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Abstract. To increase the reliability of numerical simulations, it is
important to use more reliable models. This study proposes a method to
generate a finite element model that can reproduce observational data
in a target domain. Our proposed method searches parameters to deter-
mine finite element models by combining simulated annealing and finite
element wave propagation analyses. In the optimization, we utilize het-
erogeneous computer resources. The finite element solver, which is the
computationally expensive portion, is computed rapidly using GPU com-
putation. Simultaneously, we generate finite element models using CPU
computation to overlap the computation time of model generation. We
estimate the inner soil structure as an application example. The soil
structure is reproduced from the observed time history of velocity on the
ground surface using our developed optimizer.

Keywords: Heuristic optimization ·
CPU-GPU collaborative computing · CUDA ·
Finite element analysis · Conjugate gradient method

1 Introduction

Numerical simulations with large number of degrees of freedom are becoming fea-
sible due to the development of computation environments. Accordingly, more
reliable models are required to obtain more reliable results for the target domain
with complex structures. This approach has been discussed in various fields
including biomedicine [2,9], and it is also important for the numerical simula-
tion of earthquake disasters. It is rational that we allocate resource and take
countermeasures after detecting an area with potentially substantial damage.
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We can apply numerical simulation for estimating damages. The authors of [10]
found that the geometry of the target domain significantly affects the distribu-
tion of displacement on the ground surface and strain in underground structures.
To undertake well-suited countermeasures, three-dimensional unstructured finite
element analysis is preferred, as it considers complex geometry. This analysis
results in problems with large degrees of freedom because it targets large domains
with high resolution. The computation mentioned above has become more attain-
able due to the development of the computation environment and analysis meth-
ods for CPU-based large-scale systems [5]. However, inner soil structure is not
available with high resolution, which hampers the generation of finite element
models. On the ground surface, [13] is used as elevation data for Japan. With
the advance of sensing technology, it is possible to observe earthquake waves on
many points on the ground surface. It is desirable that we generate a finite ele-
ment model which can reproduce observational data on the ground surface and
conduct analyses using an estimated model. On the other hand, it is difficult to
measure the underground structure with high accuracy and resolution.

One of realistic ways to address this issue is introduction of an optimization
method using observation data on the ground surface for a micro earthquake.
If we can generate many finite element models and conduct wave propagation
analyses for each model, it is possible to select a model which can reproduce
available observation data most closely. Using optimized models will increase
the reliability of the analyses. There are some gradient-based methods for opti-
mization as [12] proposed for three-dimensional crustal structure optimization.
These methods have the advantage that the number of trials is small; how-
ever, they may be difficult to escape from a local solution if control parameters
have low sensitivity to an error function. Thus, this study focuses on heuristic
methods such as simulated annealing so that we can reach the global optimal
solution robustly. The expected optimization requires many forward analyses,
and the challenge is an increase in the computation cost for many analyses with
large number of degrees of freedom.

We use GPUs in this paper. Its hardware and development environment are
rapidly evolving [8]. The computation time can be reduced by using parallel
computation with many GPU cores. However, it is known that GPU compu-
tation requires the consideration of memory access and communication cost to
attain better performance. This paper proposes an algorithm that combines very
fast simulated annealing and wave propagation analyses and repeats generation
of finite element models and the computation of the solver for estimation of
inner soil structure. Some computations in our optimizer are not suitable for
GPU computation. Thus, computer resources are allocated so that we can ben-
efit further from the introduction of GPU computation. A finite element solver
appropriate for GPU computation is proposed to reduce the computation time in
the solver, which is the most computationally expensive part. At the same time,
generation of finite element models, which requires serial operations, is computed
on CPUs so that computation time for model generation can be overlapped. We
confirm that the inner soil structure has a large effect on the results and that
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our proposed method can estimate the soil structure with sufficient accuracy for
damage estimation. Our proposed optimizer is proposed in the following section.
Section 3 describes the estimation of soil structure using our developed optimizer.
Section 4 describes our conclusions and future prospects.

