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Abstract. Class Imbalance problems are often encountered in many
applications. Such problems occur whenever a class is under-represented,
has a few data points, compared to other classes. However, this minority
class is usually a significant one. One approach for handling imbalance is
to generate new minority class instances to balance the data distribution.
The Synthetic Minority Oversampling TEchnique (SMOTE) is one of
the dominant oversampling methods in the literature. SMOTE generates
data using linear interpolation between minority class data point and one
its K-nearest neighbors. In this paper, we present a theoretical and an
experimental analysis of the SMOTE method. We explore the accuracy
of how faithful SMOTE method emulates the underlying density. To our
knowledge, this is the first mathematical analysis of the SMOTE method.
Moreover, we study the impacts of the different factors on generation
accuracy, such as the dimension of data, the number of examples, and the
considered number of neighbors K on both artificial, and real datasets.

Keywords: Class imbalance · Minority class · Over-sampling ·
SMOTE

1 Introduction

Imbalanced learning is encountered when one of the classes is represented fewer
than others. Datasets may be naturally unbalanced such as medical diagnosis
[15] and fraud detection [2], or data collection process may be too expensive
such as detection of system failures. Yang et al. [22] have declared imbalanced
learning as one of the ten most challenging problems in data mining. Handling
class imbalance is challenging since there is a trade-off between the overwhelming
influence of the majority class patterns, and an overemphasis on just a few
minority class patterns.

Standard classifiers are biased towards the majority class examples while
sacrificing minority class accuracy since such classifiers aim to maximize the over-
all classification accuracy without considering class distributions. The three main
approaches for handling data imbalance problem in literature are: cost sensitive
approach, algorithm level approach, and data level approach.
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The cost sensitive approach uses cost matrices to set misclassification costs
according to the importance of the class and degree of imbalance. Examples of
work on the cost sensitive approach include AdaCost [7], and the work done by
Chawla et al. [4].

The algorithm level approach adapts the classification algorithm’s to handle
the class imbalance problem. For example there is work on modifying the K
nearest neighbor classifier (KNN) [23], other work on adapting decision trees
[18], some approaches that modify support vector machines (SVM) [16], all these
methods seeks to focus on minority class.

Finally, the data level approach is based on modifying the data distribution in
order to balance minority and majority classes. Data level approach is the most
popular approach for handling class imbalance, since it is a simple approach that
can be applied independently of the classifier being used. Data level methods
balance distributions by either removing some of the majority class data points
(under-sampling), or adding more of minority class instances (over-sampling).

Under-sampling can be done randomly or using some heuristics such as:
the condensed nearest neighbor rule [8] and one-sided selection [1]. However,
under-sampling can be considered precarious since potential important informa-
tion could be lost when removing majority class examples. On the other hand,
over-sampling can be done by randomly replicating minority class patterns, or
by generating new minority class patterns [1]. One of the most popular over-
sampling methods is “Synthetic Minority Over-sampling Technique”, or SMOTE
[3]. SMOTE generates patterns from the minority class by performing a linear
interpolation between a minority class pattern, and a randomly chosen one of its
K-nearest neighbors. A detailed description of the SMOTE method is presented
in Sect. 2.

Although there is much work in literature studying sampling methods han-
dling class imbalance problem (see the reviews [15,19], and [12], most of this work
provides empirical analysis only, and there is little work, if any, that provides a
theoretical analysis of data sampling methods.

One of the empirical studies is done by Luengo et al. [20]. In this work,
the authors analyze the behavior of different sampling methods including:
SMOTE, its extension, SMOTE-ENN, and an evolutionary under-sampling
method EUSCHC [11], by measuring the degree of feature overlapping of the
different classes, and class separability and its geometrical properties. However,
these measures do not consider distributional issues of the generated data.

Another empirical analysis is performed in [6], the authors analyze different
under-sampling, over-sampling methods and hybrid methods using both over-
sampling and under-sampling for Alzheimers disease dataset. Their experimen-
tal analysis includes: random over-sampling, SMOTE, random under-sampling
and K-Medoids under-sampling, a proposed clustering-based under-sampling
method. Their results show that the subtle methods such as SMOTE and K-
Medoids outperform random over-sampling and random under-sampling.

