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Abstract. In this paper, we model influenza propagation in the Rus-
sian setting using a spatially explicit model and a detailed human agent
database as its input. The aim of the research is to assess the applicabil-
ity of this modeling method using influenza incidence data for 2010–2011
epidemic outbreak in Saint Petersburg and to compare the simulation
results with the output of the compartmental SEIR model for the same
outbreak. For this purpose, a synthetic population of Saint Petersburg
was built and used for the simulation via FRED open source modeling
framework. The parameters related to the outbreak (background immu-
nity level and effective contact rate) are assessed by calibrating the com-
partmental model to incidence data. We show that the current version
of synthetic population allows the agent-based model to reproduce real
disease incidence.
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1 Introduction

Today 55% of world’s population lives in cities, and this number, according to
UN predictions, is expected to reach 68% by 2050 [31]. Thus, the importance of
cities for human societies is increasing over time. Due to their intricate structure,
modern cities constitute a perfect example of complex systems, and our ability
to understand them scientifically is limited [5]. So is the situation with the social
and economic processes within them.

One of the processes intrinsically connected with urban structure is influenza
epidemics. Seasonal influenza causes repetitive epidemic outbreaks resulting in
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high worker/school absenteeism, productivity losses and death cases due to dis-
ease complications. According to WHO [33], the corresponding annual number
of mortality cases reaches whopping 500 thousand. To anticipate the incoming
outbreaks and prepare healthcare infrastructure to fight with their detrimental
ramifications, statistical and mathematical models are widely used. The pre-
dictive force of these models is limited by the fact that the influenza outbreak
dynamics in urban settings is driven by a lot of factors, some of which are hard
to be quantified. Along with the weather factors [20,27,29], the important role is
played by the behavior of the human population, such as daily migration patterns
resulting in different effective contact probabilities [6,30]. In fact, the bigger a
city is, the milder is the response of the disease incidence to climate forcing and
the more important the human–related factors become [8]. These factors also
deserve attention due to occurrence of background immunity against influenza,
which is a result of repetitive flu outbreaks caused by similar flu strains [17].
It might be assumed that peculiarities of commuting patterns of citizens and
geographical distribution of their dwellings subsequently cause different distri-
bution of effective contacts between the susceptibles and the infectives, leading
to changes in immunity levels of the individuals in different cities. For instance,
a highly connected city, where mass action law assumption [34] generally holds,
might have an epidemic dynamics and consequently a distribution of the immune
quite different from the city with apparent geographical clustering. The accumu-
lation of these differences due to faster circulation of flu virus around the globe
might be the reason of the failure of the approach which was earlier used to
predict flu epidemics in Soviet Union [15]. The mentioned approach was based
on the assumption that a forthcoming influenza outbreak dynamics could be
predicted using the data from the cities already affected by the epidemic during
the season under consideration, which worked in 1970s, but is not true any-
more [22]. Modeling flu propagation using detailed population structures which
(somewhat) accurately reflect the peculiarities of urban contact patterns might
allow us to quantify the role of contact patterns on the formation of background
immunity and to assess how the differences in city structures lead to different
flu epidemic dynamics. This paper is considered to be the first step in the stated
direction.

The aim of this work is to create a detailed description of urban population
in the Russian setting and couple it with agent–based modeling framework to
perform a simulation of flu dynamics. Using our previous results obtained in the
field of flu outbreak modeling in Russia [19,21], we want to compare the output
of a spatially explicit model with the one of standard SEIR compartmental
model of Kermack–McKendrick type and to demonstrate the ability of the former
to produce more plausible results than the latter. For this purpose, we regard
influenza outbreak in Saint Petersburg in 2010–2011 as a case study. The city was
chosen due to large populace (it’s the second largest city in Russia), economic
and cultural importance, and abundance of detailed data on influenza incidence
(the records are available from 1935).
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2 Synthetic Population

“Synthetic population” is a synthesized, spatially explicit human agent database
(essentially, a simulated census) representing the population of a city, region or
country. By its cumulative characteristics, this database is equivalent to the real
population but its records does not correspond to real people – this fact helps
avoid privacy issues. In our research, we employed the approach for synthetic
population generation developed by RTI International [32], which was used by
various research groups to create populations for 50 US states, along with another
regions and countries. Statistical and mechanistic models built on top of the syn-
thetic populations helped tackle a variety of research problems, including those
connected with public health. Statistical analysis of opioid–related overdoses in
Cincinnatti [4] can be named as an example.

According to the standard of RTI International, a synthetic population con-
sists of several txt-files, each of them containing a table with every row being a
single record corresponding to some entity – an individual, a household, a work-
place, a school, etc. The full list of files with their short description is presented
in Table 1. Sticking to the same standard, we generated the files corresponding
to the population of Saint Petersburg. Since the data available for Saint Peters-
burg was not complete, we altered or omitted some of the methods, resulting in
a simplified population, which, however, seems to satisfy our demands related
to influenza modeling. The details of input data we used and the algorithms we
employed to generate the population follow.

