
n-gram Cache Performance in Statistical
Extraction of Relevant Terms in Large

Corpora

Carlos Goncalves1,2(B) , Joaquim F. Silva2 , and Jose C. Cunha2

1 Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
cgoncalves@deetc.isel.pt

2 NOVA Laboratory for Computer Science and Informatics, Caparica, Portugal
{jfs,jcc}@fct.unl.pt

Abstract. Statistical extraction of relevant n-grams in natural language
corpora is important for text indexing and classification since it can be
language independent. We show how a theoretical model identifies the
distribution properties of the distinct n-grams and singletons appearing
in large corpora and how this knowledge contributes to understanding
the performance of an n-gram cache system used for extraction of rel-
evant terms. We show how this approach allowed us to evaluate the
benefits from using Bloom filters for excluding singletons and from using
static prefetching of nonsingletons in an n-gram cache. In the context of
the distributed and parallel implementation of the LocalMaxs extraction
method, we analyze the performance of the cache miss ratio and size,
and the efficiency of n-gram cohesion calculation with LocalMaxs.

Keywords: Large corpora · Statistical extraction · Multiword terms ·
Parallel processing · n-gram cache performance · Cloud computing

1 Introduction

Multiword expressions in natural language texts are n-grams (sequences of n ≥ 1
consecutive words). Statistical extraction of relevant expressions, useful for text
indexing and classification, can be language-independent. Thus it can be included
in initial stages of extraction pipelines, followed by language-specific syntac-
tic/semantic filtering. The increased availability of large corpora [1,2] due to
the Web growth challenges statistical extraction methods. We focus on n-gram
distribution models and parallel and distributed tools for extracting relevant
expressions from large corpora. LocalMaxs [3,4], a multiphase statistical extrac-
tion method, has a 1st phase for collecting n-gram frequency statistics, a 2nd

phase for calculating an n-gram cohesion metric, and a 3rd phase for applying an

Acknowledgements to FCT MCTES and NOVA LINCS UID/CEC/04516/2019.

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11537, pp. 75–88, 2019.
https://doi.org/10.1007/978-3-030-22741-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22741-8_6&domain=pdf
http://orcid.org/0000-0001-9113-6269
http://orcid.org/0000-0002-5223-1180
http://orcid.org/0000-0001-6729-8348
https://doi.org/10.1007/978-3-030-22741-8_6

76 C. Goncalves et al.

n-gram relevance filtering criterion. The computational complexity of methods
as LocalMaxs depends on n-gram distribution properties. Thus we proposed [5]
a theoretical model predicting the n-gram distribution as a function of corpus
size and n-gram size (n ≥ 1), validated empirically for estimating the numbers
of distinct n-grams, 1 ≤ n ≤ 6, with English and French corpora from 2 Mw (106

words) to 1 Gw (109 words) [6]. It allows to identify how the numbers of distinct
n-grams tend asymptotically to plateaux as the corpora grow toward infinity.
Due to the large numbers of distinct n-grams in large corpora, the memory limi-
tations become critical, motivating optimizations for space efficient n-gram data
structures [7]. We pursue an orthogonal approach using parallel computing for
acceptable execution times, overcoming the memory limitations by data parti-
tioning with more machines, and using data distribution for scalable storage of
the n-grams statistical data [8,9]. Guided by the theoretical model estimates,
we developed a parallel architecture for LocalMaxs: with an on-demand dynamic
n-gram cache to keep the n-gram frequency data, used for supporting the cohe-
sion calculations in the 2nd phase; a distributed in-memory store as a repository
of the n-gram global frequency values in the corpus and the cohesion and rele-
vance values; and a workflow tool for specifying multiphase methods; supported
by a distributed implementation with a configurable number of virtual machines.
LocalMaxs execution performance for extracting relevant 2-grams and 3-grams
from English corpora up to 1 Gw was shown scalable, with almost linear relative
speed-up and size-up, with up to 48 virtual machines on a public cloud [8,9].
However, that implementation achieves low efficiency relative to a single ideal
sequential machine because the on-demand dynamic n-gram cache is unable to
overcome the communication overheads due to the n-gram references missing in
the cache, requiring the remote fetching of the n-gram global frequency counts.
To improve the n-gram cache efficiency, we discuss two new aspects, as exten-
sions to the LocalMaxs parallel architecture. The first one consists in filtering the
singleton n-grams. To evaluate this, we extend the theoretical model to predict
the distribution of singleton n-grams, 1 ≤ n ≤ 6, applying this to English corpora
from a few Mw to infinity. Then we show that this singletons filtering with Bloom
filters [10] leads to a reduction of the n-gram cache miss ratio, but it depends on
the evolution of the numbers of singletons as the corpus size grows. The second
improvement relies on the static prefetching of the n-grams statistical data into
the cache. This, for a multiphase method, can be performed completely in the
1st phase (collecting n-gram statistics), so that during a subsequent phase where
the n-gram cache is used for cohesion metric and relevance calculation, there is
no cache miss overhead. For LocalMaxs, this leads to a virtually 0% cache miss
ratio for any corpus sizes. In the paper we discuss background (Sect. 2), the
theoretical model and the distribution of singleton n-grams (Sect. 3), the two
n-gram cache improvements (Sect. 4) and the obtained results (Sect. 5).