2 Methodology

For estimating the inner structure of the target domain, this study proposes
a method to conduct many wave propagation analyses and accept the inner
structure with its maximum likelihood. In this study, optimization targets the
estimation of boundary surfaces of the domain that has different material prop-
erties. For simplicity and for the purposes of this study, we have assumed that
the target domain has a stratified structure and that target parameters for opti-
mization are an elevation of the boundary surface on control points which are
located at regular intervals in the x and y directions. A boundary surface is gen-
erated in the target domain by interpolating elevation on control points using
linear functions. Figure 1 depicts the scheme for optimization. In this scheme,
we conduct finite element analyses for evaluation of parameters many times in
very fast simulated annealing. Our optimizer is designed so that the generation
of a finite element model and the finite element solver, which account for the
large proportion of the whole computation time, can be computed at the same
time by CPUs and GPUs, respectively. We describe the details for each part of
our optimizer in the following parts.

Fig. 1. Rough scheme for our proposed optimizer for an estimation of soil structure.

2.1 Very Fast Simulated Annealing

Very fast simulated annealing, which is a heuristic optimization method for
problems with many control parameters [7], is applied. Simulated annealing has
a parameter that corresponds to temperature, and the temperature decreases
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as the number of trials increases. We search and evaluate parameters in the
following manner. First, trial parameters are selected randomly based on cur-
rent parameters. The search parameter domain is wider when the temperature
is higher. The evaluation value of trial parameters and that of previous ones
are compared, and if the evaluation value is improved, parameters are always
updated. Even if the evaluation value is worse, parameters are updated with
a high degree of probability while the temperature is high. By repeating this
procedure, this method can move out of the local optimal solution and find
the global optimal solution robustly. To evaluate the parameters, finite element
analysis is conducted. We assume that we have many observation points on the
surface of the target domain. Our error function is defined by the time histories
of displacement in the analyses and observation data on observation points. The
actual error function is defined in Sect. 3.

In very fast simulated annealing, temperature at the k-th trial is defined using
initial temperature T0 and the number of control points D as Tk = T0exp(−ck

1
D ),

where parameter c is defined by T0, D, lowest temperature Tf , and the number
of trials kf as Tf = T0exp(−m), kf = expn, and c = mexp(− n

D ). The initial
temperature, lowest temperature, and number of iterations depend on problems.
A certain number of iterations are conducted for this simulation, though we
can stop searching by other conditions, including acceptance frequency of new
solutions. Also, we don’t use re-annealing method mentioned in [7] because the
cost for computing sensitivity of each parameter to the error function increases
as D increases.

2.2 Finite Element Analyses

In the scheme, we must conduct more than 103 finite element analyses; thus, it
is essential to conduct these analyses in a realistic timeframe. We target linear
wave propagation analyses. Our governing equation is ρ∂2u

∂t2 − ∇ · σ(u) = f
on Ω, where u and f are displacement and force vector, ρ is density, and σ
is strain, respectively. By using Newmark-β method with β = 1/4 and δ = 1/2
for time integration and discretizing the governing equation in space with finite
element method, we can obtain the target equation

(
4

dt2M + 2
dtC + K

)
un =

fn + Cvn−1 + M
(
an−1 + 4

dtvn−1

)
, where v and a are velocity and acceleration

vector, and M, C, and K are mass, damping, and stiffness matrix, respectively.
In addition, dt is the time increment, and n is the number of time steps. For
the damping matrix C, we use Rayleigh damping and compute it by linear
combination as C = αM + βK. Coefficients α and β are set so that

