
A High-Productivity Framework
for Adaptive Mesh Refinement

on Multiple GPUs

Takashi Shimokawabe1(B) and Naoyuki Onodera2

1 Information Technology Center, The University of Tokyo, Tokyo, Japan
shimokawabe@cc.u-tokyo.ac.jp

2 Center for Computational Science and e-Systems,

Japan Atomic Energy Agency, Chiba, Japan

Abstract. Recently grid-based physical simulations with multiple
GPUs require effective methods to adapt grid resolution to certain sensi-
tive regions of simulations. In the GPU computation, an adaptive mesh
refinement (AMR) method is one of the effective methods to compute
certain local regions that demand higher accuracy with higher resolu-
tion. However, the AMR methods using multiple GPUs demand compli-
cated implementation and require various optimizations suitable for GPU
computation in order to obtain high performance. Our AMR framework
provides a high-productive programming environment of a block-based
AMR for grid-based applications. Programmers just write the stencil
functions that update a grid point on Cartesian grid, which are executed
over a tree-based AMR data structure effectively by the framework. It
also provides the efficient GPU-suitable methods for halo exchange and
mesh refinement with a dynamic load balance technique. The framework-
based application for compressible flow has achieved to reduce the com-
putational time to less than 15% with 10% of memory footprint in the
best case compared to the equivalent computation running on the fine
uniform grid. It also has demonstrated good weak scalability with 84%
of the parallel efficiency on the TSUBAME3.0 supercomputer.

Keywords: Adaptive mesh refinement · GPU · Stencil computation

1 Introduction

The stencil-based applications are important applications running on the GPU
supercomputers. Thanks to the wide bandwidth and high computational power
of GPU, various stencil applications have successfully achieved high perfor-
mance [7,8,11]. Recently grid-based physical simulations with multiple GPUs
require effective methods to adapt grid resolution to certain sensitive regions
of simulations. An adaptive mesh refinement (AMR) method is one of the key
technique to compute certain local regions that demand higher accuracy with
higher resolution [1,3,6]. While GPU computation has the potential to achieve
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11536, pp. 281–294, 2019.
https://doi.org/10.1007/978-3-030-22734-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22734-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-22734-0_21

282 T. Shimokawabe and N. Onodera

high performance, it forces the programmer to learn multiple distinctive pro-
gramming models such as CUDA or OpenACC and introduce various compli-
cated optimizations. For this reason, most of existing AMR libraries supporting
GPU provide only several numerical schemes that optimized for GPU, or the
programmer has to provide GPU optimized kernels written in CUDA [6].

In order to improve productivity and achieve high performance, various types
of high-level programming models for GPU were proposed [2,4,5,9,10,13]. How-
ever, since these programming models focus on stencil computations on uniform
grids, it is difficult to apply them to the AMR applications where additional data
structures such as tree structures are essential. Although Daino was proposed
as a directives-based programming framework for AMR on GPUs, it needed
to use its own directives [14]. To enhance the portability and transparency of
frameworks themselves and the user codes using them, the framework should be
written in standard languages without language extension.

In this paper, we propose a high-productivity framework for a block-
based AMR for grid-based applications running on multiple GPUs. In previ-
ous research, we proposed a high-productivity GPU programming environment
for stencil computations on uniform grids [9,10]. By extending this framework
and adding the AMR data structure with halo exchange functions and mesh
refinement mechanisms, we construct this AMR framework. The framework is
implemented in the C++ language with CUDA and can be used in the user
code is written just in C++, which improves portability of both framework and
user code and facilitates cooperation with the existing codes. The framework
provides data structure suitable for AMR method and class which can easily
express stencil calculation on grid with various resolutions.

2 Overview of AMR Framework

The proposed block-based AMR framework is designed to provide highly-
productive programming environment for stencil applications with explicit time
integration and adapting grid resolution to certain sensitive regions of simula-
tions. The framework is intended to execute the user program on NVIDIA’s
GPU. The programmer can develop user programs just in the C++ language.
The programmer simply describes a C++11 lambda expression that updates a
grid point, which is applied to the entire grids with various resolution over a
tree-based AMR data structure effectively.

