 for static
penalty, α = 0.5 and β = 2 for dynamic penalty. μ = 1/t is used for the barrier
function, and pf = 0.425 is used for stochastic ranking. In addition, ε = 1 is
used for the ε-constrained method. For the FPA, parameters are: population
size n = 40, pa = 0.25, γ = 0.1, and ν = 1.5.

There are many different ways to compare simulation results, and the ranking
results can largely depend on the performance measures used for comparison.
Here, we will use the modified offline error E, similar to the error defined by
Ameca-Alducin et al. [3]. We have E = 1

Nmax

∑Nmax
t=1 |fmin − f

(t)
∗ | where Nmax

is the maximum number of iterations and we use Nmax = 10000. Here, f
(t)
∗

is the best solution found by an algorithm during iteration t, and fmin is the
known best solution from the literature, and it is the global minimum, based on
analytical results for the pressure vessel design problem [30].

Table 1. Mean errors of the pressure vessel objective with 20 independent runs.

Method Iteration (t = 5000) Iteration t = 10000

Static penalty 416.1 322.6

Dynamic penalty 368.7 317.8

Barrier function 497.9 421.3

Feasibility approach 402.7 310.2

ε-constrained 341.5 171.9

Stochastic ranking 332.4 169.3

Six different constraint-handling methods are implemented in this study, and
all methods can find the optimal solution fmin = 6059.714 for tmax = 10000. The
results of 20 independent runs and the mean errors of the pressure vessel design
objective values from the true optimal value are summarized in Table 1. As we
can see, the errors are decreasing as iteration t becomes larger. Both stochastic
ranking and ε-constrained method obtained the best results, while the feasibility
approach is very competitive. Barrier function approach seems to give the worse
results. Both static penalty and dynamic penalty can work well, though dynamic
penalty is better than static penalty.

5 Conclusions

This paper has compared six different constraint-handling techniques in the con-
text of bio-inspired algorithms and nonlinear pressure vessel designs. The pres-
sure vessel design problem is a nonlinear, mixed-integer programming problem



Comparison of Constraint-Handling Techniques 365

and has been solved by using the FPA. The emphasis has been on the compari-
son of different ways of handling constraints. Our results have shown that both
stochastic ranking and ε-constrained method obtained the best results.

Further studies will focus on the more extensive tests of different constraint-
handling techniques and different algorithms over a wide range of benchmarks
and design problems. More detailed parametric studies will also be carried out
so as to gain insight into advantages and disadvantages as well as robustness of
different constraint-handling techniques.
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