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Abstract. During the last century, X-ray science has enabled break-
through discoveries in fields as diverse as medicine, material science or
electronics, and recently, ptychography has risen as a reference imaging
technique in the field. It provides resolutions of a billionth of a meter,
macroscopic field of view, or the capability to retrieve chemical or mag-
netic contrast, among other features. The goal of ptychography is to
reconstruct a 2D visualization of a sample from a collection of diffrac-
tion patterns generated from the interaction of a light source with the
sample. Reconstruction involves solving a nonlinear optimization prob-
lem employing a large amount of measured data—typically two orders of
magnitude bigger than the reconstructed sample—so high performance
solutions are normally required. A common problem in ptychography is
that the majority of the flux from the light sources is often discarded to
define the coherence of an illumination. Gradient Decomposition of the
Probe (GDP) is a novel method devised to address this issue. It provides
the capability to significantly improve the quality of the image when par-
tial coherence effects take place, at the expense of a three-fold increase of
the memory requirements and computation. This downside, along with
the fine-grained degree of parallelism of the operations involved in GDP,
makes it an ideal target for GPU acceleration. In this paper we propose
the first high performance implementation of GDP for partial coherence
X-ray ptychography. The proposed solution exploits an efficient data lay-
out and multi-gpu parallelism to achieve massive acceleration and effi-
cient scaling. The experimental results demonstrate the enhanced recon-
struction quality and performance of our solution, able process up to 4
million input samples per second on a single high-end workstation, and
compare its performance with a reference HPC ptychography pipeline.

1 Introduction

Ptychography [1] permits imaging macroscopic specimens at nanometer wave-
length resolutions while retrieving chemical, magnetic or atomic information
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about the sample. It has proven to be a remarkably robust technique for the
characterization of nano materials, and it is currently used in scientific fields as
diverse as condensed matter physics [2], cell biology [3], materials science [4] and
electronics [5], among others. Ptychography is based on recording the distribu-
tion of the diffraction patterns produced by the interaction of an X-ray beam
(illumination) with a sample. The diffracted signal contains information about
features much smaller than the size of the beam, making it possible to achieve
higher resolutions than with standard scanning transmission techniques. Only
the intensities of the diffracted illumination are measured, and one has to retrieve
the corresponding phases to be able to reconstruct an image of the sample. To
solve this problem, diffraction patterns are obtained from overlapping regions
of the sample, producing a redundancy that can be used to recover the original
phases of the signal.

Fig. 1. Overview of a ptychography experiment and reconstruction. An illumination
source (X-ray beam) consecutively scans regions of the sample to produce a stack of
phase-less intensities. The stack and the geometry of the measurements are fed to an
iterative solver that retrieves the phases and reconstructs an image of the original
sample.

An overview of ptychography is depicted in Fig. 1. First, a sample is repet-
itively scanned with an X-ray beam, producing diffraction patterns that are
recorded on a 2D detector. Each measurement is stored as a frame, and its exact
location in the sample is also registered. Secondly, the stack of frames and the
measurements’ geometries are fed to a non-linear iterative solver that recovers
the phases of the measurements. The solver optimizes based on two main con-
straints: (1) the match between overlapping regions of the frames, and (2) the
match with a given model for the data. After the solver reaches an exit condition,
the output is the overlap of the stack of frames (now with phases) in their cor-
responding geometries. This overlap corresponds to the 2D reconstructed image
of the sample.
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Normally, the ptychography reconstruction problem can only be solved if the
illumination employed is coherent. The (spatial) coherence of an illumination
defines how correlated are different points of its wavefront. To achieve higher
coherence, X-ray microscopes employ apertures to filter the illumination, pro-
ducing an homogeneous wavefront where different points are virtually identical
in phase and amplitude. This solution wastes the majority of the X-ray flux,
which is left behind the aperture. Overall, research institutions employ consider-
able resources to produce brighter X-ray sources, while over 90% of the photons
are discarded to produce a coherent illumination.

