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Abstract. After a sudden catastrophic event occurring in a population
of individuals, panic can spread, persist and become more problematic
than the catastrophe itself. In this paper, we explore through a compu-
tational approach the possibility to control the panic level in complex
networks built with a recent behavioral model. After stating a rigorous
theoretical framework, we propose a numerical investigation in order to
establish the effect of the topology of the network on this control process,
with randomly generated networks, and we compare the panic level for
two distinct topology sets on a given network.
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1 Introduction

The aim of this paper is to explore the possibility to control the panic spreading
within a population of individuals facing a catastrophic event, using a recent
mathematical modeling called the Panic-Control-Reflex system (PCR system)
[5,9]. This modeling is given by a set of ordinary differential equations and repro-
duces the behavioral process from reflex to control behavior, with the eventuality
to transit through panic, and possibly to exhibit a persistence of panic. The geo-
graphical background of the areas impacted by catastrophic events naturally
leads us to consider complex networks of PCR systems [4,6], that is, geographi-
cal networks whose nodes are coupled with multiple instances of a PCR system,
with connections between those nodes, corresponding to physical displacements.
In [4], it is proved that the evacuation of high risk zones towards refuge zones is
a necessary and sufficient condition for the whole population in the network to
return to a daily behavior, and to avoid a persistence of panic. But this neces-
sary evacuation can be awkward in some particular places, or even impossible.
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Thus it is natural to ask if it is possible to reach a synchronization state in the
network, which would guaranty that panic vanishes. This question is of great
interest, since it is related to the more general problem of controlling and deci-
sion making in complex systems [1,3]. To this end, we consider the superposition
of two controls, exerted on each node and on each edge in the network. Here, we
propose to investigate with a computational approach the effect of the topology
on the control process. In the first part, we show how to construct a complex
network of PCR systems, and illustrate by a computation of randomly gener-
ated networks the risk of panic persistence. In the second part, we set the general
control problem together with its performance criterion, and finally, we present
a comparison of two computations obtained for two distinct topology sets of a
given network.

2 Non Identical PCR Networks

In this section, we briefly present the Panic-Control-Reflex system (PCR), show
how to construct a complex network of PCR systems, and illustrate by a com-
putation of 800 randomly generated networks the risk of panic spreading.

2.1 Panic-Control-Reflex System

The Panic-Control-Reflex system (PCR system) is a mathematical model for
human behaviors during catastrophic events, developed with the collaboration
of geographers in order to better understand, predict and control the behavioral
reactions of individuals facing a brutal disaster [5,9]. It is given by the following
system of ordinary differential equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ = γ(t)q(rm − r) − Br + f(r, c)rc + g(r, p)rp
ċ = B1r − C2c + C1p − f(r, c)rc + h(c, p)cp − ϕ(t)c(bm − b)
ṗ = B2r + C2c − C1p − g(r, p)rp − h(c, p)cp
q̇ = −γ(t)q(rm − r)
ḃ = +ϕ(t)c(bm − b),

(1)

where the unknowns r, c, p, q, b are real-valued functions defined on R, which
model the densities of individuals in reflex, control, panic, daily and back to daily
behaviors respectively. The parameters B1 > 0, B2 > 0, B = B1 + B2, C1 ≥ 0,
C2 ≥ 0, rm > 0, and bm > 0 are real coefficients, γ, ϕ are smooth functions of t
with positive values, f , g, h smooth functions defined on R

2 with values in R.
When the catastrophic event occurs, individuals are brought to the reflex

behavior; this evolution is modeled by the non-linear term γ(t)q(rm−r), in which
γ(t) corresponds to the impact of the catastrophe. Next, individuals are subject
to a behavioral evolution towards control behavior or panic; this evolution is
modeled by the linear terms B1r and B2r. Additionally, contagion phenomena
can act in parallel between the 3 main behavioral subgroups (reflex, control
behavior, panic); those contagion phenomena are modeled by the non-linear
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terms f(r, c)rc, g(r, p)rp and h(c, p)cp. We emphasize that the functions f ,
g and h have been designed to change their signs according to the values of
the proportions r

c , r
p and c

p [5,9]. For instance, if the density of individuals
in panic is widely greater than the density of individuals in control behavior,
then h(c, p) < 0, which means that the contagion brings individuals in control
behavior to imitate individuals in panic. In the mean time, evolution between
panic and control behavior is modeled by the linear terms C1p, C2c. Finally, the
return to daily behavior operates from the control behavior; it is modeled by the
non-linear term ϕ(t)c(bm − b).