2 Background

Relevant expressions, e.g. “United Nations”, can be used to summarize, index
or cluster documents. Due to their semantic richness, their automatic extraction

n-gram Cache Performance in Statistical Extraction of Relevant Terms 77

from raw text is of great interest. Extraction approaches can be linguistic, sta-
tistical or hybrid [11,12]. Most of the statistical ones are language-neutral [13],
using metrics as Mutual Information [14], Likelihood Ratio [15], Φ2 [16]. Among
the latter, LocalMaxs [3,4] extracts multiword relevant expressions [17].

LocalMaxs. It relies on a generic cohesion metric, called “glue”, (as SCPf

Eq. (1) below; Dice [4]; or Mutual Information), and on a generic relevance cri-
terion (as Eq. (2) below), that, for a given input set of n-grams (n ≥ 2), iden-
tifies the ones considered relevant, according to the strength of their internal
co-occurrence:

SCPf (w1···wn) =
f (w1···wn)2

1
n−1

∑n−1
i=1 f (w1···wi) × f (wi+1···wn)

(1)

where f (w1···wi) is the frequency of the n-gram (w1···wi), i ≥ 1, in the corpus.
The denominator has the frequencies of all “leftmost and rightmost sub n-grams”
(that, for simplicity, are abbreviated as “sub n-grams”) of sizes from 1 to n − 1
contained in (w1···wn). E.g., considering the 5-gram “European Court of Human
Rights”, the sub n-grams whose frequencies are needed for the glue calculation
are: the 1-grams, “European” and “Rights”; the 2-grams, “European Court” and
“Human Rights”; the 3-grams, “European Court of” and “of Human Rights”;
and the 4-grams, “European Court of Human” and “Court of Human Rights”.

LocalMaxs Relevance Criterion. Let W = (w1...wn) be an n-gram and g (.) a
generic cohesion metric. Let Ωn−1 (W) be the set of g (.) values for all contiguous
(n − 1)-grams within the n-gram W ; Let Ωn+1 (W) be the set of g (.) values for
all contiguous (n + 1)-grams containing n-gram W . W is relevant expression iff:

∀x ∈ Ωn−1 (W) ,∀y ∈ Ωn+1 (W)
length (W) = 2 ∧ g (W) > y ∨ length (W) > 2 ∧ g (W) > x+y

2

(2)

For the example W = (EuropeanCourt of HumanRights), the sets are:
Ωn−1 (W) = {g (EuropeanCourt of Human) , g (Court of HumanRights)};
and Ωn+1 (W) = {g (Y)}, such that Y = (wL W) or Y = (W wR) where symbols
wL and wR stand for unigrams appearing in the corpus, and Y is the (n+1)-gram
obtained from the concatenation of wL or wR with W .

Parallel LocalMaxs Architecture. Figure 1a shows the logical dependen-
cies of LocalMaxs for extracting relevant n-grams, 2 ≤ n ≤ 5. For a given
maximum n-gram size nMAX the relevant n-grams, 2 ≤ n ≤ nMAX , are
identified in the corpus in three phases: (1) counting all n-gram occurrences,
1 ≤ n ≤ (nMAX + 1); (2) calculating the glue (g2···(nMAX+1)) for all distinct
n-grams, 2 ≤ n ≤ (nMAX + 1); and (3) applying a relevance criterion to all dis-
tinct nonsingleton n-grams, 2 ≤ n ≤ nMAX . The workflow is executed [8,9] by
a collection of virtual machines, each with one controller (for LocalMaxs func-
tions: count, glue, relevance), one server (for storing the n-gram data), and local
n-gram caches (Fig. 1b).

In phase one, the n-gram counting is performed in parallel by different con-
trollers acting on equal-size input corpus partitions. It generates the distinct

78 C. Goncalves et al.

n-gram tables, one for each n-gram size, containing the total counts of all the
n-gram occurrences in the corpus. These tables, partitioned by n-gram hashing,
are stored in a distributed collection of servers, thus supporting a repository of
the global n-gram frequency counts in the corpus (in the end of phase one).
For K machines, each server S (j) in each machine j: 1 ≤ j ≤ K, keeps a
local n-gram table (Di (j)), for n-grams of size i: 1 ≤ i ≤ (nMAX + 1). The
set of local n-gram tables (1 ≤ i ≤ (nMAX + 1)) within each server S (j) is:
{D1 (j) ,D2 (j) , · · · ,Di (j) , · · · ,DnMAX+1 (j)}. The set of distinct n-grams of
size i in the corpus (Di) is the union of the disjoint local n-gram tables Di (j) in
all servers 1 ≤ j ≤ K. In each machine (j), there is one controller (Ctrl (j)) co-
located with one local server S (j). Phase two input consists of a set of distinct
n-grams whose glues must be calculated. These n-grams and their frequency
counts are found, by each machine controller, in the local server n-gram tables.
However, the frequencies of the sub n-grams required for glue calculation of
each distinct n-gram must be fetched from the global distributed repository.
So, in this phase the repeated sub n-gram references used by the glue calcula-
tions justify a per machine n-gram cache for each n-gram size (C1, ..., CnMAX

