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Abstract. The Tolerance Near Set theory - is a formal basis for the observation,
comparison and classification of objects, and tolerance Nearness Measure
(tNM) is a normalized value, that indicates how much two images are similar.
This paper aims to present an application of the algorithm that performs the
comparison of images based on the value of tNM, so that the similarities
between the images are verified with respect to their characteristics, such as
Gray Levels and texture attributes extracted using Gray Level Co-occurrence
Matrix (GLCM). Images of the center of some selected cities around the world,
are compared using tNM, and classified.

Keywords: tNM � Near Sets � tolerance Near Sets � Gray level �
Statistical attributes

1 Introduction

The image processing is complex, and in some cases the human eyes can not identify
image details. The attribute extraction task to compare two images, is inherent to the
Near Sets theory [1]. Generally, each image has its attributes that can be used for
classification, and the computational algorithms are indispensable to extract those
attributes, for classification. The Near Sets (NS), and the tolerance Near Sets (TNS), are
theories that provide the formal basis for observation, comparisons, and classification
of objects, using n-dimensional attribute vectors [2]. Using these theories, the tolerance
Nearness Measure (tNM) can be obtained considering two images.

The TNS have been applied in many areas, and shows to be very promising, in
image analysis, comparing gray level values of pixels, or texture attributes. This paper
refers to the tNM implementation to obtain the similarity index between two images.
The tNM implementation has an advantage, such as the possibility of using parallel
processing, during the tolerance classification of image objects or subimages [3]. To
obtain the texture attributes from images, Gray-Level Co-occurrence Matrix (GLCM) is
used [4].
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The rest of this paper is organized as follows. At Sect. 2, the mathematical
description of NS, TNS, and tNM, is presented; followed by Sect. 3, of tNM imple-
mentation. The Sect. 4 is referred to the applications and results; and the Sect. 5,
conclusions and future works.

2 NS, TNS, tNM

Perceptive objects are objects that can be detected by humans. Perceptive systems are
referred to the perceptive objects associated with a set of probe functions that describes
these objects, and is formally defined as follows.

Definition 1: A perceptive system O;Fð Þ consists of a nonempty set O of perceptive
objects, and a nonempty set F, of real valued functions U, such that:
U 2 F jU : O ! R.

2.1 Object Description

If O;Fð Þ is a perceptive system, and B�F is a set of probe functions, a description of a
perceptual object is obtained by a vector, such as of Eq. (1):

UB xð Þ ¼ U1 xð Þ;U2 xð Þ; . . .;Ui xð Þ; . . .;Ul xð Þð Þ; ð1Þ

where: l is the dimension of the vector UB, and each Ui xð Þ is a probe function.
Then considering a perceptive system O;Fð Þ, and B a subset of F B�Fð Þ, O is a set

of objects with its characteristics described by vector UB.
An important definition related to NS is the indiscernibility relation, which results

in the classification of objects in equivalence classes [2], so that the properties of
reflectivity, symmetry, and transitivity are satisfied by all the objects in a class. The
equivalence relation, in a given set A, is satisfied if, 8 a 2 A; aRa, (reflectivity);
8 a; b 2 A, if aRb then bRa (symmetry); 8 a; b; c 2 A; if aRb and bRc then aRc
(transitivity). It follows the definition of the indiscernibility relation.

2.2 Perceptual Indiscernibility Relation

Definition 2: Let O;Fð Þ be a perceptual system. For each B�F, the perceptual
indiscernibility relation � B is defined as Eq. (2):

� B ¼ x; yð ÞO� O : 8Ui 2 B :Ui xð Þ ¼ Ui yð Þf g; ð2Þ

meaning that, two perceptual objects x and y, are indiscernibly related if they have the
same value for all probe functions of B.

