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Abstract. The ability of customer data collection in enterprise corpo-
rate information systems leads to the emergence of customer-centric algo-
rithms and approaches. In this study, we consider the problem of choos-
ing a candidate branch for closing based on the overall expected level
of dissatisfaction of company customers with the location of remaining
branches. To measure the availability of branches for individuals, we
extract points of interests from the traces of visits using the clustering
algorithm to find centers of interests. The following questions were fur-
ther considered: (i) to which extent does spatial accessibility influence the
choice of company branches by the customers? (ii) which algorithm pro-
vides better trade-off between accuracy and computational complexity?
These questions were studied in application to a bank branches network.
In particular, data and domain restrictions from our bank-partner (one
of the largest regional banks in Russia) were used. The results show that:
(i) spatial accessibility significantly influences customers’ choice (65%–
75% of customers choose one of the top 5 branches by accessibility after
closing a branch), (ii) the proposed greedy algorithm provides on opti-
mal solution in almost all of cases, (iii) output of the greedy algorithm
may be further improved with a local search algorithm, (iv) instance of
a problem with several dozens of branches and up to million customers
may be solved with near-optimal quality in dozens of seconds.

Keywords: Branch network optimization · Location ·
Spatial accessibility · Banking · Black-box optimization

1 Introduction

Networks of company branches operating within the city arise in different
domains like retail industry, banking and finance, car manufacturing and many
other. Different units, e.g., shops or bank branches, may be located in different
areas, serve different number of customers and may have different efficiency of
functioning related to actions of line staff and managers. In this regard, mod-
ification of the network of branches (closing or opening units) is considered as
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multi-criteria optimization problem with at least two criteria: (i) profitability of
a branch (taking into account cost of maintenance, remuneration, rental charges
etc.), (ii) Quality-of-Service (QoS) requirements (related to the business stan-
dards of customer care).

Collection of massive data sets about customer behavior makes possible to
conclude about implicit factors of customer satisfaction (QoS criteria). For the
set of branches distributed within the city and having identical functionality,
one of the determinant factors of customer satisfaction is spatial availability of
the branches. To decide if a certain branch is located conveniently for a certain
customer, one needs to know the areas of his or her frequent visits. After that,
we can optimize branches network to achieve better spatial availability for the
population of customers or to reduce the effect of closing the branches.

This study is focused on the latter case when a decision maker is aimed to
close a fixed number of branches to reduce operational costs of a network. As
a baseline business case, we consider a problem of optimizing bank branches
network under constraint on maximum desirable number of units after modifi-
cation of the network. We assume that each customer is assigned with a number
of points of interest, and available branches may be located in the neighborhood
of each of these points. We formulate a problem of optimizing spatial availability
of branches networks and propose several greedy algorithms to solve it. To show
that spatial availability is related to actual choice of branches by customers, we
make a prediction on preferable set of branches for each customer according to
her points of interests, and compare the predictions with the actual places of vis-
its after closing the branch. As the research is conducted in partnership with one
of the largest regional banks in Russian Federation, for the experimental study
we use the data about visits and transactions of more than 800 000 customers
for 2 years.

The outline of the paper is as follows. In the next section, related works are
discussed. In Sect. 3 a formulation of the problem is given. In Sect. 4 algorithms
for solving the considered problem are proposed. Section 5 contains a description
of the data set and the results of computational experiments. In the last section,
conclusions are drawn.

2 Related Work

The problem of branch location evaluation has been widely studied. In [12],
this problem in application for shopping centers is solved. The following char-
acteristics are taken into account: diversity of the tenant inside the shopping
center, retail agglomeration near the shopping center, distance to metro sta-
tions, and distance between consumers and shopping center. To calculate the
last two characteristics, the Euclidean distance is used. The problem of branch
network optimization was studied in [14]. In that paper, a Lagrangian relaxation
optimization method is proposed to optimize location of locomotive maintenance
shops. In [10], a multi-agent model for optimizing supermarkets location is pro-
posed. Using the Particle Swarm Optimization heuristic, the model iteratively
determines a place maximizing the sales volume of the new supermarket.
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The problem of branch location evaluation in application to a bank network
is studied in a number of papers. In [2] the problem is solved by an integrated
method, based on analytic hierarchy process, geographic information system
and maximal covering location problem. In [13], this problem is formulated and
studied as a Markov decision process. In [6] the problem was studied using
demand–covering models which determine the locations that achieve the maxi-
mum capture of the demand.