)
(Fig. 1b). Each local cache entry has the frequency of a distinct n-gram. In the
end of phase two all the distinct n-gram entries in the global repository become
updated with their glue values. The input to phase three, for each machine
controller, consists of the local n-gram tables updated by phase two, used to
evaluate the n-gram relevance, finally stored in the local n-gram table. At the
end, for all tables (Di (j)) of the global repository, each entry has: an unique
n-gram identification, its global frequency, its glue value, and its relevance flag
(yes/no). As the corpus data is unchanged during LocalMaxs execution, a static
work distribution leads to a balanced load in all phases since the local table sizes
are approximately equal, |Di (j)| ≈ (|Di| /K) (for each n-gram size i, 1 ≤ i ≤ n;
machine j, 1 ≤ j ≤ K), and the controller input partitions are of equal sizes.

Fig. 1. Parallel LocalMaxs architecture

n-gram Cache Performance in Statistical Extraction of Relevant Terms 79

3 A Theoretical Model for n-gram Distribution

We review a theoretical model [5] for the efficient estimation of the number of
distinct n-grams (n ≥ 1), for any corpus size, for each given language. Here the
model is extended for predicting the number of singleton n-grams.

Distinct n-grams. By Zipf-Mandelbrot Law [18,19] and Poisson distribution:

f (r, c, n) =
(
(1 + β (n))α(n) × f (1, c, n)

)
× 1

(r + β (n))α(n)
(3)

where f (r, c, n) is the absolute frequency of the rth most frequent n-gram of
size n in a corpus C of c = |C| words. The most frequent n-gram of size n is
ranked r = 1 with frequency f (1, c, n), and the least frequent n-gram of size n
has rank r = D (c, n), i.e., the number of distinct n-grams of size n for a corpus
C. For each language, α (n) and β (n) are approximately constant (in Eq. (3)).
As confirmed empirically, the relative frequency, p1 (n), of the first ranked n-
gram tends to be constant wrt the corpus size: f (1, c, n) = p1 (n) × c. Thus,(
(1 + β (n))α(n) × f (1, c, n)

)
in Eq. (3) is constant for each corpus size, hence

the frequency of each rank follows a power law with α (n) > 0. Let random
variable X be the number of occurrences of n-gram w in rank r in a corpus,
in language l, by Poisson distribution, the probability of w occurring at least
once is:

Pr (X ≥ 1) = 1 − e−λ (4)

where λ is the Poisson parameter, the expected frequency of n-gram w in that
corpus. For each rank r, we have λ = f (r, c, n). Thus, Dist (l, c, n), the expected
number of distinct n-grams of size n in a corpus of size c in language l, is:

Dist (l, c, n) =
v(n)∑

r=1

(
1 − e−f(r,c,n)

)
= v (n) −

v(n)∑

r=1

e
−

(
(1+β(n)

r+β(n))
α(n)×(p1(n)×c)

)
(5)

For each n-gram size n there is a corresponding language n-gram vocabulary
of specific size v (n), which in our interpretation includes all different word flex-
ions as distinct. The parameters α, β, p1, v were estimated empirically for the
English language, for 1-grams to 6-grams [5], using a set of Wikipedia corpora
from 2 Mw to 982 Mw (Table 1). In Fig. 2a, the curves for the estimates (Es)
of the numbers of distinct n-grams (1 ≤ n ≤ 6) are shown dotted and for the
observed data (Obs) are filled, corresponding to a relative error (Es/Obs−1) gen-
erally below 1% [5]. Above well identified corpus size thresholds, for each n-gram
size, the number of distinct n-grams reaches an asymptotic plateau determined
by the finite vocabulary size, at a given time epoch. Any further corpus increase
just increases the existing n-grams frequencies.

Number of Singleton n-grams. From the Poisson distribution, the number
of distinct n-grams with frequency k ≥ 0 is estimated as:

W (k, c, n) =
r=v(n)∑

r=1

λk
r × e−λr

k!
=

r=v(n)∑

r=1

f(r, c, n)k × e−f(r,c,n)

k!
(6)

80 C. Goncalves et al.

Table 1. Best α, β, v (number of n-grams) and p1 for the English corpora

unigrams bigrams trigrams trigrams pentagrams hexagrams

α 1.3466 1.1873 0.9800 0.8252 0.8000 0.8000

β 7.7950 48.1500 21.8550 0.4200 −0.4400 0.6150

v 1.95 × 108 7.08 × 108 3.54 × 109 9.80 × 109 5.06 × 1010 3.92 × 1011

p1 0.05037 0.00827 0.00239 0.00238 0.00238 0.00067

where λr = f (r, c, n). For k = 1 it estimates the number of singletons (Fig. 2b),
1 ≤ n ≤ 6. The number of singletons increases with the corpus size, as new ones
keep appearing until a maximum, and vanishes gradually due to the vocabulary
finiteness. Singletons keep a significant proportion of the distinct n-grams for a
wide range: e.g., proportions fall below 80% only for corpora around 8 Mw, 1
Gw, 4 Gw, 16 Gw, 131 Gw, respectively, for 2-grams, 3-grams, 4-grams, 5-grams,
6-grams. Singleton 1-gram proportion is above 55% for corpora up to 16 Gw.