The framework can locally change the resolution of the grids for arbitrary
regions in the time integration loop of applications. An entire computational
domain is divided into a large number of the small uniform grid blocks with the
same size recursively. The computation for all grid blocks can be solved with a
single execution of a conventional stencil calculation for Cartesian grid regard-
less of their resolutions. This strategy may be effective for performance improve-
ment because GPU can often derive high performance when accessing contiguous
memory. The framework also provides some functions and C++ classes to realize
other processes required for the AMR computations, such as mesh refinement,
exchanging data in halo regions between grid blocks with different resolutions,
and data migration to maintain load balancing.

High-Productivity Framework for AMR on GPUs 283

3 Implementation and Programming Model of AMR
Framework

This section describes the implementation and programming model of this pro-
posed framework.

3.1 Data Structure for AMR Framework

In order to realize AMR computations, this framework recursively divides a
computational domain into a large number of uniform grid blocks and represent
their spatial distributions by tree structures. Each leaf node of the tree structures
has a uniform grid block per each physical variable. Each block contains the
same number of cells regardless of the resolution to be expressed. A grid block,
for example, contains 163 cells in 3D with halo regions, which size depends on
the numerical schemes adopted by the application. Figure 1 shows a schematic
diagram of the physical spatial distributions of grid blocks with trees and the
memory space layout that holds the actual data. A quadtree or an octree tree is
used as the tree structure in 2D or 3D, respectively. Since the GPU often achieves
high performance when accessing consecutive memory areas, the grid blocks are
allocated in one large contiguous memory area for each physical variable.

Each leaf node does not directly hold a grid block itself but holds an ID that
specifies an assigned grid block. From these IDs, the position of the assigned
grid block in the contiguous memory area can be determined. By based on ID
mapping, a single tree structure can be associated with an arbitrary number of
physical variables, which is important in developing a framework. Changing the
positions and the number of grid blocks with time integration can be made only
by changing the tree structure with varying the values of the IDs on the leaf
nodes. It is unnecessary to allocate and deallocate the memory for grid blocks
that may cause performance degradation especially on GPU. In order to express
arbitrary shapes of the computational domains flexibly, the framework arranges
multiple tree structures in an entire computational domain as shown in Fig. 2.

In order to represent the AMR data structure by the multiple tree structures,
this framework provides Field class, which is used as follows.

Field field(3, {4, 4, 8}); // dimension and size of trees
field.grow(2); // grow all trees by 2 levels

In the multi-GPU computation, the entire program is parallelized by MPI and
each process handles a single GPU. Each process independently holds the same
tree structures as an object of the Field class at all times. The change of the tree
structures, which means the change of the spatial resolution of the computational
domain, is determined by (1) instructions to change mesh resolution and (2)
instructions to migrate grid blocks between GPUs. Only the instructions in (1)
and (2) are synchronized with MPI without explicit synchronization of the tree
structures themselves. By sharing all the instructions in all processes, every
process can change the own tree structures in the same way, which allows us

284 T. Shimokawabe and N. Onodera

11 12

0 1

2 3

6 8

9 10

4

7

5

a

11cb 12

0 1 2 3 d

4 5 6 7

8 9 10

0
Level

1

2

3

c

3

Branch

Leaf

0 1

y y

2 3 4 10 11 12 13 14 15

Physical space

Memory layout
A grid block
(162 cells + halo)ID mapping

Level
0

1

2

3

Fig. 1. AMR data structure.

A tree data structure

Fig. 2. Multiple trees to rep-
resent arbitrary shapes of the
computational domains.

to always keep the same tree structures among all processes. In addition to the
ID indicating the grid block, each leaf node holds a rank number of MPI that
handles a GPU in which the grid block data are actually stored.