∫ fmax

fmin
(h −

1
2 ( α

2πf +2πfβ))2df is minimized, where fmax, fmin, and h are maximum targeting
frequency, minimum targeting frequency, and damping ratio. Vectors vn and an

can be described as vn = −vn−1 + 2
dt (un − un−1), an = −an−1 − 4

dtvn−1 +
4

dt2 (un−un−1). We obtain displacement vector un by solving the equation above
and updating vectors vn and an. Computation in the finite element solver and
generation of finite element models are most computationally expensive parts in
our optimizer.
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Finite Element Solver. We developed a solver based on our MPI-parallel
solver using conjugate gradient method [5]. The original solver has been devel-
oped for CPU-based supercomputers. The solver combines a conjugate gradient
method with adaptive preconditioning, geometric multigrid method, and mixed
precision arithmetic to reduce the amount of arithmetic counts and data trans-
fer size. In the solver, sparse matrix vector multiplication is computed by the
Element-by-Element (EbE) method. It computes element matrix on-the-fly and
reduces the memory access cost. Specifically, the multiplication y = Ax is com-
puted as y =

∑ne
i=1(Q

(i)T (A(i)(Q(i)x))), where ne is the number of elements
in the domain, Q(i) is a mapping matrix from local node numbers in the i-th
element to the global node numbers, and A(i) is the i-th element matrix and sat-
isfies A =

∑ne
i=1 Q

(i)TA(i)Q(i). In this problem, A(i) = 4
dt2M

(i) + 2
dtC

(i) +K(i).
The entire part of the solver is implemented in the multiple GPUs using CUDA.
To exhibit higher performance using GPUs, we have to reduce the operations
that are not suitable for GPU computation; thus, we modify the algorithm of
the solver.

When we compute EbE kernel in GPU, we assign one thread for one element
and each element adds temporal results per element into the global vector. This
summation can be operated without data race conditions using atomic operation;
however, many random accesses to the global vector in this scheme may decrease
the performance of the kernel. To improve the performance of this part, we use
shared memory as a buffer and reduce the number of data accesses to global
memory. These methods are extension of the finite element solver for crustal
deformation computation by [14].

In addition, we overlap computation and communication as described in [11].
In the domain of each MPI process, some elements are adjacent to domains of
other MPI processes and require point-to-point communications, and others do
not require these communications. First we compute elements that require data
transfer among other GPUs. Next we communicate with other GPUs while we
are computing elements that do not require data transfer. By following this
procedure, it is possible to overlap MPI point-to-point communication in the
solver.

In the conjugate gradient solver, the coefficients are derived from the result of
inner product calculations so that orthogonal residual vector and A-orthogonal
searching vector can be generated to those in the previous iteration, respectively.
When multiple GPUs are used with MPI, calculations of these coefficients require
data transfer and synchronization among MPI processes such as MPI Allreduce.
Thus, they become relatively time-consuming taking into account that other
computations including vector operations and sparse matrix vector multiplica-
tion are accelerated by GPUs. In our solver, we employ the method described
in [1]. This algorithm requires one MPI Allreduce per iteration, which halves
the number of MPI Allreduce per iteration in the original conjugate gradient
method. The amount of vector operation increases in this scheme. However, the
reduction of calculations of coefficients is more effective for GPU-based systems.
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Generation of the Finite Element Model. We automatically generate finite
element model using the method by [3]. Its procedure utilizes OpenMP paral-
lelization, where each thread has temporal array required to compute connec-
tivity of elements and numbering of nodes. This enables us to compute model
generation with up to 102 OpenMP threads on CPU; however, we cannot apply
GPU computation for this part as GPU requires more than 10,000 threads for
efficient computation and memory consumption greatly increases. Generation of
finite element models can account larger proportion of the whole elapsed time,
which is not negligible compared to the computation time in the finite element
solver. Therefore, we design our optimizer so that it is possible to generate a
finite element model for the next trial on CPUs while wave propagation anal-
ysis is computed on GPUs. All of the main computation in the solver can be
computed in GPUs, so we can assign only one core of CPUs for each GPU
and this has little effect on the performance of the solver. Other cores in CPUs
are assigned for the generation of finite element models. Program of the model
generation is created separately from that of the finite element solver and we
executed them asynchronously using a shell-script. Output files are shared in
the file system and controlled so that they are updated in correct timing. By
allocating heterogeneous computer resource as mentioned above, it is possible to
overlap model generation with GPU computation.