Fig. 2. Estimates (dotted) and empirical data (filled)

4 n-gram Cache System

Caching has been widely studied: in linguistics [20], Zipf distributions [21], Web
search [22], or mining [23]. An n-gram cache is useful to statistical methods. In
[9] a dynamic on-demand n-gram cache exploits repetitions in texts, reducing
access overheads to a remote store in LocalMaxs 2nd phase. Overheads were
further reduced [9]: by an n-gram cache warm-up using combined metric calcu-
lations; and by using more machines, thus reducing the per machine number of
n-gram misses (albeit non linearly) and the miss time penalty. That reduction
is still not enough. Thus, we discuss two new improvements, validated experi-
mentally for English corpora up to 1 Gw. Firstly (Sect. 4.2), we filter the large
proportions of singletons in the corpus, out of the n-gram cache, using Bloom
filters [10]. In [24], alternatives for Bloom filters, caching and disk/in-memory

n-gram Cache Performance in Statistical Extraction of Relevant Terms 81

storage were evaluated but focused on performance and scalability in text min-
ing. Distinctively we developed an n-gram cache for n ≥ 1 and analyzed Bloom
filters efficiency depending on the numbers of singletons, from small corpus sizes
up to infinity. Secondly (Sect. 4.3), using static prefetching we achieved a 0%
n-gram cache miss ratio.

An n-gram Cache in LocalMaxs 2nd Phase. For each glue calculation,
references to sub n-grams are generated, which are submitted as cache input
references to check if they are already in the local n-gram cache, otherwise they
must first be fetched from the global n-gram repository. The set of references,
allgluegn Ref (j), contains all sub n-gram occurrences for glue calculation (gn) of
the distinct n-grams of size n in table Dn(j) in machine j. The set of distinct sub
n-grams (sizes 1 to (n − 1)), found within allgluegn Ref (j), is Dall1···(n−1) (j) =
D1inD2···Dn

(j) ∪ D2inD3···Dn
(j) ∪ · · · ∪ D(n−1)inDn

(j). Each set DiinDn
, 1 ≤ i ≤

(n−1), contains the distinct sub n-grams of size i, occurring within the n-grams
in Dn table (Eq. (1)). For a single machine, DiinDn

is Di, 1 ≤ i ≤ (n − 1), the
set of distinct n-grams of size i in the corpus. For multiple machines, each one
handles the distinct sub n-gram references in its local tables (D2(j), D3(j), etc.).

4.1 Dynamic On-Demand n-gram Cache

A dynamic on-demand n-gram cache, assumed unbound, is able to contain all
the distinct sub n-grams of each local n-gram table. We analyzed the cold-start
(first occurrence) misses behavior, for an initially empty cache. If there is not
enough memory, the cache capacity misses are also handled. To reduce the cold
misses overhead we built an n-gram cache warm-up [9] using combined glues:
whereas the single glue calculation for 2-grams (g2) only requires access to the
1-gram cache, for the combined glues of 2-grams up to 6-grams (g2···6) the 1-
gram cache (C1) is reused five times, the 2-gram cache (C2) is reused four times,
and so on for caches C3, C4, C5. In a single machine, the global miss ratio (mr)
of an unbound cache system with subcaches C1 to C5 used for glue g2···6, is:

mr =
Dall1···5

allglueg2···g6Ref
=

∑5
i=1 |Di|

∑6
i=2 2 × (i − 1) × |Di|

(7)

The miss ratio decreases with the corpus size and increases with the glue
calculation complexity (n-gram size). Using the theoretical model for a single
machine, we predicted the evolution of the miss ratio of the dynamic on-demand
n-gram cache (Fig. 3a) for glue g2···6: it varies from around 11%, for corpus size
close to 10 Mw, to an asymptotic limit of around 1.5% in the plateaux (beyond
1 Tw). Results were experimentally validated for English corpora up to 1 Gw.

Effect of Multiple Machines (K > 1). Due to a multiplication effect of
the nonsingletons (mostly the common ones e.g. “the”, “and”) cited by multiple
distinct n-grams spread across multiple machines [9], the number of distinct sub
n-grams for glue calculation in each machine is not reduced by a factor of K
wrt the number of distinct n-grams in the corpus, unlike the number of cache

82 C. Goncalves et al.

references per machine that is reduced as 1/K compared to the case of a single
machine. Thus, the per machine miss ratio of a dynamic on-demand n-gram
cache increases with K for each corpus size. Indeed we have shown [9] that,
for each n-gram size n, the miss ratio follows a power trend: mr(K) ∝ Kb(n),
0 < b (n) < 1.

4.2 Bloom Filters for Singletons in an On-Demand n-gram Cache

Singletons can be filtered by Bloom filters [10], trained with the nonsingletons
occurring in the corpus. For the majority of singletons the Bloom filter says:
“definitely not in set”. For all the nonsingletons and a minority of singletons
it says: “possibly in set”. The percentage of false positives is kept low enough
by adequate Bloom filter implementation. During phase one of LocalMaxs each
server (Sect. 2) generates a Bloom filter for each local n-gram table. At the end
of phase one, after the servers have updated all the n-gram frequencies, the
filters were trained with all the nonsingletons. In the beginning of phase two,
each machine controller gets a copy of the trained Bloom filters.