A recent study from the CAMERA team at the Lawrence Berkeley National
Laboratory (LBNL) proposed a novel algorithm that allows a ptychographic
reconstruction with an incoherent source of illumination. The new algorithm,
named Gradient Decomposition of the Probe (GDP) [6], has been proven to
achieve successful reconstructions with significantly incoherent illuminations.
The GDP algorithm also allows for a faster experimental data acquisition time:
having more flux means you need less exposure time which can accelerate the
whole measuring process up to an order of magnitude.

The benefits of GDP come at the expense of a remarkable increase in arith-
metic operations and memory requirements with respect to a problem that is
already computationally expensive. In ptychography, the stack of frames is nor-
mally two orders of magnitude bigger than the image reconstructed, and it is
employed in practically all the operations of the solver. The GDP algorithm
employs additional variables that require a three-fold increase of the memory
footprint and computation with respect to baseline ptychography. On top of
that, GDP employs an additional sub-solver that iteratively refines the illumi-
nation at every iteration. On the bright side, the operations employed in both
baseline and GDP ptychography present high fine-grained parallelism and few
dependencies. This parallelism is usually exploited in ptychographic reconstruc-
tions, frequently employing many-core accelerators, such as GPUs [7–9].

In this paper we propose the first high performance implementation of a
partial coherent ptychography solution using GDP. We design an implemen-
tation that exploits the GDP parallelism and data requirements, making use
of multiple GPU devices to achieve state-of-the-art reconstruction times. We
compare the performance of the proposed implementation with that of baseline
SHARP [7], a reference HPC ptychography solution, heavily optimized and also
multi-GPU accelerated. The experimental results demonstrate how our imple-
mentation achieves only 2.5 times slower reconstruction times, on average, com-
pared with standard coherent ptychography, while handling with 3 times more
data and performing 4 to 5 times more arithmetic operations. The proposed
solution has the key benefit of being able to process non-coherent illumination
measurements, potentially leading to more flux utilization, increased robustness
to non-stable sample exposures, and the capability to use less measurements
when employing partially coherent illumination sources. Experimental results
also assess the increased quality of the proposed method and implementation
when handling partially coherent data, as compared with that of baseline coher-
ent ptychography.
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The paper is structured as follows. Section 2 overviews the main con-
cepts regarding ptychography reconstruction, and introduces the GDP model.
Section 3 presents the proposed algorithm and implementation with a detailed
description of the challenges behind its design and the techniques employed, and
Sect. 4 assesses its performance through experimental results. The last section
summarizes this work.

2 Overview of Ptychography and GDP

A coherent ptychography problem can be defined as follows. A X-ray illumination
(or probe) ω scans through a sample u, while a 2D detector collects a sequence J
of phaseless intensities f . The goal is to retrieve a reconstruction of the sample
u from the sequence of intensity measurements f . In a discrete setting, u ∈ C

n

is a 2D image with
√

n × √
n pixels, ω ∈ C

m̄ is a localized 2D probe with√
m̄ × √

m̄ pixels, and fj = |F(ω ◦ Sju)|2 is a stack of phaseless measurements,
with fj ∈ R

m̄
+ ∀0 ≤ j ≤ J − 1. The operation | · | represents an element-wise

absolute value of a vector, whereas ◦ denotes an element-wise multiplication,
and F represents a normalized 2-dimensional discrete Fourier transform. Each
Sj ∈ R

m̄×n corresponds to a binary matrix that selects a region j of size m̄ from
the sample u.

Besides recovering the sample u, in a ptychographic experiment the illumi-
nation is rarely perfectly known, and thus both sample and illumination need to
be retrieved jointly. This is commonly referred to as blind ptychographic phase
retrieval [10]. The joint problem can be formulated as:

To find ω ∈ C
m̄ and u ∈ C

n, s.t. |A(ω, u)|2 = f, (1)

where bilinear operators A : Cm̄ ×C
n → C

m and Aj : Cm̄ ×C
n → C

m̄ ∀0 ≤ j ≤
J − 1, are denoted as:

A(ω, u) :=(AT
0 (ω, u),AT

1 (ω, u), · · · ,AT
J−1(ω, u))T ,

Aj(ω, u) :=F(ω ◦ Sju),

and f := (fT
0 , fT

1 , · · · , fT
J−1)

T ∈ R
m
+ .