This perceptual indiscernibility relation is a modification of the relation described
by Pawlak [5], in his rough set theory, provided that in NS, it is always considered a
pair of sets that are close each other.
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2.3 Weak Perceptual Indiscernibility Relation

Definition 3: Let O; Fð Þ be a perceptual system, and X; Y �O. The set X is weakly
near from the set Y if there are x 2 X ; y 2 Y , and Ui 2 F, such that x ’B y, as
defined in Eq. (3) of the relation of weak perceptual indiscernibility relation, ’B:

ð3Þ

The previous definitions are related to the NS theory, and as its improvement,
applying tolerance to measure the relation between perceptual objects, tolerance NS
was proposed, as follows.

2.4 Tolerance Near Sets

TNS is characterized by the tolerance relation between the perceptual objects, so that it
can be defined as follows.

Definition 4: Let O; Fð Þ be a perceptual system. For B � F, the perceptual tolerance
relation ffiB;� is defined by Eq. (4), where the L2 norm is denoted by “k : k”.

ffiB;� ¼ f x; yð ÞO � O : k U xð Þ � U yð Þ k2 � eg; ð4Þ

The great difference between NS and TNS is that the objects in TNS classes are
subjected to reflectivity, and symmetry, but not to transitivity, properties.

It is stated that the tolerance concept is inherent to the idea of proximity between
objects [6], such that it is possible to identify image segments that are similar, each
other, with a tolerable difference between them. In TNS, these images are considered in
the same classes. If two image segments are similar, with tolerance, the TNS classi-
fication can result in two different classes, when two image segments are similar to a
third image segment, but not similar, from each other, and in consequence, the tran-
sitivity property can not be satisfied to all objets.

Given the perceptual tolerance relation definition, it is possible to observe that the
transitivity property can not be present to all perceptual objects in TNS. Another
characteristic of TNS is the use of a tolerance value e, that is the threshold value of the
distance between perceptual objects, such that if the distance is below or equal this
value, they are considered in the same class.

According to Poli et al. [6], the basic structure of TNS, in the case of images used
as perceptual objects, is consisted of a nonempty set of images, and a finite set of probe
functions. Each object description consists of several measurements obtained by image
processing techniques. TNS provides a quantitative approach, by the use of these
measurements, as probe functions, and the threshold value e, to determine the similarity
of objects, without the claim for the objects to be exactly the same [3].

2.5 Tolerance Nearness Measure

The tNM was introduced by Henry and Peters [3], from the necessity to determine the
degree of similarity between objects, during the application of NS, in content based
image retrieval.
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Definition 5: Considering O; Fð Þ, a perceptual system, with two disjunct sets X and Y,
such that, Z = X[ Y, the similarity measure tNMffiB;e X;Yð Þ, between X and Y, can be
resumed as Eq. (5):

tNMffiB;e X; Yð Þ ¼
X

C2HffiBe Zð Þ Cj j
� ��1

�
X

C2HffiB;e Zð Þ Cj j minðjC \Xj; C \ Yj jÞ
maxðjC \Xj; C \ Yj jÞ ð5Þ

with C denoting a TNS class, and H, the set of all classes in Z.
Equation (5) has as the first term of the product, the inverse of the addition of the

modulus of all classes in Z. The second term, is the addition to all classes in H, of the
ratio between minimum and maximum intersection, of the class C with X and Y,
multiplied by the modulus of C.

3 Methodology of tNM Implementation

In this section, the TNS classification algorithm and tNM implementation are described.

3.1 TNS Classification

The TNS classification algorithm in a perceptive system (O, F), with B�F, a set of
probe functions, and a set of n objects , is described as the following Algorithm 1.
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3.2 tNM Algorithm

Basically, the algorithm to compute tNM, starts with the input of two images X, and Y,
and two approaches can be selected. The first one, denoted GL, uses the gray level of
pixels as probe functions. In this case, the tolerance represents the quantity of different
gray levels considered in the same class. If only one gray level is considered in the
same class, the tolerance is zero. The objects in this approach are the pixels of the
images. The second approach, denoted SA, divides the image in subimages, which
become objects of the perceptual system. Then, statistical attributes of each subimage
are obtained using Gray Level Co-occurrence Matrix, GLCM, which describes the
occurrence of patterns of pixel pairs in the image [4].