Single Machine Case (K = 1). The proportion of the total number of sin-
gletons (Sall) wrt the total number of distinct n-grams in the corpus (Dall) is:

SFall =
Sall

Dall
=

∑5
i=1 Si

∑5
i=1 Di

(8)

also illustrating the SFall ratio for the case of glue g2···6. Thus:

mr

mrBF
=

Dall

allglueRef

(Dall−Sall)
allglueRef

=
1

1 − SFall
(9)

where mr and mrBF are, respectively, the miss ratio without and with Bloom
filters. The case of glue g2···6 is illustrated in Fig. 3 where the miss ratios of the
individual caches C1 to C5 are shown (dotted), as well as the global miss ratio of
the cache system C1+···+5 (filled). The curves result from the model predictions,
and were experimentally validated for corpus sizes up to 1 Gw.

Fig. 3. Dynamic on-demand cache mr for K = 1, glue g2···6. Different Y -scales

n-gram Cache Performance in Statistical Extraction of Relevant Terms 83

Due to the composition of the individual miss ratios of the caches C1 to C5,
the miss ratio with Bloom filters (Fig. 3b) for glue g2···6 is mostly dominated by
the larger populations of the larger n-gram sizes. It varies from about 1% for
the smallest corpus (about 10 Mw) to 1.5% in the plateau. The reduction, wrt
not using Bloom filters, is due to the increased filtering effectiveness in handling
the large global proportion of singleton n-grams, 1 ≤ n ≤ 5. The miss ratio has
a non monotonic behavior, with a single peak of about 3% at around 100 Gw,
however for corpora until 1 Gw it remains always below about 1.3%.

Effect of Multiple Machines (K > 1). The per machine miss ratio is:

mrBF =
D̂all − Ŝall

âllglueRef

=
N̂Sall

âllglueRef

=
NSK=1 × K−bNS

allglueRef/K
=

NSK=1 × K1−bNS

allglueRef

(10)
where D̂all =

(∑K
j=1 Dall1···(n−1) (j)

)
/K is the per machine number of distinct

sub n-grams of sizes 1 to n−1; Ŝall is the per machine number of singleton sub n-
grams of sizes 1 to n−1. Due to their multiplicative effect with K (Sect. 4.1), the
number of per machine nonsingletons follows N̂Sall ∝ K−bNS , 0 < bNS < 1 (bNS

empirically determined). Thus mrBF increases with K. Table 2 shows experi-
mental values of the miss ratios without and with Bloom filters, for a LocalMaxs
implementation using K = 16 machines in a public cloud [25], compared to a
single machine case, for corpora of sizes 205 Mw and 409 Mw, when calculating
glue g234.

Table 2. Distinct n-grams, singletons, cache references (numbers of n-grams); Cache
miss ratio (%) without/with Bloom filters

K = 1 K = 16

|C| = 205 Mw |C| = 409 Mw |C| = 205 Mw |C| = 409 Mw

D̂all1···3 115, 803, 664 201, 335, 533 22, 075, 227 38, 276, 819

Ŝall1···3 92, 600, 190 158, 713, 260 13, 874, 669 23, 569, 998

âllglueRefg2···g4 1, 222, 207, 756 2, 236, 879, 374 76, 386, 941 139, 802, 828

mr 9.47% 9.00% 28.90% 27.38%

mrBF 1.90% 1.91% 10.74% 10.52%

Overall, Bloom filters lead to a reduction in the cache size and in the miss
ratio, both determined by the singleton ratio (SFAll). As this ratio tends to zero
the Bloom filter effect diminishes progressively.

4.3 n-gram Cache with Static Prefetching

Whenever one can identify the set of distinct n-grams in a corpus and their
frequencies in a 1st phase, one can anticipate their fetching into the n-gram cache
before the execution starts in a 2nd phase. The Fixed Frequency Accumulation

84 C. Goncalves et al.

Set (FAset) FA for ensuring a static hit ratio hS (n, FA) is the minimal subset
of distinct n-grams of a given size n, whose cumulative sum of frequencies is a
percentage of the number of occurrences of the n-grams of size n:

hS (n, FA) =

∑

ng∈F A

freqinCorpus (ng)

|SetAlln | (11)

where ng is a distinct n-gram within the FAset and freqinCorpus (ng) is its
frequency in the corpus C; and |SetAlln | = |C| − (n − 1) for n ≥ 1. When
applying this concept to an n-gram cache one must consider, as the denominator
of Eq. (11), the set of cache input references allglueRefn−gram instead of the set
SetAlln . For glue g2 of the 2-grams in the D2 table, LocalMaxs requires access
to all the subunigram occurrences (in a total of allg2Ref1−gram = 2×|D2|). The
FAset to be loaded in cache C1 is the subset of the elements in the set D1inD2

(Sect. 2) whose accumulated sum of frequencies of occurrences within the 2-
grams of the D2 table ensures a desired static hit ratio (hSC1

) for the 1-grams
cache. For a combined glue, e.g. g234, using caches C1, C2 and C3 (1-grams, ..., 3-
grams), let freqin allg234Refi−gram