3.2 Array Structure for Multiple Grid Blocks

In order to represent the entire computational domain by a large number of grid
blocks, the framework provides an unique data type MArray with Range type,
which represents a 1D/2D/3D rectangular range. An object of MArray holds a
single large array data, which is virtually divided into and used as multiple grid
blocks as shown in Fig. 1, with the number of grid blocks and one object of
Range. By using these types, the multiple grid blocks are allocated as follows:

unsigned int length[] = {16+2*mgn, 16+2*mgn, 16+2*mgn};
int begin [] = {-mgn, -mgn, -mgn};
int narrays = 4096; // number of grid blocks
Range3D whole(length, begin); // size of each grid block
MArray<float, Range3D> f(whole, narrays, MemoryType::DEVICE);

MArray is initialized with parameters that specify a Range that represents the
range of a grid block, the number of grid blocks the MArray contains, and a
location of memory to allocate. This Range object is used to determine the halo
regions of each grid block. These grid blocks are also exploited as temporary
areas for storing data used for mesh refinement and halo exchange with MPI.

3.3 Writing and Executing Stencil Functions

In this framework, a stencil calculation must be defined as a C++11 lambda
expression called a stencil function with MArrayIndex provided by the frame-
work. The stencil function for 3D diffusion equation is defined as follows:

High-Productivity Framework for AMR on GPUs 285

auto diffusion3d = [] __device__ (const MArrayIndex &idx,
int level, float ce, float cw, float cn, float cs, float ct,
float cb, float cc, const float *f, float *fn) {
fn[idx.ix()] = cc*f[idx.ix()]

+ ce*f[idx.ix(1,0,0)] + cw*f[idx.ix(-1,0,0)]
+ cn*f[idx.ix(0,1,0)] + cs*f[idx.ix(0,-1,0)]
+ ct*f[idx.ix(0,0,1)] + cb*f[idx.ix(0,0,-1)]; }};

MArrayIndex holds the size of given grid block n3 and represents a certain grid
point (i, j, k), which is the coordinate of the point where this function is applied.
It provides a function for accessing to the (i, j, k) point and its neighboring
points for the stencil access; idx.ix(-1, -2, 0), for example, returns the index
representing (i−1, j−2, k) point. Stencil functions can be defined as device (i.e.,
GPU) functions by using the qualifier device provided by CUDA.

To update MArray by the user-written stencil functions, the framework pro-
vides the Engine class, which is used to invoke the diffusion equation on the
three-dimensional grid as follows:

Range3D inside; // where stencil functions are applied.
Engine_t engine;
engine.run(amrcontroller, inside, LevelGreaterEqual(1),

diffusion3d, idx(f.range()), level(), ce,cw,cn,cs,ct,cb,cc,
ptr(f), ptr(fn));

The parameters of Engine::run must begin with an object of AMRController
that holds Field and another data structures required for AMR. The fourth
parameter is a stencil function defined as a lambda expression, followed by any
number of different types of additional parameters that are provided to this
function. f and fn are MArray data. Engine::run applies a given stencil function
to the grid blocks of the given MArray fn in the region represented by the second
parameter inside and satisfying the condition for the AMR level given as the
third parameter. Typically, inside specifies an inside region that is a region
excluding the halo region from the computational domain as shown in Fig. 3. By
specifying LevelGreaterEqual(1), this stencil function is applied to the grid
blocks on level 1 or higher. The ptr function provides the pointer pointing to
(i, j, k) of the given grid block in the MArray to the user-defined stencil function.
Similarly, level is used to obtain the AMR level of the applied given block inside
the stencil function, which allows us to perform level-dependent computation.
Since the grid blocks are allocated in the contiguous memory area as described
above, the framework can apply a single stencil function to all grid blocks at
various levels that are contained inside a single MArray simultaneously.

3.4 Data Transfer of Halo Regions

In this framework, each grid block on a leaf node has halo regions for stencil
calculations. To advance the time step, it is necessary to exchange data in the
halo regions between adjacent grid blocks with the same and different resolutions.

286 T. Shimokawabe and N. Onodera

mgnx mgnx

nx

mgny

ny

mgny

0 1

y y

2 3 4 10 11 12 13 14 15

Halo regionInside region

Stencil computation

Memory layout

Fig. 3. Executing a stencil function with multiple grid blocks allocated in a large array.