After computation of GLCM, statistical attributes such as correlation, energy,
contrast and homogeneity, can be obtained. These attributes are considered as probe
functions, and they can be used to compute the Euclidean distance of the pair of
subimages. Two subimages with distance below or equal the tolerance e, are included
in the same class, applying Algorithm 1.

Algorithm 2 corresponds to the tNM computation, dividing each input image in
n subimages. At the step (1), the variable K is initialized with zero. Then, at (2) both
input images are divided into n subimages each. In the case of GL approach, a
subimage is a pixel. In (3) the attributes for each subimage are computed, for the probe
function vector. Then, in (4), the subimages are classified using the TNS classification
Algorithm 1. After these four steps, the computation of tNM is started. For each class
Ci obtained previously, the ratio of the minimum intersection between input images and
all objects in a class, i.e., min X \ Ci;Y \ Ci

� �
, and the maximum intersection

between the same sets, i.e., max X \ Ci;Y \ Ci
� �

, are computed, at step (5). At step
(6) the previously obtained ratio is multiplied by the modulus of the class, Cij j, and at
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(7) the obtained product is accumulated in K. These three steps are repeated until all
classes are computed. Then, at step (8), the final value of K is divided by the modulus
X \ Yj j, resulting in tNM value.

4 Application and Results

The relevance of the city comparison is confirmed by recent articles, such as Dom-
ingues et al. [7], that described the previous studies about city structures using complex
networks, contributing for the understanding and improvements in transit systems,
growth, and planning of the cities. In this paper it is described the application of tNM in
downtown images, considering aspects related to the satellite image textures, and gray
level, indicating how much each city is similar to the other cities, in aspects, such as
structures, paving, and vegetation.

The tNM System was developed in Python, and in this section, it is first described
experiments for parameter determination in city image pair tNM computation. After
that, an experiment of classification of 26 cities around the world is described.

4.1 Determination of Parameters

To determine the values of parameters such as tolerance, and subimage size, in both
approaches, an experiment of tNM applied to two city images, with 600 � 600 pixels,
of Mexico City and Frankfurt, were realized. The images were obtained from Google
Maps, Fig. 1.

The first tNM measure in GL approach, used the tolerance of 1% or 25 gray levels
in a class, the number of generated classes was 10, execution time, 10 s, and tNM of
0.747. The second tNM measure in GL approach, used the tolerance of 50% or 124
gray levels in a class. The number of generated classes was 2, execution time, 5 s, and
tNM of 0.816.

Fig. 1. Pair of city images. (a) Mexico City. (b) Frankfurt.
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The first tNM measure in SA approach, used the tolerance of 0.9. The dimension of
a subimage was 10 � 10, then 7,200 subimages were generated, classified in two
classes, and execution time of 10 min, resulting in tNM of 0.999. In this case the value
of tNM does not indicate the high similarity between two images, but the low reso-
lution of tNM, with this high value of tolerance.

In the second tNM measure, SA approach, it was used the tolerance of 0.5. The
dimension of a subimage was 10 � 10, then 7,200 subimages were generated, classified
in four classes, and execution time of 10 min, resulting in tNM of 0.991. In this case
the value of tNM was close to the previous experiment, indicating the same high degree
of generalization of the compared images.

In the next experiment with SA approach, it was used the tolerance of 0.1. The
dimension of subimage was 10 � 10, and 7,200 subimages were also generated,
classified in 28 classes. The execution time remained the same, resulting in tNM of
0.661. This value seems realistic considering the two images.

Figure 2 illustrates how tNM varied with the tolerance in SA approach, using the
pair of images of Fig. 1. If the tolerance is 0.01, tNM is near zero. When tolerance is
0.10, tNM is near 0.5, and when tolerance is above 0.65, tNM value is near 1, showing
generalization. This figure indicates that the tolerance value suitable to the experiments
in SA approach can be defined as 0.1.

4.2 Comparing City Images

In the following experiment, it was compared several images of cities around the world,
Table 1.