There are multiple algorithms designed to solve the ptychography problem.
The most popular ones are the extended Ptychographic Iterative Engine (ePIE)
[11], Difference Map [10,12], Maximum Likelihood (ML) method [13], Proximal
Splitting algorithm [14], Relaxed Averaged Alternating Reflections (RAAR) [15]
based algorithms [7], and generalized Alternating Direction Method of Multipli-
ers (ADMM) [16,17] for blind ptychography [18,19].

When using a partial coherent illumination, modeling the ptychohraphy prob-
lem is more challenging. GDP proposes a model based on describing the illumi-
nation as the superposition of a single coherent illumination convolved with
a separable translational kernel. This way, the partial coherence effect can be
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handled using this single illumination, its gradient, and the variance of the con-
volution kernel. Following this idea, GDP is based on the following model:

∑
ξ
|Fx→q (ω(x − ξ)Sju(x))|2 κ(ξ) = fpc,j(q), (2)

where fpc represents a sequence of partially coherent intensity measurements,
κ(ξ) is a 2D kernel with variance (second order moments) σ2

1 , σ2
1 and σ12 (σ2

1σ
2
2−

σ2
12 ≥ 0). Then, the Taylor expansion of ω can be derived and simplified as:

fpc 	 |A(ω̃, u)|2 + σ2
1 |A(∇1ω̃, u)|2 + σ2

2 |A(∇2ω̃, u)|2, (3)

with:
ω̃ := ω +

1
2
(σ2

1∇11ω + σ2
1∇22ω + 2σ12∇12ω),

and ∇1, ∇2, ∇11, ∇22, ∇12 corresponding to the forward first and second order
finite difference operators (gradients) with respect to x, y, xx, yy and xy direc-
tions. Considering the sequence of measurements j, we can define the nonlinear
operator Gj : Cm̄ × C

n × R
2 → R

m̄
+ as:

Gj(ω̃, u, σ) := |Aj(ω̃, u)|2 + σ2
1 |Aj(∇1ω̃, u)|2 + σ2

2 |Aj(∇2ω̃, u)|2,

with σ := (σ1, σ2), and finally, we can establish the GDP nonlinear optimization
model as:

min
ω̃,u,σ

1
2

∑
||√fpc,j − Gj(ω̃, u, σ)||2, (4)

where || · || represents the L2 norm in Euclidean space.

3 High Performance GDP Solution

The GPD model is proposed in [6] together with an algorithm employing the
ADMM framework to efficiently solve the derived subproblems (GDP-ADMM).
In this work we design an implementation of GDP-ADMM and also propose
a novel one employing the RAAR algorithm (GDP-RAAR). In the following
section we focus on GDP-RAAR to describe the implementation, although the
main insights and operations are common to both. The implementations and
algorithms of this work are developed inside the SHARP framework, and some
of the technologies and operations are common to the baseline coherent solutions.
In this section, we focus on the main key operations unique to the GDP method;
please refer to [7,9] for a detailed description of other aspects of the end-to-end
solution not described in here.

The challenge deriving from the GDP model is threefold. First, the algorithm
requires to maintain in memory additional high dimensional variables. Second,
the main ptychography operations need to be reformulated to handle the new
problem. Third, to solve the illumination refinement, an additional inner solver
needs to be considered at every ptychography iteration. The standard mem-
ory footprint of the ptychography problem involves the following structures.
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There are two main inputs: (1) a stack of 2D frames (framesm[x, y, z]) contain-
ing the floating point values from the original measured intensities, and (2) a
vector containing the coordinates of each one of the frames in the sample 2D
image (int2 coord[z]). Then, at least three additional structures are required in
the iteration process: sample[i, j], illum[x, y], and framess[x, y, z], containing a
2D image of the object, the refined illumination and the stack of solution frames
(with phases), respectively. Each one of these contains phase and amplitude
information, and thus they are stored as complex values (float2).