3 Application Example

We use our developed optimizer to estimate soil structure. Our target domain
has two layers, and we define their boundary surface. We use IBM POWER
System AC922 for computation, which has two POWER9 CPUs (16 cores, 2.6
GHz) and four NVIDIA Volta V100 GPUs. We assign one CPU core to each
GPU for finite element analysis with MPI and we use the remaining 28 CPU
cores for the model generation with OpenMP.

Table 1. Material properties in target domain. Vp, Vs, and ρ are primary and secondary
wave velocity, and density, respectively. h is the damping ratio used in the linear wave
field calculation, hmax is maximum damping ratio, and γ is the reference strain used
in the non-linear wave analyses.

Vp(m/s) Vs(m/s) ρ (kg/m3) h hmax γ

Soft layer 700 100 1500 0.001 0.23 0.007
Hard layer 2100 700 2100 0.001 0.001 -

The target domain is 300 m × 400 m × 75 m. In this problem, material
properties of the soil structure are deterministic. These properties are described
in Table 1. In the model generation using [3], tetrahedral elements are gener-
ated based on a background octree-based structured grid, and according to the



Heuristic Optimization with CPU-GPU Heterogeneous Wave Computing 395

previous study [4], its resolution ds must satisfy the condition ds < Vs

10fmax
in

soft layers. The frequency components below 2.5 Hz are dominant in the strain
response analysis, so we set fmax = 2.5 Hz. Thus, we set ds = 2.5 m so that the
condition above is satisfied. Elevation data at the surface are available. They are
flat and we set them as z = 0 m. Control points are located at regular intervals
in the x and y directions. We simplify the problem and notate the elevation of
the hard layer on points (x, y) = (100i, 100j)(i = 0–3, j = 0–4) as αij in metric
units. The points x = 0, x = 300, y = 0, and y = 400 are the edges of the
domain, and we assume αij = 0 for these points. The parameters for optimiza-
tion are αij(i = 1–2, j = 1–3). Initial parameters and reference parameters, which
are true, are shown in Table 2. We assume the information from the boring sur-
vey are available at points (x, y) = (50, 50), (150, 350), (200, 100). Elevations at
these points are −7.01 m, −5.97 m, and −16.3 m, respectively, and these eleva-
tions are interpolated to make the initial boundary surface. The distributions of
the boundary surface for initial and reference models are described as Fig. 2. An
unstructured mesh with approximately 3,000,000 degrees of freedom is generated
by using the method by [3]. Figure 3 shows one of the FE models in the analy-
sis. Input waves for wave propagation analyses can be obtained by pulling back
observed waves on the ground surface. In this paper, we assume that input waves
are generated by micro earthquakes, and linear analysis can be applied. It is then
possible to use Ricker wave as our input wave. We derive amplification functions
from observation data and pulled back waves. Using these functions, it is possi-
ble to estimate observation data when we input Ricker wave. These operations
reduce time steps for wave propagation analyses and the entire computation
time. Ricker waves, represented as (1 − 2π2f2

c (t − tc)2)exp(−π2f2
c (t − tc)2), are

input as x and y components of velocity at the bottom of models. t is time
in second, fc is central frequency and tc is central time and they can be set
independently. For this application example, the target frequency is as much as
2.5 Hz and we set the period of each analysis to 2.56 s. Considering these set-
tings, we set (fc, tc) = (0.8, 1.2). Time increment of the analysis must be small
enough to converge the results in the time integration. We set it to 0.01 s, which
is the same as the setting in [6]; thus each wave propagation analysis requires
computation for 256 times steps. We set two cases for observation points. In
case 1, we allocate 35 observation points defined as (x, y) = (50i, 50j) (i = 1–5,
j = 1–7) and in case 2, observation points are (x, y) = (−50 + 100i,−50 + 100j)
(i = 1–3, j = 1–4) and the number of points is 12. We use an error function as
follows; Error = 1

np

∑np
i=1

∑3
j=1

∫ fmax

0
|F [vij ]−F [v̄ij ]|df , where np is the number

of observation points, v is the velocity of the observation data, and fmax is the
maximum targeting frequency, which is 2.5 Hz in our paper. v is the time history
of x, y, and z components of velocity on each observation point. Values with a
over-line corresponds to the observation data. In addition, F [ ] corresponds to
the discrete Fourier transformation. In other words, this error function is the
total sum of absolute values of difference for frequency components on observa-
tion points. These settings mentioned above are the same as settings in [6].
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Table 2. Parameters. The units of α are meters.