The problem of optimizing a bank branches network has been also studied
recently. In [9], the problem is solved for the branch network of a German retail
bank. A decision support system us used for this purpose. In [3] the problem was
studied by a tabu search optimization algorithm [5] in application to a Turk-
ish bank’s branches network. In [7] the problem was solved by the following
algorithm. A related linear problem is solved first, then the obtained solution
is iteratively improved by a local search algorithm. In [11], three heuristic algo-
rithms are suggested to solve the problem: greedy interchange, tabu search and
Lagrangian relaxation approximation. A bank’s branches network in a large-size
town Amherst, USA was analyzed by these algorithms.

In this study, due to the availability of digital traces of customers of our
industrial partner, we present new statement of the problem of optimizing branch
location which uses zones of interests of individuals instead of city-wide informa-
tion about popularity of different areas. As a result, we formulate target function
as spatial availability estimated directly from points of interests of different cus-
tomers. Thus, the present study is a step forward in branch network optimization
and, in particular, in a bank branches network optimization.

3 Problem Statement

Suppose we have a company with branches network of size M within the city,
and b1, ..., bk, ..., bM – branches represented with pairs of geo coordinates. This
company has N associated customers c1, ..., ci, ..., cN . Customers are described
with the following attributes: (i) place of living L (geo coordinates); (ii) place
of work W (geo coordinates); (iii) ordered sequence of pairs 〈date, branch〉 of
visits to branches; (iv) ordered sequence of pairs 〈date, Pij〉 of visits to different
locations within the city where Pij is j-th known location for i-th customer. If the
considered company is a bank, then (iv) may be extracted, from transactional
data, because transactions have the field ‘Address’, and one can extract from
this field geo coordinates of a location where purchase was made. In this case,
(iv) for a fixed date is a daily path of payments of a user within the city.

Let’s assume that a company decided to close K branches of M (e.g. for
optimizing the expenses). The problem is to find K of M branches which closing
leads to the smallest reduction in spatial availability of branches network for the
customers.

In the simplest case, all branches for customer i can be divided into two types,
accessible and non-accessible. By the accessible branch for a customer i, we mean
a branch that is within the δ-neighborhood of any of points S = {H,L, Pij}.
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Here δ may be chosen as a maximum walking distance still comfortable for a
customer, e.g. 1 km.

Let’s introduce the accessibility coefficient aik as a measure of accessibility
of a branch k for a customer i. This coefficient may be defined in several ways
as follows:

(i) aik = Iδ(ci, bk) where Iδ(ci, bk) is a binary variable. If its value is 0, it
denotes that k-th branch is not δ-accessible for customer i, and 1 denotes
opposite situation;

(ii) aik =
(

Iδ(ci,bk)
Bδ(ci)

)γ

for Bδ(ci) =
∑

k Iδ(ci, bk) > 0, and 0 otherwise (γ > 0).
The meaning of this expression is as follows. When bk is not accessible
for customer i (or customer i does not have any accessible branch in δ-
neighborhood), the accessibility coefficient is equal to zero. If bk is accessi-
ble, aik is the greater, the smaller is the number of accessible branches for
customer i, Bδ(ci). The logic behind that is that customers with a higher
number of accessible branches should influence the decision about closing
one of them to a smaller extent than customers for which the accessible
branch is unique. Here, coefficient γ allows to tune the extent to which
customers with increasing number of accessible branches will influence the
results.

(iii) aik = e−λ·dmin(ci,bk), λ > 0, where dmin(ci, bk) = minj d(Pij , bk)—minimum
distance to branch bk from any of the points of interests of customer i. In
such a case, accessibility coefficient exponentially decreases with an increase
of a distance of branch bk from the nearest of points of customer i.

Further, we create an accessibility matrix A = {aik}, in which the sum of
elements for i-th row (i-th customer) means the potential coverage of a customer,
that is, a large value of the sum corresponds to the case when a customer has a
lot of appropriate branches; and a small value of the sum denotes critical cus-
tomers. For the case (ii), this value for the customers with at least one accessible
branch, is equal to 1. The sum by columns for all three cases means the potential
popularity of the branch.

Considering this matrix, we may also come to conclusion that if Bδ(ci) > K
that customer ci will be satisfied after elimination of each K columns, and then,
to exclude them from consideration.