(ng) (1 ≤ i ≤ 3) be the frequency of a distinct
n-gram ng occurring in the set of cache input references allg234Refi−gram

. To
ensure a target static hit ratio hS (or miss ratio mrS) the FAset must enforce the
following proportion of hits (nbrHits) wrt the total number of cache references
(|allg234Ref | =

∑3
i=1 allg234Refi−gram

, for glue g234):

hS =
nbrHits

|allglueRef | =

∑3
i=1

∑

ng∈FAset

freqin allg234Refi−gram
(ng)

|allg234Ref | = 1 − mrS (12)

Options for selecting the distinct n-grams for the FAset are: (i) All the dis-
tinct n-grams; (ii) Only the nonsingletons; (iii) A subset of the distinct n-grams.
Option (i) seems the best but there is no need to include the singletons, which
suggests option (ii). If there is not enough memory for all the nonsingletons
in the cache, option (iii) must be taken ensuring the maximum number of hits
per n-gram, under the existing memory constraints [17]. The LocalMaxs work-
flow (Fig. 1a) allows to completely calculate the FAsets for each n-gram size in
phase one, overlapped with the n-gram counting, using dedicated threads. As
the machine allocation to LocalMaxs tasks in all phases is made before execu-
tion starts, one can also prefetch the FAsets into the corresponding machines in
phase one. Thus the FAset calculation and prefetching times are hidden from the
total execution time, as far as the additional thread overheads are kept small.
In option (ii), by prefetching all distinct nonsingletons completely in phase one,
the nonsingleton miss overheads in phase two are eliminated, leading to a 0%
overall miss ratio.

Multiple Machines Case (K > 1). The FAset size per machine decreases
with K as the number of distinct sub n-grams per machine [17]. But, unlike the
dynamic on-demand cache, the miss ratio with static prefetching can be kept
constant wrt K by adjusting the per machine FAset according to the number

n-gram Cache Performance in Statistical Extraction of Relevant Terms 85

of machines, e.g., for a 0% miss ratio, all the nonsingletons in the per machine
distinct n-gram tables must be always included in the local FAset.

Experimental Results. We compared the communication and glue calculation
times of static prefetching of all nonsingletons versus on-demand caching. In each
machine (j), phase two takes a total time T2 (j) consisting of time components
for: input Tinput (j); local glue calculation TGlue (j); sub n-gram fetch Tcomm (j);
glue output Toutput (j). The input/output consists of local machine interactions
between the co-located server and controller (Fig. 1b), being the same in both
cache cases. Table 3 shows the communication and glue times of g234 (machine
average), for two corpus sizes, in LocalMaxs phase two [9,17] in a public cloud
[25] with 16 machines (each 64 GB RAM, 4 vCPU@1.5 GHz).

Table 3. Glue and communication times (min:sec)K = 16: Dynamic vs. Static cache

T̂comm + T̂Glue T̂RemoteFetch

|C| = 205Mw 07:20 | 01:41 05:30 |
|C| = 409Mw 14:21 | 03:27 11:00 |

T̂comm includes the per machine times for n-gram cache fetch: local access
and remote (T̂RemoteFecth). T̂Glue is the local per machine glue calculation time.
For the static prefetching cache T̂RemoteFecth is zero. The cache static prefetching
time of the nonsingletons is accounted for in phase one, overlapped with counting.

4.4 Cache Alternatives

For glue g2···6 and three corpus sizes, Table 4 shows the cache miss ratio
and size, and the efficiency of the glue calculation (values shown as triples
{(mr); (Size); (E)}) for a single machine. This efficiency (with K = 1) reflects
the ratio of the communication overheads suffered by a single real machine ver-
sus an ideal machine, i.e., E = T0/T1. Miss ratio and size are analyzed first,
followed by the efficiency.

Cache Miss Ratio and Size. These values result from the model predictions
of the numbers of distinct n-grams and singletons (Sect. 3). The values for the 8
Mw and 1 Gw corpora agree with the empirical data from real English corpora
[6]. The first line shows miss ratio and size expressions. Remaining lines show: (i)
For the on-demand cache, its miss ratio (cache system C1, ..., C5), from 11.06% in
the 8 Mw corpus to 2.11% in the 1 Tw corpus, and its size (the number of distinct
n-grams) – Sect. 4.1; (ii) For the dynamic cache with Bloom filter, its miss ratio,
from 0.76% in the 8 Mw corpus to 2.08% in the 1 Tw corpus (where the singletons
have practically disappeared, Fig. 2b), and its size (the number of nonsingletons) –
Sect. 4.2; (iii) For the static prefetching case of the FAset filled with all the nons-
ingletons – Sect. 4.3, the miss ratios of 43.3%, 27.7% and 0.04%, respectively, for
the 8 Mw, 1 Gw and 1 Tw corpora, are due to the singleton misses, not involving
any fetching overhead, leading to a miss ratio of 0%.