2.1 Household Data

The principal data source for our synthetic population is 2010 data from “Edi-
naya sistema ucheta naseleniya Sankt Peterburga” (“Unified population account-
ing system of Saint Petersburg”) [11]. The data is represented in a form of
Excel spreadsheets containing records with house addresses and the correspond-
ing number of dwellers of certain age and gender (see Table 2).

To match the household addresses with the geographical coordinates and
assess the plausibility of the obtained geographical data, a computational algo-
rithm was developed and implemented using Python programming language.
The details of the algorithm implementation follow.

Adding Object Coordinates

– For each record:
• Form the address string using the information from the address fields of

the record in the format “city” + “street” + “house”.
• Feed the address string to Yandex.Geocoder online service [36] which

returns the latitude and the longitude of the object by this address.
• Add coordinates to a record.
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Table 1. File structure of a synthetic population for Saint Petersburg.

File Contents

Files used in the current population version

households.txt Contains the location and descriptive attributes for each
household. Household records in the households.txt file
link to individual person records in the people.txt table

people.txt Contains a record for each person, along with his or her
age and sex. These synthetic person records link to the
households.txt file (via the sp hh id field)

schools.txt Contains a record for each school, along with its zip code,
maximum capacity and coordinates

workplaces.txt Contains a record for each workplace, along with its
coordinates and size

Empty or omitted files

hospitals.txt Contains a record for each hospital, along with its
coordinates, number of physicians and beds. Contains zero
records in this version of the synthetic population

gq.txt Contains a record for each general quarters, along with
their type (prisons, student dorms, etc), coordinates and
capacity Contains zero records in this version of the
synthetic population

gq people.txt Contains a record for each person, which lives in general
quarters, along with his or her age and sex. These
synthetic person records link to the gq.txt file (via the
sp gq id field). Contains zero records in this version

pums p.txt Contains personal records from the public use microdata
series. Links to the people.txt file the serialno field.
Absent in this version of the synthetic population

pums h.txt Contains household records from the public use microdata
series. Links to the households.txt file the serialno field.
Absent in this version of the synthetic population

Removing Implausible Data. Since the record addresses were apparently derived
from handwritten data or manually typed, in some cases they are incomplete
or contain typos. The geocoder we used always returns two coordinates as an
output, no matter whether he processed the input successfully or not. If an
address is not interpreted correctly, Yandex.Geocoder makes guesses on what
the correct address should be, which often results in semi-random coordinates.
We use an empirical algorithm to filter out those obviously senseless results.
For this procedure, we rely on a number of empirical assumptions related to
matches between the location (coordinate) and the text address. E.g., if there
are multiple addresses to which only one pair of coordinates is assigned, we
remove all such records from the database except the first one, summing the
corresponding numbers of dwellers.
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Table 2. Data source format.

Column names Contents

city, street, house Dwelling address

g0, g1 . . . g100 Number of female dwellers of ages 0, 1, . . . , 100

m0, m1 . . . m100 Number of male dwellers of ages 0, 1, . . . , 100

2.2 School Data

The list of schools and their addresses was formed manually using the data from
the official web–site of the Government of Saint Petersburg [12]. The coordinates
of schools were found using Yandex.Geocoder in the same fashion, as it was done
for dwellings.

2.3 Workplace Data

The distribution of working places for adults and their coordinates were derived
from the data obtained with the help of Yandex.Auditorii API [35]. Initially
the data was available in a form of a .geojson file which consisted of relative
workplace size assessments for each of the cells in a hexagonal grid (see Fig. 1).

Fig. 1. The distribution of working places in St Petersburg. The numbers are given
before the normalization.
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This data was normalized using the official cumulative employment numbers [10].
Synthetic workplace records were created by assigning the calculated number of
employees in each hexagonal cell to imaginary geographical location coinciding
with the center of this cell.

2.4 Assigning People to Schools and Workplaces

We assumed that young people aged 7 to 17 attend schools, and the adults of
working age (18 to 55 for males and 18 to 60 for females) might be working.
Iterating through the list of records in people.txt, we were assigning each
person to a closest school or working place, until they are filled to capacity or
there is no more people to be assigned.

3 Agent-Based Modeling

An open-source framework FRED [13,26] was used for the simulations. The
framework has discrete time, with the modeling step equal to one day. The
epidemic process is initiated by assigning randomly an infectious status to some
individuals in the population at the beginning of the simulation. In addition to
that, the infection can be seeded according to a user-specified schedule, reflecting
the external infection process.

The contacts among the individuals that lead to new infection cases are
modeled in the following way.