The images were obtained from Google Maps, and the cities were chosen by their
population density, and localization, around the different continents. Then, 26 images,

Tolerance

0.01 0.05 0.10 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.91 0.93 0.95

tNM

Fig. 2. Graphic of tNM, varying with tolerance, in SA approach.
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6 from the America continent; and 5 from each other continents, Europe, Asia, Africa,
and Oceanian. In this experiment, the images were fixed to 256 � 256 pixels, and a
tolerance of 10% was used for GL approach, and 0.1 for SA.

4.3 Highest and Lowest Values of tNM Obtained Comparing City Images

In Table 2, it is shown the top thirty highest tNM values obtained when comparing the
considered cities around the world, using GL approach. The highest value of tNM,
0.950, was obtained between Regina and Edmonton, both from Canada, in American
Continent. The images of these two cities are showed in Fig. 3(a) and (b), respectively.
In Table 3, it is shown the thirty highest tNM values, obtained, when it was used the
SA approach, and in this case the highest tNM value, 0.936, was obtained comparing
Regina and Pointe Noire, from American and African Continents, respectively. The
image of Pointe Noire city is shown in Fig. 3(c). The tNM value between Regina and
Edmonton in SA approach, was of 0.647, not so high, showing the difference between
GL an SA approach; and the tNM value between Regina and Pointe Noire in GL
approach was of 0.831.

Table 1. Cities around the continents
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Table 2. Highest tNM values obtained in GL approach.

City 1 City 2 tNM City 1 City 2 tNM

Regina Edmonton 0.950 Adelaide Canberra 0.919
Mexico City Pointe-Noire 0.944 Lisbon Astana 0.917
Matola Nav Mumbai 0.943 Manitoba Astana 0.913
Edmonton Lisboa 0.942 Campo Grande Canberra 0.912
Palermo Adelaide 0.938 Naples Adelaide 0.911
Regina Naples 0.935 Porto Said Newcastle 0.910
Frankfurt Monrovia 0.931 Kathmandu Adelaide 0.909
Mexico City Canberra 0.928 Kathmandu Canberra 0.909
Naples Palermo 0.927 Astana GoldCoast 0.909
Edmonton Naples 0.924 Regina Lisbon 0.909
Pointe-Noire Canberra 0.924 Lisbon Naples 0.905
Edmonton Astana 0.922 Cuiaba Lisbon 0.903
Lisbon Gold Coast 0.921 Pointe-Noire Adelaide 0.902
Campo Grande Pointe-Noire 0.921 Abobo Porto Said 0.900
Campo Grande Mexico City 0.921 Palermo Pointe-Noire 0.900

Table 3. Highest tNM values obtained in SA approach.

City 1 City 2 tNM City 1 City2 tNM

Regina Pointe-Noire 0.936 Palermo Astana 0.883
Regina Gold Coast 0.936 Lyon Porto Said 0.880 
Lisbon Naples 0.936 Winnipeg Wellington 0.878
Pointe-Noire Gold Coast 0.927 Edmonton Lisbon 0.877
Naples Lyon 0.922 Campo Grande Astana 0.877
Edmonton Naples 0.918 Abobo Kathmandu 0.874
Campo Grande Palermo 0.914 Cuiabá Campo Grande 0.873
Monrovia Newcastle 0.911 Winnipeg Palermo 0.871
Winnipeg Gold Coast 0.911 Frankfurt Niigata 0.869
Winnipeg Regina 0.902 Mexico City Porto Said 0.867
Sakai Newcastle 0.902 Naples Sakai 0.866
Winnipeg Pointe-Noire 0.896 Gold Coast Wellington 0.863
Frankfurt Adelaide 0.893 Palermo Pointe-Noire 0.862
Cuiabá Winnipeg 0.890 Porto Said Adelaide 0.861
Edmonton Lyon 0.886 Campo Grande Winnipeg 0.859
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In Fig. 4 it is showed the tNM obtained when Regina is compared with all other
cities considered in this experiment, using both approaches, where the highest tNM in
GL and AE are highlighted. It is also observed that the tNM values in both approach
are not close in most cities, but the behavior of these values are quite similar, showing
the difference between GL and statistical approaches.