86 C. Goncalves et al.

Table 4. Cache alternatives (K = 1, g2···6) — Miss ratio, Cache size (number of
n-grams in units of M = 106 or G = 109), Efficiency

Corpus size Dynamic

(mr %); (Size); (E %)

Dynamic with Bloom filter

(mr %); (Size); (E %)

Static

(mr %); (Size); (E %)

Generic

(
DAll
allg

)
; (DAll) ; (ED)

(
NSAll

allg

)
; (NSAll) ; (EBF) (mrS) ; (|FAset|) ; (ES)

Small (8 Mw) (11.06) ; (23M) ; (6) (0.76) ; (1.6M) ; (49)
(
0�)

; (1.6M) ; (100)

Large (1 Gw) (9.02) ; (1.8G) ; (7) (1.32) ; (0.27G) ; (34)
(
0��)

; (0.27G) ; (100)

Very large (1 Tw) (2.11) ; (65G) ; (20) (2.08) ; (64G) ; (20)
(
0���)

; (64G) ; (100)

DAll=
∣∣∣DAllinC

∣∣∣; SAll ≡
∣∣∣SAllinC

∣∣∣; allg ≡
∣∣∣allg2···6Ref

∣∣∣
|FAset| =

∣∣∣DAllinC

∣∣∣ −
∣∣∣SAllinC

∣∣∣ =
∣∣∣NSAllinC

∣∣∣ =⇒ (
43.3% → 0�)

,
(
27.7% → 0��)

,
(
0.04% → 0���)

Efficiency. The glue efficiency E, for K ≥ 1 wrt the glue computation in an
ideal (no overheads) sequential machine (T0 =

(∑6
i=2 |Di|

)
× tglue, for g2···6), is:

E =
T0

K × T̂
=

T0

K ×
(

T0
K + T̂comm

) =
1

1 + 1
G

=
1

1 + allg2···6Ref∑6
i=2|Di| × tfetch

tglue
× mr

(13)
where tglue is the per n-gram local glue time; T̂ is the per machine execu-
tion time; T̂comm = (allg2···6Ref/K) × tfetch × mr is the per machine n-gram
misses communication time; tfetch is the per n-gram remote fetch time; and
G = (T0/K) /T̂comm is the computation-to-communication granularity ratio,
which includes: (i) the algorithm-dependent term fa =

(∑6
i=2 |Di|

)
/allg2···6Ref ,

i.e. the number of glue operations per memory reference, being approximately
constant with the corpus size, for each glue, e.g., around 0.10 for g2···6; (ii)
the measured implementation-dependent ratio fi = tfetch

tglue
≈ 20, staying almost

constant wrt the corpus size and number of machines used (1 ↔ 48); (iii)
and 1/mr. Thus, in LocalMaxs G = fa×fi

mr ≈ 0.10/20
mr = 0.005

mr . For example,
E ≥ 90% =⇒ G ≥ 10 =⇒ mr ≤ 0.05%, which can only be achieved by a
static prefetching cache (Sect. 4.3). Indeed Table 4 shows that for the on-demand
cache the efficiency values are very low, even with Bloom filters where E ≤ 50%
always. In general, other methods, exhibiting higher values of the algorithm-
dependent term fa, will require less demanding (i.e., higher) miss ratio values:
e.g., if the fa term is around 100, then mr = 50% would be sufficient to ensure
E = 90%.

5 Conclusions and Future Work

We found out that for the statistical extraction method LocalMaxs the miss
ratio of a dynamic on-demand n-gram cache is lower bounded by the propor-
tion of distinct n-grams in a corpus. The proportion of distinct n-grams wrt
the total number of cache references, i.e. the miss ratio, decreases monotonically
with the corpus size tending to an asymptotic plateau, e.g., ranging from 11%

n-gram Cache Performance in Statistical Extraction of Relevant Terms 87

(for the smaller corpora) to 1.5% (in the plateaux region) for English corpora
when considering a single machine. However, these miss ratio values imply very
low efficiency of the glue calculation wrt an ideal sequential machine, from 6%
to 26%. This is due to the significant amount of cold-start n-gram misses needed
to fill up the n-gram cache with the frequencies of all distinct n-grams. To over-
come these limitations we have shown that Bloom filters or static prefetching
can significantly improve on the cache miss ratio and size. Bloom filters benefits
were found related to the distribution of the singletons along the entire corpus
size spectrum. By extending a previously proposed theoretical model [5], we
found out that the number of singletons first increases with the corpus size until
a maximum and then it decreases gradually, tending to zero as the singletons
disappear for very large corpora, e.g., in the Tw region for the English corpora.
This behavior of the singletons determines the effectiveness of the Bloom filters
which achieve a reduction of the miss ratio, namely, to the range from 1% (for
the smaller corpora) to 1.5% (in the plateaux region) for English corpora for a
single machine. However, the corresponding efficiency is still low, always below
49%. Hence, using an n-gram cache with static prefetching of the nonsingle-
tons is of utmost importance for higher efficiency. We have shown that, in a
multiphase method like LocalMaxs where it is possible during a 1st phase (in
overlap with the n-gram frequency counting), to anticipate and prefetch the set
of n-grams needed, then one can ensure a 0% miss ratio in a 2nd phase for glue
calculation, leading to 100% efficiency. For a static prefetching cache (sec. 4.3),
it is possible, by design, to keep a constant miss ratio, leading to a constant effi-
ciency wrt the number of machines. The above improvements were implemented
within the LocalMaxs parallel and distributed architecture (Sect. 2), experimen-
tally validated for corpora up to 1 Gw. Although this study was conducted in
the context of LocalMaxs, the main achievements apply to other statistical mul-
tiphase methods accessing large scale n-gram statistical data, thus potentially
benefiting from an n-gram cache. For corpora beyond 1 Gw we conjecture that
the global behavior of the n-gram distribution, as predicted, remains essentially
valid, as the model relies on the plausible hypothesis of a finite n-gram vocabu-
lary for each language and n-gram size, at each temporal epoch. We will proceed
with this experimentation for corpora beyond 1 Gw, although fully uncut huge
Tw (1012 words) corpora are not easily available yet [26].