– Each agent in the population potentially interacts with other agents with
whom he shares activity locations. These locations include schools, work-
places, households and home neighborhoods (defined as 1 km square cells
around the agent’s household).

– During the weekends, schools are considered to be closed and most workers
equally do not attend their working places. At the same time, the number of
neighborhood contacts increases by 50%.

– The rate of effective contacts in a particular activity location depends on the
expected number of contacts per infectious person per day and the infection
transmission probability. The expected number of contacts is considered not
to be dependent on the place size.

The output of the framework in a form of csv-files contains quantities and
spatial distributions of individuals of four groups (susceptible, exposed, infected,
recovered) at every time step. We used Python programming language and QGIS
open source software to process the results and create maps and incidence graphs.
An example of the map of influenza propagation is shown in Fig. 2.
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Fig. 2. The distribution of disease–free (green) and infected (red) households in Saint
Petersburg: (a) Day 1, (b) Day 8. (Color figure online)

3.1 Influenza Incidence Data

The original dataset provided by the Research Institute of Influenza [1] contains
cumulative weekly incidence, i.e., the number of new acute respiratory infection
(ARI) cases per day in Russian cities, which includes influenza and other respi-
ratory infections. Before the model fitting, we had to refine the incidence data by
restoring the missed values and correcting the under–reporting biases. We also
needed to extract flu incidence from the cumulative ARI incidence data. Corre-
sponding algorithms are described in detail in [20], here we introduce briefly the
sequence of operations.

• Under-reporting correction. Since infected people avoid visiting health-
care facilities during holidays, the corresponding weekly prevalence is lower
than the actual number of newly infected. This under-reporting bias can be
corrected by means of cubic interpolation [3] using the incidence registered
in the adjacent weeks.
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Fig. 3. Influenza outbreak data extraction from the interpolated ARI incidence. (Color
figure online)

• Bringing the incidence data to daily format. Daily incidence is obtained
with the help of cubic interpolation of weekly incidence. We assume that
nThu
inf = nW

inf/7, where nW
inf is the weekly incidence taken from the database

and nThu
inf is the daily incidence for Thursday of the corresponding week.

• Extracting incidence data related to influenza outbreak. At first, the
algorithm finds higher non–influenza ARI incidence level, which corresponds
to average daily number of newly infected during the months when influenza
might occur in temperate regions (Fig. 3, red horizontal dashed line). The
part of the graph, which is attributed to a flu outbreak (Fig. 3, red solid
line), should have its peak well above the higher ARI level. It should also
comply with the time period during which the ARI prevalence exceeds the
non–epidemic ARI threshold assessed in the Flu Research Institute (Fig. 3,
red rectangle). The beginning and ending of the extracted curve is chosen to
match the higher ARI incidence level. The first incidence point of the curve
is considered to be the first day of the epidemic outbreak.

3.2 Fitting a SEIR Model to Data

The model we use for fitting is a standard SEIR compartmental model in a form
of a system of ordinary differential equations (see [19] for the details). Let Z(dat)

be the set of incidence data points loaded from the input file and corresponding
to one particular outbreak. Assume that the number of points is t1, which equals
the observed duration of the outbreak. The fitting algorithm selects the values
of model parameters corresponding to the model output which minimizes the
distance between the modeled and real incidence points:

F (Z(mod), Z(dat)) =
t1∑

i=0

(z(mod)
i − z

(dat)
i )2,
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Here z
(dat)
i and z

(mod)
i are the absolute incidence numbers for the i-th day taken

from the input dataset and derived from the model correspondingly. The limited-
memory BFGS optimization method is used to find the best fit [24]. Since the
existence of several local minima is possible, the algorithm has to be launched
several times with different initial values of input variables. The best fit is chosen
as a minimum among the distances achieved from all the algorithm runs. To
characterize the goodness of fit we utilize the coefficient of determination R2 ≤ 1.
This coefficient shows the fraction of the response variable variation that is
explained by a model [25]. The detailed description of the fitting procedure is
available in [19,21].

3.3 Simulation

By fitting the SEIR model to ARI incidence for influenza outbreak in St Peters-
burg in 2010–2011 (see Fig. 5a), we assess two parameters: the background immu-
nity level 1 − α and the effective contact intensity λ. The detailed data on the
distribution of dwellers we used gave slightly less people in total than it was
claimed by official statistics, so we normalized the susceptible ratio α to account
for this. The obtained parameter values were used in FRED simulation along
with the default values for influenza epidemics provided with the framework (see
Table 3). The overall scheme of the described process is presented in Fig. 4.

ARI incidence 
database

SEIR model 
calibration

Epidemic 
parameters FRED simulation

Synthetic
population

Spatial
distribution 

of the 
infected

Fig. 4. FRED simulation scheme

The simulation was run 100 times with different seed values for the random
number generator. Influenza incidence data obtained as a result of each simula-
tion run was used to find confidence intervals for the daily influenza incidence—
see Fig. 5b.