The main idea behind the GPD model is to fit the stack of frames with
constraints implying the original illumination and also its gradient on the x
and y directions. Because of this, we need to consider three different variables
for the stack of solution frames: framess1, framess2, and framess3, each one
float2 with size [x, y, z]. This increase in memory requirements is very relevant
performance-wise. A real case example: to generate an image with size 1024 ×
1024, a stack of measured frames of size 1500 × 256 × 256 is collected, which
represents a ratio of 1:94 output/input. When using GDP, every pixel in the
output (float2) is iteratively produced from 94 × 1 float framesm × 3 float2
framess elements, which constitutes a ratio of 2:658 in floating point values. On
top of it, practically all the operations involved in a ptychography reconstruction
are memory bounded, so proper memory managing and locality becomes a key
factor to achieve performance.

3.1 The Implementation

Algorithm 1 describes the high level outline of the proposed implementation
using the new GDP-RAAR algorithm1. Note that all the operations are per-
formed in GPU, using either custom CUDA kernels or Thrust operands. Most
of the operations are implemented in a fused fashion in order to minimize GPU
global memory transfers.

In this work we propose an scheme where all three framess1,2,3 variables are
stored as a single interleaved memory structure to maximize locality and perfor-
mance. In Algortihm 1, framess stores the three framess1,2,3 variables, with a
total size [x×y×z×n interleaved ] and n interleaved = 3 being the stride. The
motivation behind this design is related to the topology of the operations per-
formed (how inputs contribute to the outputs). Baseline ptychography involves
four kind of core operations: (1) Split, (2) Overlap, (3) 2D Fast Fourier Trans-
forms (FFTs), and (4) and point-wise additions, multiplications, divisions, etc.

1 Algorithm 1 presents a simplified outline of the method. Multiple operations and
memory structures regarding regularization terms, stabilizers, background removal
optimization, etc. have been omitted for simplicity.
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Algorithm 1. GDP -RAAR

Parameters: framesm[x × y × z], coord[z], itermax,
n interleaved = 3, tolerance

1: allocate sample[i × j], illum[x × y × n interleaved ],

framess[x × y × z × n interleaved ]

2: illum = InitializeIllum(framesm)

3: sample = 1, framess = illum × Splitin t (sample)

4: for k = 0 to itermax − 1 do

5: framess = ForwardFT (framess, stride = n interleaved)

6: framess = UpdateF rames(framess, framesm)

7: framess = InverseFT (framess, stride = n interleaved)

8: illum = GDescent(min{||Splitin t (sample)×(I,∇1,∇2)illum1−framess||})

9: sample =
Overlapin t (framess × illum∗)

Overlapin t (|illum|2)
10: residual = ComputeResidual(framess, framesm)

11: if residual < tolerance then break
12: framess = RAAR Update(illum × Splitin t (sample), framess)

13: end for
14: return sample, illum

The standard Overlap operation takes as inputs frames[x, y, z] and coord[z],
and adds each frame into a 2D image2, on its respective coordinate, as follows:

sample[ : , : ] = 0
for( i = 0; i < z; i + +){

sample[ coord[ i ] ] + = frames[ :, :, i ] },

with the index”:” referring to the full slice in a dimension. The Split operation
does the opposite: for each coordinate, a frame is extracted from an input 2D
image, constructing an output 3D stack of frames. In GDP, the Overlap and
Split operations are performed considering the three stack of frames variables.
Each framess1,2,3 is added into a single image for the Overlap, and a single
image is split into three stack of frames. The interleaved strategy mentioned
above permits to maximize data locality in these operations.