Data exchange of the halo regions inside a GPU is performed in the following
order. First, data exchange of the halo regions is performed between adjacent
grid blocks with the same resolution (i.e., the same level), which do not need
the interpolation of values. Next, the data of the halo regions are transferred
from the high-resolution grid blocks to the low-resolution grid blocks. Finally,
the data of the halo regions are transferred from the low-resolution grid blocks to
the high-resolution grid blocks. The framework can handle values defined at cell
center and node center points. It can copy values at the same physical location
between high- and low-resolution with interpolation functions. Currently, the
interpolation values are calculated by a linear function.

Figure 4 shows exchanging data in the halo regions between the grid blocks
allocated in the different GPUs. First, the framework designates several pieces
of current unused grid blocks from the continuous memory area as temporary
regions in each process. They are placed in the surround area of the subdomain
of each process. These temporary grid blocks are called the ghost blocks in our
framework. Next, the data in the grid blocks that are necessary for the stencil
computation are actually transferred from the adjacent GPU using the CUDA
APIs with MPI and stored in the ghost blocks. Referring to these ghost blocks,
the stencil functions are executed at each process independently.

0

5 6

7

12 13

1 2

3 4

10

8

11

9

7

10

11

3 4

5 6

8 9

1

12

2

0 0 1

Memory layout

2 3 4 10 11 12 13 14 15

0 1

Memory layout

2 3 4 10 11 12 13 14 15

0 1

Memory layout

2 3 4 10 11 12 13 14 15

GPU0

GPU1

22212122 33313133 44414144 55515155

00010100 1111 22212122 33313133 44414144 55515155

44414144 5551515533313133

131331313

Subdomain

Unused grid blocks

Unused grid blocks

Ghost blocks to store transferred data

Grid blocks necessary for stencil
calculation are transferred from
adjacent GPU.

Ghost blocks

Fig. 4. Halo exchange between grid blocks allocated in the different GPUs.

High-Productivity Framework for AMR on GPUs 287

To execute the stencil computations, only the halo regions of the ghost blocks
are required. However, in this framework, the whole regions of the ghost blocks
are transferred between neighboring GPUs instead of the halo regions of them.
In order to make full use of transferred data of grid blocks, we exploit a tempo-
ral blocking method that is a well-known technique for locality improvement in
stencil computations [12,15]. By using this method with several decomposed sub-
domains, several time steps can be advanced in each subdomain independently
of the others. This also contributes to reducing the number of communications.

The framework exploits the temporal blocking based on the countdown pro-
posed in our previous research [12]. Figure 5 shows the scheme of halo exchange
using the temporal blocking with multiple GPUs. The number of executions
of the function of halo exchange is counted. Based on this count, when it is
expected that there will be no more effective data for performing the stencil
calculation, actual communication will be carried out. Otherwise, the function
of halo exchange does not perform any communication. As a result, the pro-
grammers can use the temporal blocking method without modifying their user
codes.

Stencil comp.

MPI

GPU0 GPU1
Grid blockGrid block Grid blockGhost

Inside
Halo HaloTime step

n

n+1

n+2

n+3

n+4

Halo exchange
(invoking MPI)

Halo exchange
(w/o MPI)

Halo exchange
(w/o MPI)

Halo exchange
(invoking MPI)

TB countdown
= length of valid cells

3

+2

–1

–1

+2

2

1

1

3

Fig. 5. Scheme of halo exchange using the temporal blocking with multiple GPUs. For
the sake of simplicity, this figure is supposed to exchange halo regions at the same level.

In order to perform the halo exchange inside a GPU and between differ-
ent GPUs with the temporal blocking method, this framework provides the
AMRController::exchange halo. This function is typically used as follows:

amrcontroller.exchange_halo(f, u, v, w);

f, u, v and w are MArray data. By using the C++11 variadic templates, this
function can apply halo exchange between grid blocks to any number of dif-
ferent types of MArray data simultaneously. In this function, first inter-GPU
communication with MPI is performed, which updates values on ghost blocks

288 T. Shimokawabe and N. Onodera

allocated each GPU. After that, inside each GPU, the halo exchanges between
grid blocks including the ghost blocks are performed.