A lot of methods have extended SMOTE technique [3] due to its simplicity
and performance. For example, two variations of Borderline SMOTE are pre-
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sented in [13], Borderline-SMOTE1 and Borderline-SMOTE2. In these methods
only the minority examples near the classification boundary are over-sampled,
since the near-boundary examples tend to be more informative.

Another model is the so-called Adaptive Synthetic Sampling Approach for
Imbalanced Learning (ADASYN) [14]. It uses a weighted distribution for differ-
ent minority class examples according to their level of difficulty in learning, where
more synthetic data are generated for minority class points that are harder to
learn. Difficulty of a minority example learning is determined by the class com-
position of the K nearest neighbors.

A recently developed over-sampling method named Sampling WIth the
Majority (SWIM) handles extreme class imbalance [21]. The authors of that
paper utilize the distribution of majority class to generate synthetic minority
class samples in new under-represented regions of minority class. Their pro-
posed method (SWIM) achieves that by generating synthetic data at the same
Mahalanbois distance from the majority class as the minority class sample.

Although the SMOTE generation mechanism is extensively used in literature
[13,14,21], and [17], the SMOTE method has a major drawback that it is not
grounded on a solid mathematical theory [3]. Consequently, in this work, we aim
to provide a comprehensive analysis of the SMOTE method. Specifically, our
goals are the following:

– Develop a mathematical analysis of SMOTE, and test the degree of its emu-
lation to the underlying distribution (by checking its moments).

– Provide a detailed experimental study of SMOTE, exploring the factors that
affect its accuracy (in mimicking the distribution).

The paper is organized as follows: Sect. 2 introduces SMOTE method stat-
ing its advantages and potential drawbacks. Section 3 presents a mathematical
analysis to derive the distribution of the patterns generated by SMOTE. Then,
the experimental analysis of SMOTE is presented in Sect. 4. Finally, Sect. 5 con-
cludes the paper and presents potential future work.

2 SMOTE Method

The SMOTE over-sampling procedure consists of the following simple steps:

– For each pattern X0 from the minority class do the following:
• Pick one of its K nearest neighbors X (belonging to the minority class

also).
• Create a new pattern Z on a random point on the line segment connecting

the pattern and the selected neighbor, as follows:

Z = X0 + w(X − X0) (1)

where w is a uniform random variable in the range [0, 1].
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Figure 1 shows an example of patterns generated by SMOTE. In contrast,
this figure shows extra patterns generated from the original distribution. It can
be observed that the SMOTE generated patterns are more contracted than the
patterns generated from the true distribution. This is because the SMOTE gen-
eration process by linear interpolation causes them to be inward-placed. In addi-
tion, SMOTE generated patterns are allocated only on the line segments con-
necting the K neighbors, creating an unrealistic graph shape, where edges are
studded with data points and internal portions are void of them. This problem
is accentuated even more in higher dimensions. Figure 1 shows how SMOTE
generated patterns cluster around some paths, with some empty spaces around
them. However, means of original distribution and SMOTE generated examples’
distribution are very close as shown in Fig. 2.
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Fig. 1. SMOTE generated vs. original patterns

Another problem is that SMOTE could generate patterns in the decision
regions of the majority class, this is more likely to occur in case of overlapping
classes.

3 Theoretical Analysis of SMOTE

In this section, we present a theoretical analysis for SMOTE method in order to
provide some mathematical basis. The success of SMOTE as a valid sampling
algorithm hinges on its ability to generate patterns obeying a distribution close
to the true one. We will investigate this issue here. Since the mean vector and the
covariance matrix are the two major parameters characterizing any distribution,
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Fig. 2. Original distribution mean vs. SMOTE generated patterns’ mean

we derive approximate formulas for the mean and the covariance matrix of pat-
terns generated using SMOTE, and compare them with the true distribution’s
parameters.

Let Δ = X − X0, then:
Z = X0 + wΔ (2)

where w is a uniformly generated number in [0, w∗]. When w∗ equals to zero, dis-
tances would be zero since generated patterns are identical to original patterns.
The parameter w∗, typically greater than or equal one, allows us to both extrap-
olate and interpolate on the line connecting the pattern X0 and its randomly
selected neighbor X. If w∗ = 1 then this reverts back to the original SMOTE
(applying only interpolation). If w∗ > 1, then we can go beyond point X0, i.e.
we are allowing some level of extrapolation.