α11 α21 α12 α22 α13 α23

Initial model −9.190 −16.260 −6.490 −11.660 −4.980 −7.050
Reference model −28.030 −16.260 −25.550 −21.140 −12.790 −11.090
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(b) Reference model

Fig. 2. Distribution of elevation (m) of the hard layer.

In our proposed method, we generate finite element models for the next trial
and conduct wave propagation analysis at the same time. In simulated annealing,
we generate next trial parameters after current trial parameters are adopted or
rejected. It is desirable that we generate two models in cases that trial parame-
ters are adopted and rejected while we are conducting wave propagation analysis;
however, generation of finite element model twice takes more time than the com-
putation in our finite element solver. Parameters in these problem settings are
thought to be rejected with high probability. Thus, we generate a finite ele-
ment model with prediction that trial parameters will be rejected. When trial
parameters are adopted, we regenerate next finite element models for updated
parameters. This regeneration has a small effect on the whole computation time.
The breakdown of computation costs in our optimizer is described later in the
performance evaluation part. The number of control points in very fast simulated
annealing D = 6. Also, we set the number of trials kf = 1500 and c = 4.2975.
This c satisfies that parameters which increase the value of the error function
by ΔE are adopted with the probability of 80% at the initial temperature and
parameters which increase the value of the error function by ΔE × 10−5 are
adopted with the probability of 0.1% at the lowest temperature, where ΔE is
the value of error function obtained in the initial model. The history of error
function is described in Fig. 4 and parameters are estimated as Table 3. Opti-
mization of both case 1 and 2 adopted trial parameters 51 times in 1,500 trials.
Trial parameters are rejected with the probability of more than 90% and we
find that the generation of finite element model is mostly overlapped by the
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Fig. 3. One of finite element models in the analysis.

computation in the solver. Compared to case 2, case 1 with more observation
points estimated the soil structure more accurately. Our previous study [6] used
a multigrid stochastic search algorithm and optimized the same parameters in
meters. The numbers of iteration were 3,000 in case 1 and 1,300 in case 2; thereby
we found that parameters were efficiently optimized with higher accuracy as the
number of trials by the very fast simulated annealing was 1,500. For confirmation
of the optimized model, we conduct wave propagation analysis with parameters
obtained in case 1. Figure 5 is the distribution of the displacement on the ground
surface at time t = 2.20 s and Fig. 6 is the time history of the velocity on point
(x, y, z) = (150, 200, 0). Judging from these figures, we can confirm that the
results by optimized model and reference model are consistent.

Fig. 4. Time history of error function. Each value is normalized by the error of the
initial model.

Here we evaluate the performance of the computation in our optimization.
The elapsed time for our solver part is about 18 s per trial. In [6], wave propa-
gation analysis was computed in 263 s for a finite element model with 274,041
degrees of freedom using Intel Xeon E5-4667 v3 CPU.If this CPU-based solver is
used for the analysis in this paper and we assume that computation cost increases
in proportion to the number of degrees of the freedoms, estimated elapsed time
will be 3,000,000/274,041=10.94 times longer and 263 s × 10.94 = 2,879 s. There-
fore, our GPU-based solver has achieved about 160-fold speeding up per prob-
lem size, although it is difficult to compare the performance on different systems.
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Table 3. Parameters obtained by the optimizer for each case. The units of α are
meters. RSS is the residual sum of squares based on the reference model and defined
as

∑
ij(αij/ᾱij − 1)2, where ᾱij are parameters of the reference model.