In Table 4, it is shown the five lowest tNM values obtained, in GL approach, and
the lowest value, 0.349, was obtained comparing Monrovia and Newcastle. In SA
approach, the value of 0.911, was obtained between these two cities, showing that in
SA approach, both cities are very similar, because the gray level is not considered, as
can be seen in the images shown in Figs. 5(a) and (b), respectively.

(a) Regina (b) Edmonton (c) Pointe Noire

Fig. 3. City images: (a) Regina, (b) Edmonton, (c) Pointe Noire, with highest tNM values for
GL approach (Regina x Edmonton); and for AS approach (Regina x Pointe Noire).
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Fig. 4. tNM values for GL and AS, obtained when Regina is computed with all the other cities
considered, showing the highest value in both approaches.
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In Fig. 6, it is shown the graph of tNM between Monrovia and all other cities
considered in the experiment, highlighting the lowest GL value.

Table 4. Five lowest tNM values in GL approach.

City 1 City 2 tNM

Frankfurt Porto Said 0.402
Monrovia Abobo 0.396
Frankfurt Newcastle 0.388
Monrovia Porto Said 0.362
Monrovia Newcastle 0.349

(a) Monrovia (b) Newcastle

Fig. 5. City images: (a) Monrovia, (b) Newcastle, with lowest tNM values for GL approach.
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In Table 5, it is shown the five lowest tNM values obtained, in SA approach, and
the lowest value, 0.062, was obtained comparing Matola and Canberra, from African
and Australian Continents, respectively. It is noted that the tNM between these two
cities in GL approach was of 0.802, not so low value such as in AS approach. The
images of these two cities are shown in Figs. 7(a) and (b), respectively.

Table 5. Five lowest tNM values obtained in SA approach.

City 1 City 2 tNM

Cuiaba Camberra 0.154
Astana Camberra 0.129
Catmandu Camberra 0.126
Abobo Camberra 0.125
Matola Camberra 0.062

(a) Matola (b) Camberra

Fig. 7. City images: (a) Matola, (b) Canberra, with lowest tNM values for SA approach.
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Fig. 8. tNM values for GL and SA, obtained when Matola is computed with all the other cities
considered, showing the lowest SA value.
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In Fig. 8, it is shown the graph of tNM between Matola and all other cities con-
sidered in the experiment, highlighting the lowest GL value. It can be noted that in this
case almost all GL values was above SA values, showing that the gray levels of the
images were similar to Matola image, although the statistical attributes were different.

4.4 City Image Classification

In Tables 6 and 7, it is showed the TNS classification of the city images, using tNM
results. If tNM is a measure of similarity, and in Algorithm 1 it is used the distance
from the objects compared with a tolerance e, it was defined a tNM distance, denoted
dtNM, obtained as Eq. (6):

dtNM ¼ 1�tNMð Þ ð6Þ

Using dtNM, with tNM values obtained for GL approach, it was generated the
classes shown in Table 6; and for SA approach, in Table 7.

It is noted that in these classifications, one city can be present in different classes,
because of TNS classes are not equivalent classes. One class that Regina, Edmonton,
and Pointe Noire cities are present is the Class 14, in Table 6. These cities showed the
highest tNM in GL and SA approaches, as showed in Fig. 4. The Monrovia city is
alone in Class 19, since it has the lowest GL tNM, as showed in Fig. 6. In SA, Regina
is present in several classes with Pointe Noire, the highest value of tNM, such as: Class
6, Class 10, and Class 12, but Edmonton, is not present in these classes, although
Regina and Edmonton had the highest GL value of tNM. Canberra that had the lowest
SA value of tNM, is alone in SA class 8.

Table 6. Classes in GL approach.