Algorithm 2 presents the interleaved Overlap CUDA kernel (Overlapint)
implemented for GDP. The thread to data mapping is as follows: each CUDA
thread block processes a single frame from framess, iterating over the frame
with a stride of samples equal to the thread block size (block dim) (line 12). For
each pixel in the original frame size [x, y], each thread accumulates in a local
register the contribution from all three framess1,2,3 variables, iterating over the
interleaved stride (line 7). Then, the accumulated value can be written into the

2 Note that normalization may be required afterwards.
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Algorithm 2. Overlapint

Parameters: sample[i × j], framess[x × y × z × n interleaved],
coord[z], n interleaved = 3
1: frame size = x × y

2: n frame = block id

3: for f = thread id to frame size do

4: accum output = 0

5: out index = ComputeSampleCoord(f, coord [n frame], frame size)

6: frames index = (frame size × n frame + f) × n interleaved

7: for p = 0 to n interleaved do

8: accum output + = framess[frames index + p ]

9: p = p + 1

10: end for

11: sample[out index] = AtomicAddition(sample[out index], accum output)

12: f = f + block dim

13: end for

output image employing a single atomic addition operation (line 11). The atomic
operation is employed as an efficient way to handle the collision caused by having
coordinates from different frames overlapping into the sample.

The interleaved Split operation (Splitint) is handled similarly as in the
Overlap case. The main difference is that no atomic operation is required in it.
When splitting the sample into frames, each frame is normally multiplied by
the illumination. In GDP, each framess1,2,3 variable needs to be multiplied by
the illumination, its horizontal gradient and its vertical gradient, respectively.
To reduce computation, the gradients of the illumination are computed once per
iteration and stored as an interleaved variable with size [x× y ×n interleaved ].
This strategy permits performing efficient straightforward point-wise operations
between the interleaved frames and the interleaved illumination variables. In
Algorithm 1, illum stores the interleaved illumination structures; it is initial-
ized in InitializeIllum (line 2) employing the information from the measured
frames (framesm) to generate an initial guess. Then, the same function com-
putes and stores the x and y gradients of the produced illumination.

The interleaved strategy is also beneficial when computing the L2 norm of the
framess1,2,3 variables. In UpdateFrames and in the background noise mod-
eling (not shown in Algortihm 1 for simplicity) the sum of the square root of the
L2 norm needs to be computed, benefiting again from the enhanced locality of
the interleaved structures. In the case of the 2D FTT operations, the interleaved
layout actually reduces memory locality. To handle this issue with minimum
performance impact we employ the in-build strided FFT feature implemented in
cuFFT . This allows to transparently process our data through FFTs and back,
without having to handle any reorganization of it or additional computation.
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The GDP model requires to solve an additional subproblem for the illumina-
tion refinement step (Algorithm 1 line 8). The standard refinement is performed
by fixing the current estimate of the sample and minimizing the difference with
the framess, solving a problem in the form ‖Split(sample)×illum−framess‖,
which is a linear problem with diagonal matrix that can be solved in a single
step. In GDP, the illumination refinement step couples the GDP expansion of the
illumination (I,∇1,∇2)illum1, with the Splitint(sample), and the interleaved
framess in the form:

‖Splitint(sample) × (I,∇1,∇2)illum1 − framess‖,

with I and illum1 referring to the identity matrix and the original illumination
variable, respectively. This poses a linear problem with a sparse band-diagonal
matrix, which we solve using the gradient descent algorithm with a fixed step size,
referred in Algorithm 1 as GDescent. Instead of using the conjugate gradient
described in the original GDP paper, we choose the gradient descent algorithm
because it avoids the reduction operations used to compute the step size and
conjugate directions scaling factors, thus offering an increased performance. The
algorithm is implemented using custom CUDA kernels that allow pre-computing
in place multiple factors, a custom manipulation of the interleaved structures,
and permits fusing the iterating process with pre- and post-process operations,
like the x, y gradient computation of the new illumination as a last step of the
refinement.