The optimization problem can be stated as follows: to find K columns of
accessibility matrix A which deletion will minimize the number of customers
with Bδ(ci) = 0 in the case (i) or minimize the decrease of

∑
i aik in the cases

(ii) and (iii). In other words, we would like to reduce the number of branches
keeping the number of potentially satisfied customers as large as it is possible.
Further we shall focus on the case (i) and by potentially satisfied customer, we
mean customer having at least one branch in the δ-neighborhood of any of his
or her visiting points.
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4 Proposed Algorithms

In order to solve the problem considered in the previous section, algorithms of
three types were developed: (i) a brute-force algorithm, that guarantees to find
exact solutions, but work very slowly; (ii) greedy algorithms, which are able to
quickly find approximate solutions; (iii) a local search algorithm that can be
used to find an approximate solution or to improve a solution found by a greedy
algorithm. All these algorithms are described below. Also, in Subsect. 4.4 sev-
eral examples of the accessibility matrices and results obtained by the proposed
algorithms on them are shown.

4.1 Brute-Force Algorithm

The optimal solution of the considered problem can be found by the brute-force
approach. There are two possible variants. According to the first one,

(
M

M−K

)
different combinations of choice of M −K ‘good’ branches from M branches are
generated, then for each of them the number of potentially satisfied customers is
calculated, and the optimal combination (with the greatest number of satisfied
customers) of M − K branches is chosen. According to the second variant, K
‘bad’ branches should be found, so

(
M
K

)
combinations are generated, then for

each of them the number of potentially unsatisfied customers is calculated, and
the optimal combination (with the smallest number of unsatisfied customers) of
K branches is chosen.

In practice, M � K, and also K is quite small (as one wants to close just
several branches), so in the following computational experiments the second
variant (choosing K ‘bad’ branches) is used. Since

(
M
K

)
= O(MK), the algorithm

works in polynomial time. The pseudo-code is shown in Algorithm 1.

Algorithm 1. Brute-force algorithm
Input: M bank branches, the number K of branches to close,

accessibility matrix A
Output: Set Sout of K bank branches recommended for closing

1 Generate
(
M
K

)
different combinations of K bank branches

2 For each combination calculate the number of unsatisfied customers
3 Sout ← the combination with the lowest number of unsatisfied customers
4 return Sout

4.2 Greedy Algorithms

Despite the fact, that the proposed brute-force algorithm works in polynomial
time, on some hard instances of the considered problem it cannot be executed
in reasonable time. A greedy algorithm can be used instead to quickly find an
approximate solution, which can be similar to the optimal one (but it is not
guaranteed).

The following greedy algorithm is based on closing K branches with the
smallest number of unsatisfied customers one by one. Further this algorithm is
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denoted as GreedyLP (LP stands for Lowest Popularity). The pseudo-code of
this algorithm is shown in Algorithm 2.

Algorithm 2. GreedyLP algorithm
Input: M bank branches, the number K of branches to close,

accessibility matrix A
Output: Set Sout of K bank branches recommended for closing

1 Sout ← ∅
2 for step = 1 . . . K do
3 Choose branch b∗ with the smallest number of unsatisfied customers
4 Sout ← b∗

5 Remove b∗ from A
6 Recalculate the number of unsatisfied customers of remaining branches

7 return Sout

The following greedy algorithm is based on keeping branches with the greatest
number of satisfied customers. Further this algorithm is denoted as GreedyHP
(HP stands for Highest Popularity). The pseudo-code of this algorithm is shown
in Algorithm 3.

Algorithm 3. GreedyHP algorithm
Input: M bank branches, the number K of branches to close,

accessibility matrix A
Output: Set Sout of K bank branches recommended for closing

1 Sout ← all M branches
2 for step = 1 . . . M − K do
3 Choose branch b∗ with the greatest number of satisfied customers
4 Remove b∗ from Sout

5 Delete from A all rows with aib∗ = 1 and column b∗

6 Recalculate the number of unsatisfied customers of remaining branches

7 return Sout

Both proposed greedy algorithms have linear time complexity. If K < M
2 ,

GreedyLP requires less iterations than GreedyHP.

4.3 Simple Hill Climbing Algorithm

To find an approximate solution, it is also possible to use local search heuristics.
A set of K branches corresponds to a Boolean vector of size M , where i − th
component is 1 if the set contains branch number i and 0 otherwise. Such a
vector, in turn, corresponds to a point in a search space S. This search space
consists of all different Boolean vectors of size M and with exactly K 1s, so its
size is

(
M
K

)
. For an arbitrary point χ ∈ S, a neighborhood Nh(χ) of radius R is

defined as a set of such points χ′, χ
′ ∈ S, that dH(χ, χ′) = R, where dH(χ, χ′)

stands for Hamming distance between χ and χ′.