Remark 1. The PCR system has been considered for simulations of concrete sce-
narios of catastrophic events, thanks to a narrow collaboration with geographers
and psychologists. The example of an earthquake in Japan is studied in [9], and
the risk of tsunami on the Mediterranean coast is presented in [6]. Catastrophic
events of industrial origin are also of great interest.

The parameter rm models the maximum capacity of individuals which can be
in reflex behavior. Without loss of generality, we will set rm = 1 in the rest of the
paper. The parameter bm models the maximum capacity of individuals which can
return to the daily behavior. We assume that this maximum capacity coincides
with the total population Λ = r+c+p+q+b involved in the catastrophic event,
thus we can reduce system (1) to a 4 equations system

ẋ = ψ(t, x), (2)

where x = (r, c, p, q)T and

ψ(t, x) =

⎛

⎜
⎜
⎝

γ(t)q(1 − r) − Br + f(r, c)rc + g(r, p)rp
B1r − C2c + C1p − f(r, c)rc + h(c, p)cp − ϕ(t)c(r + c + p + q)

B2r + C2c − C1p − g(r, p)rp − h(c, p)cp
−γ(t)q(1 − r)

⎞

⎟
⎟
⎠ .

The following Theorem summaries its dynamics, and highlights the decisive role
of the parameter C1 which models the evolution from panic to control behavior.
The proof is detailed in [5].

Theorem 1. For any initial condition x0 ∈ (R+)4, the initial value problem
{

ẋ = ψ(t, x), t > 0,

x(0) = x0,

admits a unique global solution whose components are non-negative and bounded.
If C1 > 0, then the trivial equilibrium 0 ∈ R

4 is the only equilibrium, and it is
globally asymptotically stable. If C1 = 0, then the solution of system (2) starting
from any initial condition (r0, c0, p0, q0) such that r0 + c0 +p0 + q0 > 0 presents
a persistence of panic, that is

lim
t→+∞ p(t) = p̄ > 0.
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2.2 Complex Networks of Non-identical PCR Systems

When considering the geographical relief of the zone impacted by the catas-
trophic event, it is natural to improve the previous modeling by a spatial mod-
eling. One way is to construct a complex network whose nodes are coupled with
multiple instances of the PCR system [4,6]. Let us consider a simple graph
G = (V , E ) made with a finite set V = {1, . . . , n} of n vertices, where n is
a positive integer, and a finite set E = {e1, . . . , ek} of k weighted edges, with
non-negative weights ε1, . . . , εk. For each integer l ∈ {1, . . . , k}, there exists a
unique pair of vertices (i, j) such that el connects vertex i towards vertex j. We
set ε = (ε1, . . . , εk) ∈ (R+)k, and introduce the matrix of connectivity L(ε) of
order n, whose off-diagonal coefficients are given by

Lji(ε) =

{
εl if el = (i, j) ∈ E ,

0 else,

and whose diagonal coefficients satisfy

Lii(ε) = −
∑

j �=i

Lji(ε).

Next we couple each node in the graph with an instance of the PCR system (2).
Thus we set

xi = (ri, ci, pi, qi)T , X = (x1, . . . , xn)T ,

H = diag {1, 1, 1, 0} , HX = (Hx1, . . . , Hxn)T .
(3)

The definition of the matrix H means that individuals in daily behavior q are
not concerned with migrations in the network. We allow the different instances
of system (2) to admit different values of parameters, and we will especially focus
on the effect of coupling PCR systems with different values of the parameter C1,
identified previously as a bifurcation parameter.