The basic idea for the analysis is approximating the probability density of
minority class p(X) using Taylor series around the point X0 as proposed in [10].
The final approximation of the mean and covariance matrix of the generated
pattern vector Z are given by Eqs. (3) and (4) respectively.

E[Z] ≈ μX0 +
Cw∗2

2

∫
X0

p(X0)
−2
d

∂p(X0)
∂X

dX0 (3)

where [∂p(X)
∂X ]T = (∂p(X)

∂x1
, ...., ∂p(X)

∂xd
).
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ΣZ = ΣX0 +
Cw∗2

3

∫
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p(X0)1− 2
d dX0I

+
C2w∗2

3

∫
X0

p(X0)
−2
d

∂p(X0)
∂X

dX0

∫
X0

p(X0)
−2
d

∂p(X0)
∂X

T

dX0

+
Cw∗

2

[ ∫
X0

p(X0)− 2
d
∂p(X0)

∂X
[(X0 − μX0)

T ] dX0

+
∫

X0

p(X0)− 2
d (X0 − μX0)

∂p(X0)
∂X

T

dX0

]
(4)

where d is the dimension of the pattern vector, μX0 is the true mean vector of the
minority class, ΣX0 is the true covariance function, p(X0) is the class-conditionl
density at point X0, I is the identity matrix, and C is calculated as follows:

C =
N !Γ

(
1 + 2

d

) 2
d Γ

(
K + 2

d + 1
)

πK!(d + 2)Γ
(
N + 2

d + 1
) (5)

If the true probability density is multivariate Gaussian, then the approxima-
tions can be simplified further to the following:

E[Z] ≈ μX0 (6)

ΣZ = ΣX0 +

[
(2π)

1−d
2

Cw∗2

3
det

1−d
2d (ΣX0)

( d

2d − 1

) d
2

− 2πCw∗det
1
d (ΣX0)

( d

d − 2

) d+2
2

]
I

(7)

From Eq. (7), since the fraction d
d−2 is greater than one for any d > 0 and

d �= 2, hence the second term of the generated examples’ covariance matrix ΣZ

would be negative and accordingly, the covariance matrix of SMOTE generated
examples ΣZ would be more contracted (since diagonal elements are smaller)
than that of original minority class examples ΣX0 .

From the above formulas one can observe the following:

– The mean vector of SMOTE-generated patterns is very close to the true one.
– The covariance matrix has some discrepancy. It is more contractive than the

true one, because of the identity matrix times constant that is subtracted
from the true covariance matrix (see Eq. 7). This agrees with the intuitive
argument discussed last section, which argues that the SMOTE generation
mechanism locates the patterns more inwards.

In order to measure how the covariance matrix of SMOTE-generated patterns
diverges from the original covariance matrix, we define Total Variances Difference
(TVD) measure. This measure helps us learn the amount and the polarity of the
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difference between synthetic and original covariance matrices. It is defined as
the difference between the traces of the two covariance matrices. We normalize
TVD by dividing by trace of original covariance matrix.

TV D =
trace(ΣZ) − trace(ΣX0)

trace(ΣX0)
(8)

where the trace of the covariance matrix represents the summation of individual
features’ variances.

4 Experimental Analysis of SMOTE

4.1 Experiments

To have a more detailed understanding of the quality of SMOTE sampling,
and its influencing factors, we set out a simulation study. In these experiments,
we generate artificial datasets from multivariate Gaussian distributions, apply
SMOTE over-sampling, then estimate the SMOTE-sampled examples’ distribu-
tion, and compare it to the original distribution.