α11 α21 α12 α22 α13 α23 RSS

Reference −28.030 −16.260 −25.550 −21.140 −12.790 −11.090 -

Case 1 −28.007 −16.290 −25.611 −21.092 −12.770 −11.100 1.6× 10−5

Case 2 −28.119 −16.133 −25.484 −21.182 −12.849 −11.086 1.2× 10−4

Fig. 5. Norm distribution of displacement (m) on the ground surface at t = 2.20 s in
the linear ground shaking analysis.
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Fig. 6. x component of the velocity at (x, y) = (150, 200) on the ground surface in the
linear ground shaking analysis.

Here we use peak memory bandwidth to evaluate the speeding up ratio, as gen-
eral finite element analyses are memory bandwidth bound computations. Intel
Xeon E5-4667 v3 CPU has 68 GB/s and four NVIDIA V100 GPUs have 900
GB/s × 4 = 3,600 GB/s of memory bandwidth. We attained higher speeding up
ratio than the ratio of peak memory bandwidth; this indicates that we efficiently
computed on GPUs. The optimization in case 1 was computed in 13 h 32 min.
The elapsed time per trial in simulated annealing was 32 s. The breakdown of
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computation cost was as follows: The computation part of our solver took 18 s,
other part of our solver such as I/O and data transfer from CPU to GPU before
computation took 7 s, model decomposition for MPI parallelization using METIS
took 3 s, postprocessing to obtain the response on the ground surface took 2 s, and
other computations including Fourier transformation took 2 s. Besides, it took
about 10 s for the generation of each model, which is overlapped with the compu-
tation in the solver; thus, the whole elapsed time would be 13 h 32 min + 10 s ×
1500 = 17 h 42 min and increase by 30% if model generation and finite element
solver were computed sequentially. Thereby we confirmed that efficient allocation
of computer resources is important for this optimization. Considering our previous
method took 9.4 days for parameter optimization in meters using finite element
model with 1/10 of degrees of freedoms, our proposed method has achieved great
reduction in computational cost.

Finally, we conduct a non-linear ground shaking analysis using the optimized
model. The methods are the same as [5]. We input wave observed in the 1995
Kobe Earthquake at the Kobe Local Meteorological Office and its time incre-
ment is 0.005 s and the number of time steps is 16,384. We used the modified
Ramberg-Osgood model and Masing Rule for non-linear constitutive models.
We assume that a gas pipeline is buried as shown in Fig. 7(a). Figure 7(b) shows
the maximum axial strain of the pipeline. We can confirm that the strain dis-
tributions obtained by our optimized model and initial model, which is derived
from boring survey, are completely different. This analysis is used for screening
of underground structures which will be damaged and its result shows that this
optimization is important to assure the reliability of the result.

(a) Location
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A B
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initial model
reference model
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(b) Maximum axial strain of the pipeline

Fig. 7. Maximum distribution of axial strain along a buried pipeline for each model in
the non-linear ground shaking analysis. The buried pipeline is located between point
A (x, y, z) = (30, 40,−1.2) and point B (x, y, z) = (270, 360,−1.2).
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4 Conclusion

To increase the reliability of numerical simulations, it is essential to use more
reliable models. Our proposed optimizer searches for a finite element model that
can reproduce observation data by combining very fast simulated annealing and
finite element analyses. As an application example, we estimated soil structure
using observation data with 1,500 wave propagation analyses with a finite ele-
ment model with 3,000,000 degrees of freedom. The finite element solver, which
accounted for the large proportion of the whole computation time, was acceler-
ated by utilizing the GPU computation. Compared to the previous study, the
elapsed time per problem size was decreased by 1/160. Generation of a finite
element model was difficult to computed on GPUs. We designed our algorithm
so that the computation in model generation on CPUs was overlapped by the
computation in the solver on GPUs and enhanced the effect of GPU accelera-
tion. For future prospects, more trials will be required for larger problem size or
parameter searching in higher resolution, as the convergence of simulated anneal-
ing gets worse. To reduce the computation time, we must attain more speedup
ratio for the solver or design a faster algorithm of our optimizer.
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