Definition 1. We will call node of type (1) a node coupled with an instance of
the PCR system such that C1 = 0, and node of type (2) a node coupled with an
instance of the PCR system such that C1 > 0.

A PCR network is given by

Ẋ = Ψ(t, X) + L(ε)HX, (4)

where Ψ(t, X) =
(
ψ(1)(t, x1), . . . , ψ(n)(t, xn)

)T . The above index in ψ(i)(t, xi),
1 ≤ i ≤ n, indicates that the values of parameter C1 can differ from one node
in the network to another. The next theorem, presented in [4], establishes a
necessary and sufficient condition for the solution of the PCR network (4) to
converge to the trivial equilibrium, which corresponds to a global return of all
individuals to the daily behavior. It is also a condition for synchronization in
the network, since every node exhibits the same asymptotic dynamics under the
considered assumptions.
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Theorem 2. For any initial condition X0 ∈ (R+)4n, the network problem
{

Ẋ = Ψ(t, X) + L(ε)HX, t > 0,

X(0) = X0,

admits a unique solution whose components are non negative. The trivial equi-
librium 0 ∈ R

4n is the only equilibrium if and only if every node of type (1) is
connected to at least one node of type (2) by an oriented chain. It that case, the
trivial equilibrium is globally asymptotically stable.

2.3 Computation of the Panic Level for Randomly Generated
Networks

In this section, we aim to illustrate, deepen and qualify Theorem 2 with a com-
putational approach. Thus we have generated 800 PCR networks, built with
15 nodes of type (1), 15 nodes of type (2), and Ne randomly chosen edges
(0 ≤ Ne ≤ 150). This random generation can yield a great variety of topol-
ogy disposals (see Fig. 1). The number of isolated nodes of type (1) is computed
by running a path-finding algorithm implemented in the networkx library [2]
of the python language. Meanwhile, the panic level P̄ in the whole network is
computed by integrating the system of ordinary differential equations (4) on a
finite time interval [0, 60], using a Runge-Kutta scheme of order 4 (each PCR
network corresponds to a system of 120 equations).

Fig. 1. Randomly generated PCR networks, built with 15 nodes of type (1) (depicted
in red), 15 nodes of type (2) (depicted in green), and Ne randomly chosen edges (with
0 ≤ Ne ≤ 150). Left: weakly dense topology. Right: highly dense topology. (Color figure
online)

The numerical computation has been performed on the server of the Lab-
oratory of Applied Mathematics at University of Le Havre Normandie, in a
GNU/Linux environment. The values of the parameters are B1 = B2 = 0.5,
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C1 = 0.3, C2 = 0.2, and the imitation functions f , g, h are given by

f(r, c) = −α1ξ

(
r

c + ν0

)

+ α2ξ

(
c

r + ν0

)

,

g(r, p) = −δ1ξ

(
r

p + ν0

)

+ δ2ξ

(
p

r + ν0

)

,

h(c, p) = −μ1ξ

(
c

p + ν0

)

+ μ2ξ

(
p

c + ν0

)

,

with αi = δi = μi = 0.1, i ∈ {1, 2}, ν0 = 10−2 and

ξ(s) =

⎧
⎪⎨

⎪⎩

1 if s < 0,

0 if s > 1,
1
2 + 1

2 cos (πs) else.