338 O. Zaikin et al.

Let’s consider an objective function which operates in this search space. Given
a point from the search space, it calculates the number of customers that would
be potentially unsatisfied after the closure of all corresponding branches. Any
discrete black-box optimization algorithm can be employed to minimize it, e.g.,
the genetic algorithm [1] or the tabu search [5]. As an optimization algorithm,
the simple hill climbing algorithm [8] was chosen.

Simple hill climbing starts from a given point, in the role of which it is possible
to use a random point from the search space. Then the algorithm checks points
from the neighborhood of the given point. If a better point (i.e. a point with
lower value of the objective function) is found, then this new point is considered
as a new best point, and checking of its neighborhood is started. If all points
from a current neighborhood are worse than a current best point, then it means
that a local minimum is reached. The pseudo-code of the proposed algorithm is
shown in Algorithm 4. Here χbest is the point with the best found value of the
objective function.

Algorithm 4. Simple hill climbing algorithm
Input: Set of M bank branches, the number K of branches to close,

accessibility matrix A
Output: Set Sout of K bank branches recommended for closing

1 χbest ← randomly chosen point of size M and weight K
2 repeat
3 NewOptimum ← false
4 for each χ ∈ GetNeigborhood(χbest) do
5 if ObjFunction(χ,A) < ObjFunction(χbest, A) then
6 χbest ← χ
7 NewOptimum ← true
8 Break

9 until NewOptimum = false or TimeExceeded()
10 Sout ← branches for which χbest contains 1s
11 return Sout

In the proposed algorithm, checking a neighborhood of a given point has a
linear time complexity. The amount of such checks cannot be predicted, but in
practice for the considered problem it is usually less than 10.

4.4 Examples

Let’s consider two instances of the proposed problem. In the first one, M =
4,K = 2, the accessibility matrix is A1, see Table 1. In the second one, M =
3,K = 1, the accessibility matrix is A2.

GreedyLP finds a non-optimal solution for the first instance. It removes
branch 1 on step 1 and branch 2 on step 2. As a result, one customer which
has only one accessible branch is unsatisfied. As for GreedyHP, it keeps branch
1 on step 1 and branch 4 on step 2, and as a result all customers are satis-
fied. However, GreedyHP finds a non-optimal solution for the second instance.
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Table 1. Examples of the accessibility matrices

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 3
1 1 1 0 3
1 1 1 0 3
1 1 0 1 3
0 0 0 1 1
4 4 3 2

⎞
⎟⎟⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
1 0 1 2
1 0 1 2
1 0 1 2
0 1 1 2
0 1 1 2
0 1 0 1
0 1 0 1
4 4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GreedyHP keeps branch 3 at step 1, and branch 2 at step 2, leaving customer 1
unsatisfied. However, if branches 1 and 2 are kept, all customers will be satisfied.

As for simple hill climbing, it finds the optimal solution for both considered
instances if it starts from a solution found by any proposed greedy algorithm.

5 Computational Experiments

In this section, a data set used for computational experiments is described
first. Then the influence of the spatial accessibility on customers choice of bank
branches is studied. Finally, the experimental study of the algorithms, proposed
in Sect. 4 is presented.

5.1 Data Set Description

We consider a data set from one of the largest regional banks in Russia. This
data set contains data about 58 bank branches, 844 864 customers and 3 132 296
customers’ visits. Customers visits in one year (from September 2017 to Septem-
ber 2018) were taken into account in this study. Note, that only 51 out of 58 bank
branches were active at the moment of this study. In Fig. 1a the distribution of
bank branches by the amount of customers visits is presented. In Fig. 1b the
distribution of bank branches by customers visits per month is shown. Seasonal
effects can be seen: the activity during the summer is decreasing, while March
and December are highly popular months.

According to Sect. 3, three types of points of interests (POIs) are used for each
customer. The first two types (home address and work address) were provided
by the industrial partner. POIs of the third type (places of visits) were taken
from history of debit card transactions (the text field “Address” was used).
This allows us to supplement information about home and work POIs which a
customer reports to a bank because this information may become outdated.

To transform address data into pairs of geo coordinates, we use Open-
StreetMap open database. OpenStreetMap is a map service, in which data are
updated by its users in a collaborative manner. Using OpenStreetMap, we have
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Fig. 1. Customers visits to bank branches

compiled a database of addresses of St. Petersburg. This database matches text
representation of addresses to their coordinates. Then, we were able to identify
geo coordinates of customers’ POI.