To have the analysis general enough, we consider 20 different distributions
with different parameters. In all cases we consider the zero mean case, because
the mean constitutes a shift in the center of operations, and will therefore be
insignificant. However, we consider a variety of 20 different covariance matrices
ΣX0 varying between diagonal and off-diagonal ones. For the diagonal matrices,
we sample the diagonal elements (eigenvalues) of the covariance matrix sam-
pled from uniform distribution ranging from above zero to 40. Similarly, for
the off-diagonal matrices, we first generate a diagonal matrix, named D, where
its diagonal elements are randomly sampled. Then, we compute the covariance
matrix ΣX0 using the following equation:

ΣX0 = RDRT (9)

where R is an orthonormal matrix that is uniformly sampled.
We studied the effect of the same influencing parameters considered in the

previous section, namely the number of original minority examples N , the dimen-
sion d, and the K parameter of the KNN. We have separately varied each of the
influencing factors, while fixing the others, and in each case we documented
the accuracy in the distribution of the generated points. While varying each
parameter, the others are set at their “default values”, which are as follows:
N = 100, d = 10, K = 5. We have used over-sampling rate R = 1, the over-
sampling rate can be defined as the amount of data points generated for each
minority pattern.

Additionally, in these experiments, we have set w∗ = 1 as used in standard
SMOTE method [3] since we are interested in analyzing SMOTE method. How-
ever, for w∗ can be set greater than 1, so that we can allow some extrapolation
which could compensate the contraction of covariance matrix caused by SMOTE.
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Algorithm 1. The experimental procedure for the SMOTE empirical analysis
repeat

Randomly generate N patterns from the original distribution.
repeat

Apply SMOTE to the generated N original patterns.
Obtain the sample mean vector and covariance matrix of the SMOTE gener-

ated examples.
until L runs executed.
Average the sample mean vector and covariance matrix over the L inner runs.

until M runs executed.
Average mean and covariance estimates over the M outer runs to get final estimates
of generated patterns’ distribution.
Compare the final estimated SMOTE generated patterns’ distribution to the original
distribution using the TVD distribution distance metric.

In order to estimate expectation and covariance of the SMOTE generated
patterns, we apply the following procedure:

To measure how close the distribution of the SMOTE-generated patterns to
the true distribution, we use the total variances difference (TVD) described and
used last section. In our experiments, we set the outer number of runs M to
1000, and the inner number of runs L is set to 1000.

The following figures present the divergence of both empirical and theoretical
estimates from the true distribution measured in terms of TVD metric described
in last section. Figure 3 shows TVD when exploring the effect of the dimension
d. As mentioned before, we fix all other factors at their default values, while
varying the dimension. Similarly, Fig. 4 shows the TVD metric for the case of
varying the number of minority samples N . Also, Fig. 5 show the TVD metric
for the case of varying the K “number of neighbors”.

It can be observed from the presented results that SMOTE behavior when
varying different factors is similar in case of evaluating this behavior using our
mathematical analysis and experimentally.

4.2 Experiments Using Real Data

In the other set of experiments we have applied a similar set-up as discussed on
three real world UCI datasets. This provides a test for situations where the dis-
tribution is not necessarily Gaussian, and to justify that the derived conclusions
apply to more complex situations, since real datasets could be noisy, and they
could have sub-concepts for the minority class patterns.

We considered datasets that are originally large. This is in order to have an
accurate estimate of the mean and covariance matrix. However, since SMOTE is
used primarily for smaller datasets [3], we consider only a small subset (like 50
or 100) of the data, and perform the sampling using these. For example, assume
that the dataset has about 10,000 points. We compute the mean and covariance
matrix from the 10,000 points and assume these to be approximately the true
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ones (due to the large number of points). Consider that we test the case of num-
ber of patterns N = 100. In such a situation we select 100 patterns randomly
from the 10,000 original data points. We perform the SMOTE generation exper-
iments on these 100 selected points. Then we repeat with a different selection
of the N = 100 data points M times, thus implementing the outer loop of the
simulation experiment along the lines discussed above for the artificial data sets.

Table 1 shows the sizes and the dimensions of the considered datasets. Adult
and Default datasets are UCI datasets [9] and the third dataset, credit card, is
a Kaggle dataset developed by [5]. Table 2 shows the empirical estimates of the
total variance difference (TVD) metric for varying dimensionality d, where Nf

indicates the total number of features for every dataset as indicated in Table 1. It
can be observed from Table 2 that as dimensionality increases, the distribution
distance in terms of the TVD metric is enlarged, which supports the theoretical,
and empirical results on artificial data presented in Fig. 3.
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In addition, Table 3 demonstrates the empirical estimates of the total vari-
ance difference (TVD) metric for varying number of patterns N . It could be
noted from Table 3 that for the three considered datasets, increasing number
of minority class patterns generates samples closer to the original distribution,
which agrees with the theoretical, and empirical results on artificial datasets
shown in Fig. 4.