The GDP-RAAR implementation proposed in this paper is also accelerated
using multi-GPU over MPI/NCCL. The partition employed is similar to the one
used in [7,9]. The main idea is to divide both framesm and framess variables
across different GPUs so that each independent device process only a subset of
frames. Then, communication is required every time the sample and the illu-
mination are updated. The communication operation is essentially an AllRe-
duce directive (Reduce and Broadcast) that performs a summation of the partial
results of each independent GPU. The communication directives are performed
in-place, using NCCL if it is installed on the system, or over standard MPI
otherwise. Given the significant increase of the problem size of GDP, the pro-
posed implementation greatly benefits from multi GPU execution when executed
on high-end workstations. An additional feature is that the communication fre-
quency can be adapted to occur every N iterations, employing previous iteration
data for the non-local areas of the image. For the proposed GDP implementa-
tion, this features enhances performance only with small problem sizes per GPU
(<30 millions measured samples).

4 Experimental Results

The results presented below have been executed in a dual socket workstation
with two Intel Xeon E5-2683 v4, with a clock frequency of 2.10 GHz and 16
cores each. The machine is equipped with 4 dual-slot Tesla K80 GPUs, for a
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total of 8 GK210B devices, each device with 2496 CUDA cores. The implemen-
tations reported here have been compiled using gcc 5.4.0 and nvcc 8.0. The
profiling results have been obtained with both Nvidia visual and inline profilers,
nvvp and nvprof, respectively. All execution times and performance results con-
sider the full pipeline execution time, including loading the data from memory,
GPU runtime initialization, memory allocation and transfers, and writing back
the reconstructed image and illumination. The experiments below all employ
the GDP-RAAR algorithm described in the previous section but the reconstruc-
tion results and performance are also comparable when using GDP-ADMM. All
experiments are measured using 100 solver iterations, which is enough to achieve
convergence using standard tolerance thresholds for the datasets presented in
here. The performance analysis and results below can also be extrapolated when
running more iterations.

The first experiment, reported in Fig. 2, evalutes the reconstruction quality of
the proposed GDP-RAAR algorithm when retrieving a partial coherent illumi-
nation and sample, as compared with the baseline RAAR method from SHARP.

(a) (b) (c)

(d) (e) (f)

Fig. 2. First column: baseline reconstruction using a standard coherent illumination
using RAAR. Second column: reconstruction using a partial coherent illumination using
RAAR. Third column: reconstruction using a partial coherent illumination using the
proposed GDP-RAAR algorithm and implementation. Top row (a, b, c) corresponds
to the amplitude images retrieved, whereas the bottom row (d, e, f) depicts the phase
images from the same reconstructions.
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In order to perform this test, a sample was measured with a standard coherent
illumination first (Fig. 2 first column) and then it was measured again using a
partial coherent illumination (Fig. 2 second and third columns). The first col-
umn represents our reference reconstruction and the second and third columns
report an actual partial coherence experiment, reconstructed using RAAR and
GDP-RAAR, respectively. Top and bottom rows correspond to the amplitude
and phase contrast, respectively, from the same reconstruction. This experiment
was conducted at the Advanced Light Source (ALS) in 2018, at the COSMIC
beamline, and the sample corresponds to a conglomerate of nanometer-sized gold
particles of uniform shape and size. Both coherent and partial coherent experi-
ments have virtually the same configuration, with both datasets containing 1600
frames of size 256 × 256 each. We can clearly see in Fig. 2 second column how
the RAAR algorithm introduces severe ghosting artifacts, specially around the
contour of the sample. Some areas of this reconstruction become significantly
blurry, specially on the top-right features of the amplitude image and top-center
and top-left areas of the phase image. The results reported in the third col-
umn of Fig. 2 show how the main artifacts introduced by RAAR are removed by
the proposed GDP-RAAR method. When using GDP, the ghosting artifacts are
almost completely gone, and the heavily blurred areas present the same quality
as the coherent reference reconstruction (see the top areas mentioned previously
in both amplitude and phase).

Fig. 3. Execution times of the proposed GDP-RAAR implementation, compared to
those of baseline RAAR, when running on 1 to 8 GK210B GPUs. The dataset and
configuration are the same presented in the experiment reported in Fig. 2.