POI extracted from transactions may contain outliers—points that were vis-
ited only once and that are off the usual routes of a customer. As our goal is to
identify the frequently visited locations, we propose the following approach of
getting POI from traces of visits to locations for a given customer ci:

1. Collect a set of initial POI {liv}, v = 1 . . . Vi where Vi is a number of distinct
locations of a customer i, liv is a location of v-th point.

2. Group a set of locations {liv} into V̂i clusters.
3. Remove clusters which contain a single point to get V ∗

i clusters.
4. Find centers of V ∗

i clusters and replace initial set of POI with V ∗
i points which

stand for the centers of payment interests of customer ci.

We used this algorithm to get POI from transactional data. For step 2,
DBSCAN clustering method was used [4].

5.2 On the Importance of Spatial Accessibility

We tested the hypothesis that the spatial accessibility of bank branches is impor-
tant for customers. Two bank branches closed in Spring of 2018 were chosen for
this purpose. Hereinafter they are called Branch 1 and Branch 2. For each of
these branches, customers visiting it at least twice during the last 6 months
before the closure were considered. It turned out, that for Branch 1 there were
964 such customers, while for Branch 2 there were 1483 of them. It was counted,
how many customers visited other bank branches during 6 months after the clo-
sure. For Branch 1, there were 252 such customers, for Branch 2 – 409 customers.
Then it was analyzed how many of these customers visited the most accessible
active branches. The results are presented in Table 2. Here ‘Top-i’ stands for the
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amount of customers visited at least one of the i most accessible active branches
(in accordance with case (iii), see Sect. 3). For instance, value 109 of Top-2 for
Branch 1 means, that after the closure of Branch 1, 109 out of 252 of its cus-
tomers visited one of two most accessible branches. Note, that each customer
has its own list of the most accessible branches.

Table 2. The comparison of bank branches spatial accessibility and real visits for
Branch 1 and Branch 2 customers

Branch 1

Top accessible branches Customers (out of 252) Percentage of customers

Top-1 68 27%

Top-2 109 43%

Top-3 134 53%

Top-4 149 59%

Top-5 163 65%

Branch 2

Top accessible branches Customers (out of 409) Percentage of customers

Top-1 142 35%

Top-2 210 51%

Top-3 262 64%

Top-4 291 71%

Top-5 306 75%

It turned out, that 65%–75% of customers chose one of top 5 branches by
accessibility (out of 51) after the closure. Thus, it is can be concluded, that the
hypothesis on spatial accessibility influence was confirmed.

5.3 Experimental Study of the Proposed Algorithms

The algorithms described in Sect. 4 were implemented in a form of a sequential
C++ program. While in almost all cases K was significantly smaller than M ,
only one greedy algorithm, GreedyLP, was used. It was done because GreedyLP
suits better for small K than GreedyHP. Hereinafter ‘GreedyLP+SHC’ stands
for simple hill climbing which starts from a point found by the GreedyLP algo-
rithm. In simple hill climbing, radius R was equal to 2 (see Subsect. 4.3).

Computational experiments were held on a computer equipped with the 6-
core processor Intel i7-3930K and 16 GB of RAM. Two series of experiments
were conducted. In the first one, all 51 branches were available for closing (i.e.
M was equal to 51), K (the amount of branches for closing) was varied from
1 to 10. The obtained results are presented in Table 3. Here ‘calc.’ stands for
the number of the objective function calculations, while ‘unsat.’ stands for the
number of unsatisfied customers in the solution found by the corresponding
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algorithm. Hereinafter the best found solutions are marked with bold, while
solutions which are worse than the best ones, are marked with Italic. It should
be noted, that the brute-force algorithm was not launched for K = 5, .., 10
because the corresponding experiments could not be finished in reasonable time.
For instance, for K = 5 it would take about 10 days.

Table 3. Results for M = 51,K = 1, .., 10, time in seconds

K Brute-force GreedyLP GreedyLP+SHC

calc. time unsat. calc. time unsat. calc. time unsat.