Classes Cities

Class 1 Abobo Newcastle Porto Said

Class 2 Abobo Astana Cuiaba Edmonton Lisbon

Class 3 Adelaide Canberra Campo Grande Kathmandu Mexico City Lyon

Class 4 Adelaide Canberra Campo Grande Kathmandu Mexico City Naples Palermo

Class 5 Adelaide Canberra Campo Grande Kathmandu Naples Palermo Pointe Noire

Class 6 Adelaide Lisbon Pointe Noire Regina

Class 7 Adelaide Lyon Sakai

Class 8 Adelaide Canberra Kathmandu Naples Palermo Pointe Noire Regina

Class 9 Adelaide Canberra Kathmandu Naples Palermo Sakai

Class 10 Astana Cuiaba Edmonton Gold Coast Lisbon Manitoba Naples Regina

Class 11 Astana Cuiaba Edmonton Gold Coast Lisbon Naples Palermo Regina

Class 12 Astana Cuiaba Manitoba Porto Said

Class 13 Canberra Campo Grande Matola Nav Mumbay Point Noire

Class 14 Canberra Edmonton Naples Palermo Pointe Noire Regina

Class 15 Mexico City Matola Nav Mumbay

Class 16 Edmonton Gold Coast Lisbon Naples Palermo Pointe Noire Regina

Class 17 Gold Coast Wellington

Class 18 Niigata Sakai

Class 19 Monrovia
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4.5 Average tNM Between Continents

In Table 8, it is illustrated the average values and standard deviation of tNM calculated
between cities of the same continent, in the GL approach. It can be noted that the
average tNM value between different continents was close to 0.700, as showed at the
last row, average2, where the corresponding value is the average of the column values,
excluding the average tNM value in the same continent, showed at the diagonal. The
average tNM value in the same continent was above the average value between dif-
ferent continents, only in American Continent, showing that in the other continents the
kind of cities was diversified.

Table 9, corresponds to the average and standard deviation of tNM between cities
of the same continent, in the SA approach. It can be noted that the average tNM value
between different continents was close to 0.600, as showed at the last row, average2. In
this approach, the average tNM value in the same continent was above the average
value between different continents, in majority of the continents, with exception of the
African Continent, in which the average tNM value was 0.630.

Table 7. Classes in SA approach.

Classes Cities

Class 1 Abobo Kathmandu

Class 2 Adelaide Mexico City Frankfurt Porto Said
Class 3 Adelaide Mexico City Lyon Porto Said

Class 4 Adelaide Frankfurt Lyon Porto Said
Class 5 Adelaide Frankfurt Niigata
Class 6 Adelaide Pointe Noire Regina

Class 7 Astana Campo Grande Palermo
Class 8 Canberra

Class 9 Campo Grande Cuiaba Manitoba Pointe Noire
Class 10 Kathmandu Gold Coast Palermo Pointe Noire Regina
Class 11 Mexico City Edmonton Lisbon Lyon Porto Said

Class 12 Cuiaba Gold Coast Manitoba Pointe Noire Palermo Regina Wellington
Class 13 Edmonton Frankfurt Monrovia Newcastle

Class 14 Edmonton Lisbon Lyon Naples Porto Said
Class 15 Frankfurt Monrovia Newcastle Sakai
Class 16 Frankfurt Nav Mumbay

Class 17 Matola
Class 18 Naples Sakai

Class 19 Niigata Sakai
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5 Conclusions

In this work, it was developed two approaches for tNM, in images. The GL approach
considers an object, or subimage, a pixel with its corresponding gray level; and SA
approach considers an object, a subimage with its statistical attributes. The experiments
showed that reasonable tolerance value is 10% for GL approach, and 0.1 for SA. With
these values of tolerance, 26 downtown images of cities around the world, distributed in
five continents, was compared using tNM based distance, dtNM, to classification. The
results showed that the two approaches present in some situations, very different values of
tNM, depending on the gray level of the image inGL approach; and statistical attributes in
SA approach. This can also be explained by the use of tolerance values in GL approach,
and the size of subimage in SA approach. As future works, experiments should be
suggested usingmore than one image from the same cities, to verify how the tNMvaries in
the same city images, varying the tolerance, and subimage size.
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