3.5 Mesh Refinement

Modifying the resolution of the grid blocks on the leaf nodes is not done auto-
matically on the framework side because it is necessary to take care of the change
of arbitrary physical quantities and variables in the user codes. To change the
resolution of the grid blocks, the programmers explicitly specify the leaf nodes
that having these grid blocks in the user code and issue the instructions of chang-
ing their resolutions by using the functions provided by the framework. These
instructions issued to some leaf nodes in each process are shared by all processes
before mesh refinement is actually executed.

After all instructions are shared by all processes, each process changes its
own tree structure as follows. When a leaf node is specified to be fine resolution
by an instruction for refining mesh, the framework forcibly raises its level by 1.
To maintain a 2:1 balance of the resolution, the levels of its adjacent leaf nodes
are also increased by 1 if necessary. When a leaf node is specified to be coarse
resolution by an instruction, the framework decreases its level if it is able to
continue to meet a 2:1 balance with its surrounding leaf nodes.

The resolution of the grid blocks is actually changed, after the new levels of
the all leaf nodes after mesh refinement are determined on the tree structures.
First, some of the unused grid blocks pooled in the continuous memory area
are assigned to the grid blocks that store fine or coarse values after the mesh
refinement. The framework assigns the grid blocks for this purpose in order
from the smallest numeral to prevent fragmentation of memory. After that, the
framework actually copies the values between grid blocks for the mesh refinement
with interpolation in parallel. The unnecessary grid blocks that hold original
values are returned to a group of the unused grid blocks for future use.

When several grid blocks with a high resolution that are not allocated on the
same single GPU are changed to a single grid block with a low resolution, data
migration is executed before mesh refinement in order to collect those original
data on the same GPU.

3.6 Data Migration Between GPUs and Load Balancing

In the AMR method, the sizes and the physical positions of local regions with
high resolution change in the time integration loop of applications. The load
balancing among GPUs using data migration is necessary to make efficient use
of computational resources and improve performance.

This framework provides a function to issue an instruction to migrate grid
blocks from a GPU to another GPU. When migrating a grid block, the program-
mer first issues this instruction with specifying a new process for the leaf node
handling this grid block. All instructions issued in each process are shared by
all processes with MPI Allreduce. After that, the framework actually performs

High-Productivity Framework for AMR on GPUs 289

the migration of the grid blocks using MPI according to these instructions. The
some of the unused grid blocks are assigned to store the migrated grid blocks.

By using this migration mechanism, dynamic load balancing is realized as
follows. In our framework, a computational domain is represented by multiple
trees (Fig. 2). While traversing trees in turn, the leaf nodes are assigned to each
process in a depth-first search on each tree. The leaf nodes assigned to a certain
process are typically owned by a few adjacent trees. By using this strategy, our
applications can achieve localizing the distribution of the leaf nodes handled by
each process and load balancing of them. Localizing their distribution contributes
to making inter-process communication more effective. In our application, when
the number of leaf nodes assigned to a certain process increases by 10% compared
to the average number of leaf nodes assigned to each process, the redistribution
of all leaf nodes based on the migration described above is carried out.

4 Performance Analysis and Discussion

This section presents the performance of compressible flow simulation based
on the proposed framework on a NVIDIA Tesla P100 GPU and its weak scal-
ing results obtained on TSUBAME3.0. TSUBAME3.0 is equipped with 2,160
P100 GPUs. The peak performance of each GPU in double precision is 5.3
TFlops. Each node of it has four P100 attached to the PCI Express bus 3.0 ×16
(15.8 GB/s), four Intel Omni-Path Architecture HFI (12.5 GB/s) and two sockets
of the Intel CPU Xeon E5-2680 V4 2.4 GHz 14-core.