0 50 100 150

0

5

10

15
(Ne, Ni)

(Ne, P̄ )

Fig. 2. Numerical results for the computation of 800 randomly generated PCR net-
works. For each randomly generated network, Ne denotes the number of edges, Ni the
number of isolated nodes of type (1), and P̄ the panic level in the network after a finite
time. The red crosses have coordinates (Ne, Ni), and the blue circles have coordinates
(Ne, P̄ ). The gray line corresponds to the approximation of the cloud of blue circles
by an heuristic inverse power law of the form P̄ = k1

Nν
e

− k2. (Color figure online)

The results are depicted in Fig. 2. For each randomly generated network, Ne

denotes the number of edges, Ni the number of isolated nodes of type (1), and
P̄ the panic level in the network after a finite time T , defined by

P̄ =
n∑

i=1

pi(T ).
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The red crosses have coordinates (Ne, Ni), and the blue circles have coordinates
(Ne, P̄ ). Obviously, 15 edges could be sufficient to evacuate 15 nodes of type
(1) towards nodes of type (2). However, we remark that the number of isolated
nodes of type (1) can be relatively high, even with a dense topology. For example,
some of the generated networks admit 70 edges and 5 isolated nodes of type (1).
Furthermore, the panic level can remain high after a large time, even if the
number of evacuated nodes of type (1) is law, which means that the asymptotic
result of Theorem 2 has to be qualified. In other words, a dense topology is not
an absolute warranty for the network to converge to the trivial equilibrium that
corresponds to the return of all individuals to a daily behavior. Finally, the cloud
of blue circles can be approximated by an heuristic inverse power law (see gray
curve in Fig. 2) of the form

P̄ =
k1
Nν

e

− k2,

with positive coefficients k1, k2, ν, which can be used for prediction. This numeri-
cal computation motivates the introduction of an optimal control process in order
to limit the panic level at a reasonable level.

3 Optimal Control Problem

In this section, we introduce an optimal control problem, related to the expected
synchronization state of PCR networks, and show the existence of a solution to
that problem.

3.1 Synchronization Under Control

In order to avoid the possible persistence of panic pointed above, we consider
a multiple control u = (u0, u1, . . . , uk) for the network problem (4), in which
u0 models an internal control introduced on each node in order to facilitate the
evolution from p to c (see Fig. 3), and (u1, . . . , uk) corresponds to an external
control exerted in order to increase the coupling strength along each edge in the
network. Thus we consider the following general control problem

Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, (5)

where Ψ̃(t, X, u) =
(
ψ̃(t, x1, u), . . . , ψ̃(t, xn, u)

)T , with

ψ̃(t, x, u) =

⎛

⎜
⎜
⎝

−Br + γ(t)q(1 − r) + f(r, c)rc + g(r, p)rp
B1r − C2c + (C1 + u0)p − f(r, c)rc + h(c, p)cp − ϕ(t)c θ

B2r + C2c − (C1 + u0)p − g(r, p)rp − h(c, p)cp
−γ(t)q(1 − r)

⎞

⎟
⎟
⎠ ,

where θ = r + c + p + q and the matrix L̃(ε, u) is defined by

L̃(ε, u) = L(ε1 + u1, . . . , εk + uk). (6)
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The internal control u0 appears in the system through the term (C1 + u0)p,
whereas the external controls (u1, . . . , uk) appear through the coupling terms
(εi + ui)ri, (εi + ui)ci, (εi + ui)pi, 1 ≤ i ≤ k.

Remark 2. For the internal control u0, awareness campaigns can be organized
in the areas for which a high potential of catastrophic event is identified; those
campaigns can be integrated to the educational programs to better prepare indi-
viduals to the known risks. External controls u1, . . . , uk can be made through
rescue services, in order to clear some hindered avenue, or to repair any urban
installation. We emphasize that it is a work in progress, in collaboration with
geographers and psychologists, to establish an exhaustive list of possible actions
in concordance with the mathematical control functions (u0, u1, . . . , uk).

The aim of introducing the control u = (u0, u1, . . . , uk) is to limit panic at a
reasonable level in complex networks for which we can predict, using Theorem 2,
a persistence of panic on nodes of type (1). However, we will see below that the
solution of the control problem satisfies qi(t) > 0 for all t > 0, 1 ≤ i ≤ n,
and for each initial condition such that qi(0) > 0, 1 ≤ i ≤ n (see Eq. (10)).
This demonstrates that the trivial equilibrium 0 ∈ R

4n cannot be reached in a
finite time, when starting from such initial conditions. A more pragmatic goal
would be to reach a neighborhood N of the trivial equilibrium. For instance, we
can look for a multiple control so that the panic level is limited under a given
proportion of the total population after a finite time.