Finally, Table 4 presents the empirical estimates of the total variance differ-
ence (TVD) metric for varying the K parameter of KNN in SMOTE. It can be
observed that increasing K results in increasing the TVD, which means that
the generated patterns incur more divergence away from the original distribu-
tion. These results agree with the theoretical and empirical results represented
in Fig. 5. A further discussion on the impact of the K parameter of the KNN
used in the SMOTE method is provided in Sect. 4.3.

For Tables 2, 3 and 4, only empirically estimated TVD values have been
computed. The theoretical estimates as defined in Eq. (4) are hard to com-
pute because the underlying density function p(X0) is unknown and probability
densities are very hard to estimate with a reasonable error, especially for high
dimensions, even in case of large data sets.

Table 1. Real world datasets description

Dataset Number of minority
class patterns

Dimension

Adult 22,654 14

Credit card 284,315 28

Client default 23,364 23

Table 2. TVD for SMOTE versus dimensionality d for the real world datasets

Dataset d = 3 d = 5 d = 10 d = Nf

Adult −0.111 −0.172 −0.234 −0.252

Credit card −0.107 −0.162 −0.226 −0.275

Client default −0.106 −0.165 −0.178 −0.227

4.3 Commentary on the Results

From the presented results, we can observe that different variables affect the
accuracy in similar directions, whether based on the theoretical or the experi-
mental results. This validates and makes these findings more general. In sum-
mary, we observe the following:
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Table 3. TVD for SMOTE versus number of patterns N for the real world datasets

Dataset N = 50 N = 100 N = 200 N = 500

Adult −0.098 −0.064 −0.031 −0.01

Credit card −0.3192 −0.298 −0.284 −0.265

Client default −0.197 −0.141 −0.0950 −0.0824

Table 4. TVD for SMOTE versus K parameter of KNN in SMOTE for the real world
datasets

Dataset K = 1 K = 5 K = 10 K = 20

Adult −0.012 −0.023 −0.036 −0.068

Credit card −0.253 −0.275 −0.286 −0.298

Client default −0.066 −0.099 −0.118 −0.156

– We find the TVD always negative, indicating the contractive nature of
SMOTE method.

– The faithfulness of SMOTE-sampling in emulating the true density deteri-
orates with higher dimension d. As mentioned, whether generating from a
density or estimating parameters, handling higher dimension becomes more
challenging.

– The accuracy improves as the number of minority examples N is higher,
exhibiting a steep decline as N becomes very small. The reason is that for
higher N the K-nearest neighbor patterns become closer to each other. This
has us dealing with a region of similar density function value. Going too far
means going to regions of markedly different density values, and hence less
“representative” generated patterns.

– The faithfulness improves with smaller K (of the KNN), becoming the best
at having a single neighbor K = 1. But, as we mentioned, a drawback of
very small K, such as K = 1 is that the generated examples will generally be
very close to the original examples, making them highly correlated with the
original examples, and lessening their contribution in improving classification
performance and other estimation tasks. As a general guide, selecting K in
the range of 4 to 6 seems to be a sensible choice. This would be a trade-off to
avoid the high errors of large K, and the correlation issue for very small K.

5 Conclusion

In this paper, we provide a theoretical and experimental analysis of the Synthetic
Minority over-sampling TEchnique (SMOTE) method. SMOTE is an effective
over-sampling method that generates extra examples from the minority class in
order to combat class imbalance. In this work, we investigate the distribution of
the SMOTE generated patterns and analyze how it deviates from the true distri-
bution. In addition, we study how the different factors, such as: dimensions, the
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number of minority patterns and the number of neighbors affect the divergence
from the original distribution. We apply our experiments on both synthetic, and
real datasets. The theoretical and the empirical results generally agree, and they
should be a useful guide for using the SMOTE generation. As a disclaimer, this
work considers only faithfulness in generating according to the true density. We
do not consider how this affects classification, as this is out of scope of this work.
However, an important first step in classification is to have accurate generation
of patterns. A possible future work is to consider how this affects classification
performance. Another possible direction to explore is to find methods or variants
that would undo the contractive nature of SMOTE.
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