4.1 Application: 3D Compressible Flow

We perform 3D compressible flow computation written by this framework and
show computational results of the Rayleigh-Taylor instability. To simulate this,
we solve 3D Euler equations described as follows:

∂U

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= S, U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρe

⎤
⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎣

ρu
ρuu + p

ρvu
ρwu

(ρe + p)u

⎤
⎥⎥⎥⎥⎦

,

F =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρvv + p
ρwv

(ρe + p)v

⎤
⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρww + p
(ρe + p)w

⎤
⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎣

0
0
0
ρg

ρwg

⎤
⎥⎥⎥⎥⎦

, (1)

where ρ is density, (u, v, w) are velocity, p is pressure, and e is energy. Here, g is
gravitational acceleration. An advection term is solved using three-order upwind
scheme with three-order TVD Runge-Kutta method. Time integration of five
variables ρ, ρu, ρv, ρw, and ρe is solved, which requires 13 neighbor elements of
each variable are used to update them on a center point of the grid.

290 T. Shimokawabe and N. Onodera

4.2 Performance Evaluation on Single GPU

We show the performance results of the application on a single GPU by varying
the size of the grid blocks assigned to leaf nodes. We change the number of cells
that each grid block contains to 83, 123 or 163, and evaluate performance using
5 levels of resolution of AMR. In each grid block, halo regions having a width of
2 are added around those cells in this simulation due to the adopted numerical
schemes. The maximum width of a grid block is 16 times the minimum one in
physical space on the 5-level AMR. When the number of cells each grid block
contains is increased, the volume occupied by one grid block becomes large and
it is difficult to finely adjust the resolution locally. Then, we set the maximum
value of the length of one side of a grid block to 16 in this measurement.

Table 1 shows the total performance of computational kernels themselves and
the overall performance of an entire time step at a certain time step when the
number of cells in each grid block is changed. The 15 different computational
kernels are executed at each time step. The entire time step includes computa-
tional times for exchange of the halo regions and control of the AMR structure
as well as the above 15 kernels. These results are evaluated by using NVIDIA
GPU profiler nvprof. This table also shows the number of leaves from the coars-
est level 1 to the finest level 5. Note that the length of the whole computational
domain needs to be a constant multiple of the length of a grid block in the cur-
rent implementation. Then, when the number of cells each grid block contains
is 123, the size of whole computational domain is different from others.

As shown in Table 1, comparing the total performance of the 15 kernels, the
performance is higher when the length of one side of a grid block is longer. This
is because when the volume of the halo regions with respect to that of the inside
region decreases in each grid block, the memory access needed for updating values
in the inside region is reduced, resulting in performance improvement. When the
length of one side of a grid block is 16, the total performance of the kernels is 914
GFlops, which is 65% of the performance obtained by the same computation on
the normal structure grid with the size of 1283 (i.e., 1.41 TFlops). Considering
that the ratio of the inside region to the entire computational region including
the halo regions is 51% in each grid block and the cache can be used as part of
the memory access, the ratio of 65% is considered appropriate.

In this framework, each grid block has halo regions so that the stencil func-
tions for the structure grid can be used without any modification. However, the
cost of exchanging these halo regions is relatively high. Due to this overhead,
the observed overall performance decreases to 246 GFlops in the above case.

Table 1. Performance on a single NVIDIA Tesla P100 GPU.

of

cells

Equivalent

domain size

of leaves (level

1/2/3/4/5)

Kernels’ performance

(GFlops)

Overall performance

(GFlops)

83 512 × 512 × 2048 180/449/705/2385/17208 765.2 102.4

123 576 × 576 × 2304 20/176/210/786/4848 811.9 178.1

163 512 × 512 × 2048 16/80/220/718/4752 913.9 245.9

High-Productivity Framework for AMR on GPUs 291

4.3 Time to Solutions

We evaluate the computation time of two versions of simulation codes. The first
version uses the temporal blocking method to reduce the number of commu-
nications and the second one does not exploit it. The latter version is used as
references for this performance evaluation. Both versions may migrate data on
grid blocks every 200 steps to improve load balancing if necessary. We perform
simulations on a physical volume equivalent to the finest uniform grid with the
size of 2, 048 × 1, 024 × 4, 096 using 5 levels of AMR by using 4 GPUs on each
node and total 32 GPUs on TSUBAME 3.0. We use grid blocks having 163 cells
with 2-width halo region from the results of the previous section.

Fig. 6. A snapshot of density distribution
results obtained by the simulation of 3D
compressible flow. The boundary lines of the
grid blocks are also shown in part.