3.2 Performance Criterion

In what follows, we denote by U the set of admissible control functions, com-
posed with Lebesgue-integrable functions u = (u0, u1, . . . , uk) for which there
exists T > 0 such that u is defined on [0, T ] with values in K = [0, 1]k+1. Note
that T may depend on u. Let u = (u0, u1, . . . , uk) ∈ U denote an admissible
control for the general control problem (5). Applying this multiple control, we
aim to reach a neighborhood N of the trivial equilibrium 0 ∈ R

4n which corre-
sponds to a synchronization state of the network. Additionally, we would like to
minimize on U the performance index:

J(X0, u, T ) =
∫ T

0

[
n∑

i=1

p2i (t) + u2
0(t) +

k∑

l=1

u2
l (t)

]

dt, (7)

which models the wish to limit the level of panic during the control process, while
mobilizing the less rescue services to operate during the catastrophic event.

Finally, we can state the optimal control problem for the complex network
of non-identical PCR systems. The problem is to find a pair (X, u) defined on
some interval [0, T ], such that u ∈ U and

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, t > 0,

X(0) = X0, X(T ) ∈ N ,

min
u∈U

J(X0, u, T ),
(8)
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where X0 is a given initial datum in (R+)4n, and N denotes a neighborhood of
the trivial equilibrium 0 ∈ R

4n.

3.3 Existence of an Optimal Control

Theorem 3. Let u = (u0, u1, . . . , uk) denote a multiple control with non-
negative values. We assume that u is continuous in t and bounded. Then for
any X0 ∈ (R+)4n, the initial value problem

{
Ẋ = Ψ̃(t, X, u) + L̃(ε, u)HX, t > 0,

X(0) = X0,
(9)

admits a unique global solution whose components are non-negative and bounded.
Furthermore, the optimal control problem (8) for the complex network of PCR
systems admits a solution (X0, u∗), with u∗ ∈ U minimizing (7).

Proof. Given any initial condition X0 ∈ (R+)4n, existence and uniqueness of a
local in time solution X(t, X0) to problem (9), defined on some interval [0, τ ]
with τ > 0, are a straightforward consequence of Cauchy-Lipschitz Theorem [8].

Non-negativity. In order to prove the non-negativity property, we introduce
a modified problem as follows. For x̂ =

(
r̂, ĉ, p̂, q̂

) ∈ R
4, define

ψ̂
(
x̂, u

)
=

(
ψ̂1

(
x̂, u

)
, ψ̂2

(
x̂, u

)
, ψ̂3

(
x̂, u

)
, ψ̂4

(
x̂, u

))T

with

ψ̂1

(
x̂, u

)
= +γq̂(1 − r̂) − Br̂ + f(r̂, ĉ)r̂ĉ + g(r̂, p̂)r̂p̂

ψ̂2

(
x̂, u

)
= B1r̂ − C2ĉ + (C1 + u0) |p̂| − f(r̂, ĉ)r̂ĉ + h(ĉ, p̂)ĉp̂ − ϕĉθ̂

ψ̂3

(
x̂, u

)
= B2r̂ + C2ĉ − (C1 + u0)p̂ − g(r̂, p̂)r̂p̂ − h(ĉ, p̂)ĉp̂

ψ̂4

(
x̂, u

)
= −γq̂(1 − r̂),

where θ̂ = r̂ + ĉ + p̂ + q̂ (we omit the dependence in t in order to lighten our
notations). Next, for X̂ =

(
x̂1, . . . , x̂n

)
, consider the modified network problem

˙̂xi = ψ̂
(
x̂i, u

)
+

n∑

k=1
k �=i

L̃ikH |x̂k| −
n∑

k=1
k �=i

L̃ikHx̂i, 1 ≤ i ≤ n,

with the notation |x̂| =
( |r̂| , |ĉ| , |p̂| , |q̂| ), and L̃ik denoting the coefficient of

index (i, k) in the matrix L̃ = L̃(ε, u). For the same initial condition X0 as in
the non-modified problem, existence and uniqueness of a local in time solution
X̂(t, X0) defined on some interval [0, τ̂ ] with τ̂ > 0, are also obtained by Cauchy-
Lipschitz Theorem.