1 51 2 17 51 2 17 51 2 17

2 1275 118 520 101 39 520 199 46 520

3 20825 3533 1216 150 61 1216 294 71 1216

4 249900 66710 1972 198 81 1972 386 99 1972

5 2349060 - - 245 98 2775 475 133 2775

6 18009460 - - 291 115 3984 831 225 3811

7 115775100 - - 336 141 5052 952 285 4898

8 636763050 - - 380 154 6166 1068 370 6082

9 3042312350 - - 423 176 7375 801 323 7375

10 12777711870 - - 465 190 9003 875 380 9003

According to Table 3, for K = 1, ..4 all three algorithms found optimal solu-
tions. As for K = 5, ..10, the best solutions are unknown, because, as it was
mentioned above, the brute-force algorithm was not launched in these cases. Nev-
ertheless, for K = 6, 7, 8 GreedyLP+SHC found better solutions than GreedyLP.
It is not guaranteed that solutions, found by GreedyLP+SHC, are optimal. How-
ever, these solutions are local minima (in the sense described in Subsect. 4.3).
It means that each of them can not be improved by replacing any branch from
the corresponding set by any other possible branch. Note that GreedyLP+SHC
takes a little more time compared to GreedyLP. However, it takes reasonable
time even for the most difficult instances of the problem. Note, the in all cases
GreedyLP+SHC required from 1 up to 3 neighborhood checks (see Subsect. 4.3)
to reach a local minimum. These results show, that a solution found by GreedyLP
is a very good start point for GreedyLP+SHC.

The results from Table 3 are also shown in Fig. 2. In Fig. 2a the solving time in
seconds are shown on a logarithmic scale, while in Fig. 2b the objective function
values are shown on a linear scale.

In the second series of experiments, a constraint was added. Only 17 out of
51 branches were available for closing (i.e. M was equal to 17). These branches
were chosen because other 34 branches cannot be closed in accordance with the
bank’s strategy. K was varied from 1 to 10. Note, that in the accessibility matrix
all 51 branches were presented, so the whole bank branches network was taken
into account during the objective function calculations. The obtained results are
presented in Table 4. The brute-force algorithm managed to finish its work within
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Fig. 2. Results for M = 51,K = 1, .., 10

Table 4. Results for M = 17,K = 1, .., 10, time in seconds

k Brute-force GreedyLP GreedyLP+SHC

calc. time unsat. calc. time unsat. calc. time unsat.

1 17 1 498 17 1 498 17 1 498

2 136 9 1265 33 8 1265 63 9 1265

3 680 86 2722 48 52 2722 42 57 2722

4 2380 476 4224 62 70 4224 114 78 4224

5 6188 1785 5880 75 88 5952 195 111 5880

6 12376 4759 7614 87 103 7614 153 127 7614

7 19448 17524 10064 98 118 10064 168 143 10064

8 24310 18197 12590 108 139 12590 180 168 12590

9 24310 18287 15423 117 151 15423 189 198 15423

10 19448 17519 18429 125 169 18429 195 219 18429

the runtime limit of 1 day for all K, so it was possible to compare solutions found
by GreedyLP and GreedyLP+SHC with optimal solutions in all cases.

It turned out, that the branches, recommended for closing in accordance
with the first experiment (without any constraint) significantly differ from the
ones recommended in accordance with the second experiment. In particular, for
K = 1 in the first experiment the closure of the recommended branch will lead
to 17 unsatisfied customers (see Table 3), while in the second experiment the
closure of the recommended branch will lead to 498 unsatisfied customers. It
means that the employed constraint is very strong and some branches which
suit well for closing from the spatial accessibility point of view, cannot be closed
due to some additional reasons.

According to Table 4, both Brute-force and GreedyLP+SHC found optimal
solutions in all cases. As for GreedyLP, it found optimal solutions in all cases
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except K = 5. The results from Table 4 are also shown in Fig. 3. In Fig. 3a
the solving time are shown on a logarithmic scale, while in Fig. 3b the found
objective function values are shown on a linear scale.

Fig. 3. Results for M = 17,K = 1, .., 10

The obtained results show, that GreedyLP suits very well for the consid-
ered problem. It works fast and in almost all cases finds an optimal solution.
GreedyLP+SHC, being a little slower than GreedyLP, finds optimal solutions in
all practical cases.

6 Conclusions

In this paper, the problem of company branches location optimization was con-
sidered. It was considered as a problem of minimizing the number of potentially
dissatisfied customers according to the distances between points of individuals
and branches. According to the conducted experiments, a greedy algorithm found
exact solutions of the considered problem in almost all cases. A local search algo-
rithm, which starts from a solution found by the greedy algorithm, managed to
find exact solutions in all cases, where it was possible to verify by the brute-
force algorithm. Meanwhile, both suggested algorithms work much faster than
the brute-force algorithm. We have also shown that in the case of constraints
related to the selection of branches for closing, the number of unsatisfied cus-
tomers can increase significantly. In the future, we are planning to apply the
suggested approach to other data sets.
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