Fig. 7. Computational times for each
time step using 32 GPUs. (Color figure
online)

Figure 6 shows a snapshot of computational results of the Rayleigh-Taylor
instability obtained by 3D compressible flow computation written by this AMR
framework. By applying the AMR method to fluid simulation, we have succeeded
in simulating with a fine structure around the interface of two fluids.

Figure 7 shows the computation time taken for the calculation of each time
step in the above two versions. At the 10,000th step, the first version takes 0.41 s
for the computation on this time step, while the second version takes 1.28 s for the
same computation. With the benefits of the framework, programmers can easily
introduce the temporal blocking to this application and achieve approximately
3.1 times speedup without any additional development cost. When the finest
uniform grid is used over entire computational domain instead of AMR, the
computational time of 2.7 s per each time step is required, which is depicted as
a blue dashed line in Fig. 7. It indicates that the first version is 6.7 times faster
than the same computation on the finest uniform grid. Since the restart files
are output every 10,000 steps, the computational times for every 10,000 steps is
longer than the those required for other time steps.

292 T. Shimokawabe and N. Onodera

Fig. 8. Ratio of memory usage of AMR
simulation for each time step in compar-
ison with the computation on the finest
grid.

Fig. 9. Weak scaling on TSUBAME 3.0.

Figure 8 shows the memory consumption ratio of this AMR simulation at
each time step, compared to the simulation performed using the finest uniform
grid over the physical volume having the same size. By using 5 levels of AMR,
this memory consumption rate is kept to be less than 10% in overall runtime.

4.4 Weak Scaling Results

We show the weak scaling results of AMR applied simulation for the Rayleigh-
Taylor instability using multiple GPUs on TSUBAME3.0. Figure 9 shows the
performance results of the simulation using 5-level AMR with the temporal
blocking method and the data migration to improve load balancing. We use
4 GPUs per each node for this simulation. We assign a physical volume equiv-
alent to the finest uniform structure grid with the size of 10243 to each GPU.
As shown in this figure, the weak scaling efficiency is above 84% for a physical
volume equivalent to the finest uniform grid with the size of 6144× 6144× 8192
on 288 GPUs with respect to the 8-GPU performance.

In order to further analyze the weak scaling results, Fig. 10 shows the break-
down results of the computation time using 8 and 288 GPUs at the 1000th step.
The computation time obtained by the stencil functions and the time taken by
the halo exchange inside each GPU are almost the same in both figures. On the
other hand, the communication time among GPUs with MPI is greatly affected
by the number of GPUs to be used. Because of the complex geometry of the
subdomains, each GPU needs to communicate with more number of GPUs in
AMR than in the case of computation using a structure grid with multiple GPUs.
When the number of GPUs used increases, the number of GPUs each GPU com-
municates increases, resulting that the communication time takes longer. In the
refinement and data migration, MPI Allreduce is used to share the instructions
among all processes to update the tree structures held by each process. As the
number of GPUs increases, the communication between all processes increases,
resulting in increasing the total computation time in one time step.

High-Productivity Framework for AMR on GPUs 293

Fig. 10. Breakdown of the computation time at one time step using 8 GPUs (left
figure) and 288 GPUs (right figure).

5 Conclusion

This paper has presented the programming model and implementation of the
high-productivity framework for a block-based AMR for stencil applications,
and evaluation of 3D compressible flow based on the proposed framework per-
formed on a supercomputer equipped with multiple GPUs. The framework can
execute the user-written stencil functions that update a grid point on Carte-
sian grid over a tree-based AMR data structure effectively. This framework also
provides mesh refinement mechanism and data migration that are required for
AMR applications. The countdown based temporal blocking method, which is
applied to the user codes without any modification, are contributes to reducing
the number of communications and making full use of transferred data. With our
proposed framework, we have conducted performance studies of the framework-
based compressible flow simulation on a single GPU and using multiple GPUs on
TSUBAME 3.0. The framework-based compressible flow simulation has achieved
to reduce the computational time to less than 15% with 10% of memory foot-
print compared to the equivalent computation running on the fine uniform grid.
The good weak scaling is obtained using 288 GPUs of TSUBAME 3.0 with the
efficiency reaching 84%.