The following test evaluates the execution time of the reconstruction results
presented in the previous experiment. Results are reported in Fig. 3, and show
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the time in seconds of RAAR and GDP-RAAR, when being executed on a sin-
gle GPU and on different multi-GPU settings. First, we can see the significant
increase in execution time required by GDP-RAAR, presenting execution times
ranging from 5.5 to 1.5 times slower than RAAR. This is consistent with the
increase in arithmetic operations required in GDP-RAAR: almost all arithmetic
involve 3 times more data, whereas the additional illumination solver performs
20 inner iterations per outer iteration, each iterations requiring multiple point-
wise multiplications, divisions, and gradients with high dimensional data. The
proposed implementation scales with the number of GPUs, achieving speedups
of 1.94, 3.09 and 4.39 when using 2, 4, and 8 GPUs, respectively. The reported
scaling is remarkably good, specially considering the fact that communication
across GPUs is performed three times per outer iteration, in order to share the
sample and illumination structures. This communication can significantly slow
down execution, as seen in the time results reported by RAAR. The amount of
computation and problem size that baseline RAAR handles is much less than
GDP-RAAR, and that is why the speedup gain with the increase of GPUs is
lower, as independent devices are not close to reach resource saturation. The
communication overhead on its turn becomes higher with the number of inde-
pendent executions, effectively reducing the performance of RAAR when running
on 4, 6 and 8 GPUs.

Fig. 4. Performance and scalability of the proposed GDP-RAAR implementation com-
pared to that of baseline RAAR, both executed on 2, 4 and 8 GK210B GPUs. The size
of the datasets employed range from 100 × 256 × 256 to 2500 × 256 × 256 measured
frames.
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The final experiment, reported in Fig. 4, analyzes the scalability of the pro-
posed method with respect to the problem size. In this case we employ a dataset
from an experiment performed in the ALS on 2015 that measured a cluster of
iron catalyst particles. We have selected different size slices of said experiment
to asses the performance of the proposed implementation with different input
sizes. The performance metric is given in samples/second (the higher the better).
The horizontal axis presents the different size datasets for their number of mea-
sured intensity samples (in millions). As a reference, we report the performance
of baseline RAAR, together with the proposed method, and each algorithm is
executed on 2, 4 and 8 GPUs. The experiment reveals how the proposed imple-
mentation achieves an almost perfect linear scaling when running on 2 GPUs.
When running on 4 and 8 GPUs, the scaling achieved is better than linear due
to the devices not being saturated at first by the smaller individual problem
sizes. This effect is very noticeable with the RAAR results, where an (almost)
saturation point is only reached with 2 GPUs and the biggest problem sizes.
We can also see how the speedup achieved by the GDP-RAAR multi gpu exe-
cution effectively scales with the problem size: the biggest dataset (240 million
samples) achieves an speedup of 1.92 and 3.13 when running on 4 and 8 GPUs,
respectively, with respect to a dual-GPU execution.

5 Conclusions

This paper presents the first GPU-accelerated implementation of GDP for high
performance partial coherent ptychography. We tackle the significant increase
of computational costs of GDP to produce a solution with a minimum per-
formance loss, while maintaining all the features offered by the method. We
design our implementation using an efficient interleaved data layout strategy
that enhances the memory locality and overall performance of the core opera-
tions of the solver. Multi-GPU parallelism is exploited, achieving linear scaling
and capability to process up to 4 million measured samples per second, on a sin-
gle high-end workstation. We also demonstrate how our implementation achieves
a drastic increase of reconstruction quality when dealing with partially coherent
light sources, with respect to standard ptychography. The proposed solution has
the increased benefit of being able to employ more flux, potentially reducing the
acquisition time up to an order of magnitude, while being more robust to non-
stable sample exposures. It also offers the capability to use less measurements
when employing partially coherent sources. The proposed implementation is cur-
rently installed and being used at the ptychography COSMIC beamline at the
Advanced Light Source at LBNL, and the binaries and source code are also open
to other DOE light sources.
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