As Fig. 5 shows, despite the imminent uncertainty in synthetic population
data, the output of the agent-based model demonstrates a satisfactory agree-
ment with actual ARI incidence. Also, apart from the compartmental SEIR
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Fig. 5. (a) SEIR model calibration; (b) FRED output generated using the obtained
parameter values. Note that the first graph demonstrates the cumulative ARI incidence
(influenza and other acute respiratory diseases), whereas the second one shows disease
incidence attributed solely to influenza, thus the baselines on the graphs correspond to
a seasonal ARI level in the first case (around 4000 newly infected per week), and zero
in the second case.

model, spatially explicit simulation demonstrates the right–skewed incidence
curve, which better conforms to ARI data. This form of the curve might reflect
different number of social connections between the individuals. The so called
“superspreaders” are infected first and cause numerous infection cases, whereas
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Table 3. Model parameters (‘INF’ stands for ‘influenza’, ‘Is’ is ‘infectious symp-
tomatic’)

Parameter name Description Value Source

INF.transmissibility A coefficient that
modulates the
transmissibility of a
condition

6.55 Estimated

INF.S.susceptibility A ratio of susceptible
individuals in the
population

0.46 Estimated

INF.E.duration distribution Distribution of exposed
state duration

lognormal Default

INF.E.duration median Median of exposed
state duration

1.9 Default

INF.E.duration dispersion Dispersion of exposed
state duration

1.23 Default

INF.Is.duration distribution Distribution of infected
state duration

lognormal Default

INF.Is.duration median Median of infected
state duration

5.0 Default

INF.Is.duration dispersion Dispersion of infected
state duration

1.5 Default

Table 4. The incidence curve parameters obtained in the simulation compared to those
of the real outbreak

Parameter name Data Simulation

Outbreak duration, days 65 51

Maximum incidence day (from the outbreak onset) 22 15

Maximum incidence height, cases per day 5756 5126

the less socialized persons got reached by the flu later and contribute somewhat
to infection process, making the decline of disease incidence slower. The value
1 − α of background immunity level used in both models leads to almost the
same peak heights (see Table 4).

4 Discussion and Future Work

As we showed in this research, coupling of synthetic populations with agent–
based models is a feasible approach which allows to perform spatially explicit
influenza propagation modeling in Russian settings, even when a limited number
of data is used to reconstruct the urban population. The apparent drawback of
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the current synthetic population is the procedure of assigning people to schools
and workplaces, described in Sect. 2.4. The idea of picking the closest available
spot in a school/workplace was favored for its simplicity, but it is obviously unre-
alistic. We plan to create several populations corresponding to different assigning
algorithms (from picking a workplace/school at random within the whole city
to seeking it in a limited radius from the person’s home location) and to com-
pare the results of the simulation runs. By doing that, we expect to quantify
the variance in outbreak duration, peak day and peak height related to contact
networks of different topological structures.

Another drawback of the performed simulation lies in the approximate nature
of deriving disease–related parameters for FRED. Particularly, we cannot exactly
match the value of INF.transmissibility to value of λ from the compartmen-
tal model, because they are not equivalent, although correlated. To obtain more
realistic disease incidence generated by the model, global optimization techniques
will be used by the authors in the same fashion as it was done earlier for the com-
partmental SEIR models [28]. Since repetitive simulations with different input
parameter sets are computationally expensive, we consider applying methods for
assessing and reducing the uncertainty in disease–related input parameters [2]
which will decrease the state space of the model, and implementing an agent–
based model using general–purpose computing on graphics processing units [23]
to achieve a speedup.

In the current research we did not consider contacts in public transport.
Although the research on the role of New York subway in disseminating influenza
showed that its effect is slight [7], we still find it necessary to question this
conclusion, because Russian commute patterns and the nomenclature of social
groups which use metro may differ from the one of New York.

We assume that, in the long run, the influenza propagation modeling using
synthetic populations will allow us to:

• classify the cities into several groups, depending on their geographical struc-
ture, contact pattern types and, subsequently, peculiarities of influenza
dynamics and use models calibrated to one cities to predict epidemics in
the others within the same group;

• reconstruct the pattern of background immunity formation as a function of
urban and epidemic factors.

As a byproduct, synthetic populations created for the cities under consideration
will be freely available and might facilitate solving urban issues with the help
of modeling. The immediate gain we expect from the created synthetic popula-
tion for Saint Petersburg is that research groups within our department, which
work with problems such as transport planning [16,18], ambulance dispatching
[9] and crime rate assessment [14], might want to switch from gathering data
from scratch for every particular statistical or agent–based model to using a
unified population. Since the synthetic population conforms to a certain defined
standard, it might be easily reused in different projects and elaborated further
by mutual efforts to everyone’s benefit.
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