Acknowledgments. This research was supported in part by JSPS KAKENHI Grant
Number JP17K00165, JP26220002 and in part by “Joint Usage/Research Center
for Interdisciplinary Large-scale Information Infrastructures” and “High Performance
Computing Infrastructure” in Japan (Project ID: jh180061-NAH, jh180041-NAH).

References

1. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differen-
tial equations. J. Comput. Phys. 53, 484 (1984)

2. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In: 2011 IEEE International Parallel Distributed Processing Symposium
(IPDPS), pp. 676–687 (2011)

3. Fryxell, B., et al.: FLASH: an adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131(1), 273 (2000)

294 T. Shimokawabe and N. Onodera

4. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: a domain-
specific tool for structured grid methods in weather and climate models. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2015, pp. 41:1–41:12. ACM, New York (2015)

5. Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: an implicitly paral-
lel programming model for stencil computations on large-scale GPU-accelerated
supercomputers. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2011, pp. 11:1–11:12.
ACM, New York (2011)

6. Schive, H.Y., Tsai, Y.C., Chiueh, T.: GAMER: a graphic processing unit accel-
erated adaptive-mesh-refinement code for astrophysics. Astrophys. J. Suppl. Ser.
186(2), 457 (2010)

7. Shimokawabe, T., Aoki, T., Ishida, J., Kawano, K., Muroi, C.: 145 TFlops perfor-
mance on 3990 GPUs of TSUBAME 2.0 supercomputer for an operational weather
prediction. Proc. Comput. Sci. 4, 1535–1544 (2011). Proceedings of the Interna-
tional Conference on Computational Science, ICCS 2011

8. Shimokawabe, T., et al.: An 80-fold speedup, 15.0 TFlops full GPU acceleration
of non-hydrostatic weather model ASUCA production code. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society,
New Orleans (2010)

9. Shimokawabe, T., Aoki, T., Onodera, N.: High-productivity framework on GPU-
rich supercomputers for operational weather prediction code ASUCA. In: Pro-
ceedings of the 2014 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, pp. 1–11. IEEE Computer
Society, New Orleans (2014)

10. Shimokawabe, T., Aoki, T., Onodera, N.: High-productivity framework for large-
scale GPU/CPU stencil applications. Proc. Comput. Sci. 80, 1646–1657 (2016)

11. Shimokawabe, T., et al.: Peta-scale phase-field simulation for dendritic solidifica-
tion on the TSUBAME 2.0 supercomputer. In: Proceedings of the 2011 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2011, pp. 1–11. ACM, Seattle (2011)

12. Shimokawabe, T., Endo, T., Onodera, N., Aoki, T.: A stencil framework to realize
large-scale computations beyond device memory capacity on GPU supercomputers.
In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp.
525–529, September 2017

13. Unat, D., Cai, X., Baden, S.B.: Mint: realizing CUDA performance in 3D stencil
methods with annotated C. In: Proceedings of the International Conference on
Supercomputing, ICS 2011, pp. 214–224. ACM, New York (2011)

14. Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel
and efficient AMR on GPUs. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2016, pp.
53:1–53:12. IEEE Press, Piscataway (2016)

15. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation, PLDI 1991, pp. 30–44. ACM, New York (1991)

	A High-Productivity Framework for Adaptive Mesh Refinement on Multiple GPUs
	1 Introduction
	2 Overview of AMR Framework
	3 Implementation and Programming Model of AMR Framework
	3.1 Data Structure for AMR Framework
	3.2 Array Structure for Multiple Grid Blocks
	3.3 Writing and Executing Stencil Functions
	3.4 Data Transfer of Halo Regions
	3.5 Mesh Refinement
	3.6 Data Migration Between GPUs and Load Balancing

	4 Performance Analysis and Discussion
	4.1 Application: 3D Compressible Flow
	4.2 Performance Evaluation on Single GPU
	4.3 Time to Solutions
	4.4 Weak Scaling Results

	5 Conclusion
	References