Now, we recall that H = diag {1, 1, 1, 0} (see Eq. (3)), which means that the
q̂i components, 1 ≤ i ≤ n, are not coupled. It follows that

q̂i(t) = q̂i(0)e− ∫ t
0 γ(s)(1−r̂i(s))ds, t ∈ [0, τ̂ ], 1 ≤ i ≤ n, (10)
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which implies q̂i(t) ≥ 0 for all t ∈ [0, τ̂ ] and 1 ≤ i ≤ n, since q̂i(0) ≥ 0. Let us
next examine the non-negativity of other components r̂i, ĉi and p̂i, 1 ≤ i ≤ n. We
employ a truncation method presented in [12]. Define the real-valued function χ
on R by

χ(s) =

{
0 if s > 0,
1
2s2 if s ≤ 0.

The function χ is of class C 1 on R, with χ′(s) = 0 if s > 0, χ′(s) = s if s ≤ 0.
Furthermore, it enjoys the properties

χ(s) ≥ 0, χ′(s) ≤ 0, 0 ≤ χ′(s) s = 2χ(s), ∀s ∈ R. (11)

Next we introduce for each i such that 1 ≤ i ≤ n the function ρi defined by

ρi(t) = χ
(
r̂i(t)

)
, t ∈ [0, τ̂ ].

We easily prove that ρi(t) = 0 for all t ∈ [0, τ̂ ], thus r̂i(t) ≥ 0 for all t ∈ [0, τ̂ ].
Applying the same method leads to ĉi(t) ≥ 0 and p̂i(t) ≥ 0 for all t ∈ [0, τ̂ ].

Hence, the components of the solution X̂(t, X0) of the modified problem are
non-negative, so X̂(t, X0) is also a solution of the initial non-modified problem
on [0, τ̂ ]. By uniqueness, we have X̂(t, X0) = X(t, X0) on [0, τ ]∩ [0, τ̂ ]. Finally,
it is seen that τ = τ̂ , thus we have proved the non-negativity of the components
of X(t, X0) on [0, τ ].

Boundedness. In order to prove the boundedness of the solution, we introduce
the function θ defined by

θ(t) =
n∑

i=1

[
ri(t) + ci(t) + pi(t) + qi(t)

]
, t ∈ [0, τ ].

After basic computations, we prove that θ̇(t) ≤ 0 for all t ∈ [0, τ ]. This implies
that θ(t) ≤ θ(0) for all t > 0, which guarantees the boundedness of the solution.

Optimal Control Problem. The existence of an optimal control follows from
Theorem III.4.1 in [7], since Ψ̃ and L̃ are linear in u, K is convex, and J is
defined by integrating a convex function. ��

4 Numerical Computation of an Optimal Control

We end our paper with two numerical computations of optimal controls for two
distinct topology disposals of a given PCR network of 8 nodes, composed with
4 nodes of type (1) and 4 nodes of type (2). For each network, the values of the
parameters are B1 = B2 = 0.3, C1 = 0.1, C2 = 0.2, αi = δi = μi = 0.01, and the
neighborhood N of the trivial equilibrium which is aimed to be reached after
a finite time is defined by N = [0, 10−1]32. The values of other parameters are
unchanged. This second computation has also been performed on the server of
the Laboratory of Applied Mathematics at University of Le Havre Normandie,
using the free and open-source optimal control software BOCOP developed at the
INRIA [11].
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Remark 3. The two topology disposals presented in this section are inspired by
the shape of geographical networks, used for the simulation of panic spreading
in the case of a tsunami of low intensity on the Mediterranean coast [6]: nodes
of type (1) correspond to exposed beaches, while nodes of type (2) model refuge
zones in the city center.