References

1. Google Ngram Viewer. https://books.google.com/ngrams
2. Lin, D., et al.: New tools for web-scale n-grams. In: LREC (2010)
3. da Silva, J.F., Dias, G., Guilloré, S., Pereira Lopes, J.G.: Using LocalMaxs algo-

rithm for the extraction of contiguous and non-contiguous multiword lexical units.
In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp.
113–132. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48159-1 9

4. da Silva, J.F., et al.: A local maxima method and a fair dispersion normalization for
extracting multiword units. In: Proceedings of the 6th Meeting on the Mathematics
of Language, pp. 369–381 (1999)

https://books.google.com/ngrams
https://doi.org/10.1007/3-540-48159-1_9

88 C. Goncalves et al.

5. da Silva, J.F., et al.: A theoretical model for n-gram distribution in big data cor-
pora. In: IEEE International Conference on Big Data, pp. 134–141 (2016)

6. Parallel LocalMaxs. http://cjsg.ddns.net/∼cajo/phd/
7. Arroyuelo, D., et al.: Distributed text search using suffix arrays. Parallel Comput.

40(9), 471–495 (2014)
8. Goncalves, C., et al.: A parallel algorithm for statistical multiword term extrac-

tion from very large corpora. In: IEEE 17th International Conference on High
Performance Computing and Communications, pp. 219–224 (2015)

9. Goncalves, C., et al.: An n-gram cache for large-scale parallel extraction of multi-
word relevant expressions with LocalMaxs. In: IEEE 12th International Conference
on e-Science, pp. 120–129. IEEE Computer Society (2016)

10. Bloom, B.H.: Space/Time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

11. Daille, B.: Study and implementation of combined techniques for automatic extrac-
tion of terminology. In: The Balancing Act: Combining Symbolic and Statistical
Approaches to Language. MIT Press (1996)

12. Velardi, P., et al.: Mining the web to create specialized glossaries. IEEE Intell.
Syst. 23(5), 18–25 (2008)

13. Pearce, D.: A comparative evaluation of collocation extraction techniques. In: 3rd
International Conference on Language Resources and Evaluation (2002)

14. Church, K.W., et al.: Word association norms, mutual information, and lexicogra-
phy. Comput. Linguist. 16, 22–29 (1990)

15. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Com-
put. Linguist. 19, 61–74 (1993)

16. Church, K.W., et al.: Concordance for parallel texts. In: 7th Annual Conference
for the new OED and Text Research, pp. 40–62 (1991)

17. Goncalves, C.: Parallel and distributed statistical-based extraction of relevant mul-
tiwords from large corpora. Ph.D. dissertation, FCT/UNL (2017)

18. Zipf, G.K.: The Psychobiology of Language: An Introduction to Dynamic Philol-
ogy. MIT Press, Cambridge (1935)

19. Mandelbrot, B.B.: On the theory of word frequencies and on related Markovian
models of discourse. In: Structures of Language and its Mathematical Aspects, vol.
12, pp. 134–141. American Mathematical Society (1961)

20. Kuhn, R.: Speech recognition and the frequency of recently used words: a modified
Markov model for natural language. In: Proceedings of the 12th Conference on
Computational Linguistics, COLING 1988, vol. 1, pp. 348–350. ACM (1988)

21. Breslau, L., et al.: Web caching and Zipf-like distributions: evidence and implica-
tions. In: Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 1999, vol. 1, pp. 126–134, March 1999

22. Baeza-Yates, R., et al.: The impact of caching on search engines. In: Proceed-
ings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2007, pp. 183–190. ACM (2007)

23. Yang, Q., et al.: Web-log mining for predictive web caching. IEEE Trans. Knowl.
Data Eng. 15(4), 1050–1053 (2003)

24. Balkir, A.S., et al.: A distributed look-up architecture for text mining applications
using MapReduce. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–11 (2011)

25. Luna Cloud. http://www.lunacloud.com
26. Brants, T., et al.: Large language models in machine translation. In: Proceedings

of the Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pp. 858–867 (2007)

http://cjsg.ddns.net/~cajo/phd/
http://www.lunacloud.com

	n-gram Cache Performance in Statistical Extraction of Relevant Terms in Large Corpora
	1 Introduction
	2 Background
	3 A Theoretical Model for n-gram Distribution
	4 n-gram Cache System
	4.1 Dynamic On-Demand n-gram Cache
	4.2 Bloom Filters for Singletons in an On-Demand n-gram Cache
	4.3 n-gram Cache with Static Prefetching
	4.4 Cache Alternatives

	5 Conclusions and Future Work
	References