4.1 Symmetric Topology

First, we examine a symmetric topology shown in Fig. 3. Nodes 7 and 8 are
not evacuated towards any node of type (2), thus we can predict, by virtue of
Theorem 2, a persistence of panic on this network. We apply a multiple control
(u0, u1, . . . , u8) on this network, and compute an optimal control with respect
to the performance criterion J given by (7). The results of the computation are
presented in Fig. 4.

1 2

3 45 6

7 8

ε1 ε2

ε3 ε4

ε5

ε6
ε7 ε8

Internal control u0

External controls ui, 1 ≤ i ≤ 8

Fig. 3. Symmetric topology for an 8 nodes PCR network, composed with 4 nodes of
type (1) (depicted in red) and 4 nodes of type (2) (depicted in green). Nodes 7 and 8
are not evacuated towards any node of type (2). (Color figure online)

In this first case, the value of the performance criterion is Jmin 	 4.1734, and
the final time is Tf 	 14.11. We observe that the main control that has to be
exerted is the internal control u0. This internal control favors the behavioral evo-
lution from panic p to control behavior c on each node. Meanwhile, the controls
ui, 1 ≤ i ≤ 4, exerted along the edges ei, 1 ≤ i ≤ 4, facilitate the evacuation of
individuals of nodes 5 and 6. Finally, the controls ui, i ∈ {7, 8}, exerted along
the edges ei, i ∈ {7, 8}, are of very low intensity. Roughly speaking, it seems
unnecessary to displace individuals from a node of type (1) towards another node
of type (1), if the latter is not itself evacuated towards any node of type (2).
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Fig. 4. Numerical results for the computation of an optimal control for the 8 nodes
PCR network shown in Fig. 3.

4.2 Asymmetric Topology

Next, we consider an asymmetric topology presented in Fig. 5, motivated by
the well-known symmetry-breaking effect [10]. This topology is of great interest,
since it exhibits the cohabitation of a cycle, given by the path 2−5−6−8−4−2,
and a tree, centered at node 5, with leaves 1, 3, 6, 7. With this topology, node
7 is the only non-evacuated node of type (1).

1 2

3 45 6

7 8

ε1
ε2

ε3

ε4

ε5

ε6

ε7 ε8

Fig. 5. Asymmetric topology for an 8 nodes PCR network, composed with 4 nodes of
type (1) (depicted in red) and 4 nodes of type (2) (depicted in green). Node 7 is not
evacuated towards any node of type (2). (Color figure online)

The numerical results are shown in Fig. 6. In this second case, the value of the
performance criterion is Jmin 	 4.2187, and the final time is Tf 	 15.17. Once
again, we observe that the main control that has to be exerted is the internal
control u0. The controls u1 and u3 are equal to each other. Surprisingly, the
control u6 exerted between the nodes 5 and 6 which are both of type (1) is of
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Fig. 6. Numerical results for the computation of an optimal control for the 8 nodes
PCR network shown in Fig. 5.

greater intensity than in the first case, which seems to be a consequence of the
effect of the cycle 2 − 5 − 6 − 8 − 4 − 2. Finally, the control u5 exerted along the
edge e5 admits very low values, since it can worsen the panic level to displace
individuals from the node 2 of type (2) towards the node 5 of type (1); this low
value of the control u5 seems to “cut” the cycle 2 − 5 − 6 − 8 − 4 − 2 between
nodes 2 and 5.

5 Conclusion

In this paper, we have presented, through a computational approach, the pos-
sibility to reach a synchronization state in complex networks of PCR systems,
for which we can predict a persistence of panic, by applying an optimal con-
trol process. Numerical computations qualify theoretical results, and highlight
the decisive role of the internal control exerted on each node of the network. In
a future work, we aim to deepen our collaboration with geographers and psy-
chologists, in order to extend our study to reaction-diffusion networks of PCR
systems, by taking into account the effect of a local diffusion of panic by random
walk.
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