
Development of Element-by-Element
Kernel Algorithms in Unstructured
Implicit Low-Order Finite-Element

Earthquake Simulation for Many-Core
Wide-SIMD CPUs

Kohei Fujita1,2(B), Masashi Horikoshi3, Tsuyoshi Ichimura1,2,4,
Larry Meadows5, Kengo Nakajima2,6, Muneo Hori7, and Lalith Maddegedara1,2

1 Earthquake Research Institute and Department of Civil Engineering,
The University of Tokyo, Tokyo, Japan

{fujita,ichimura,lalith}@eri.u-tokyo.ac.jp
2 Center for Computational Science, RIKEN, Kobe, Japan

3 Core and Visual Computing Group, Intel K.K, Tokyo, Japan
masashi.horikoshi@intel.com

4 Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
5 Data Center Group, Intel Corporation, Hillsboro, USA

lawrence.f.meadows@intel.com
6 Information Technology Center, The University of Tokyo, Tokyo, Japan

nakajima@cc.u-tokyo.ac.jp
7 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

horimune@jamstec.go.jp

Abstract. Acceleration of the Element-by-Element (EBE) kernel in
matrix-vector products is essential for high-performance in unstructured
implicit finite-element applications. However, the EBE kernel is not
straightforward to attain high performance due to random data access
with data recurrence. In this paper, we develop methods to circumvent
these data races for high performance on many-core CPU architectures
with wide SIMD units. The developed EBE kernel attains 16.3% and
20.9% of FP32 peak on Intel Xeon Phi Knights Landing based Oakforest-
PACS and Intel Skylake Xeon Gold processor based system, respec-
tively. This leads to 2.88-fold speedup over the baseline kernel and 2.03-
fold speedup of the whole finite-element application on Oakforest-PACS.
An example of urban earthquake simulation using the developed finite-
element application is shown.

Keywords: Finite-element method · Random data access ·
Many-core · SIMD

1 Introduction

Energy efficiency is one of the requirements for exascale computing, and many-
core CPUs with wide SIMD units are considered to be one of the architectures
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11536, pp. 267–280, 2019.
https://doi.org/10.1007/978-3-030-22734-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22734-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-22734-0_20

268 K. Fujita et al.

towards this goal. For example, the Post-K supercomputer that is scheduled
for operation around 2021 is announced to equip many-core CPUs with 512
bit wide SIMD cores [1]. However, some applications are difficult to benefit
from wide SIMD and many-core architectures due to random data access and
data recurrence, and thus algorithms enabling efficient use of these architectures
are important towards exascale computing. The unstructured low-order implicit
finite-element method is one of the applications that are not straightforward
for efficient use of many-core wide SIMD CPUs. As the unstructured low-order
implicit finite-element method is the de facto standard in structural simulations
used in the manufacturing industry, the acceleration of this method is expected to
lead to large ripple effects. In this paper, we focus on the unstructured low-order
implicit finite-element method as a target for scalable algorithm development
for many-core wide SIMD CPUs.

Many studies target implicit solvers on large scale systems. For example,
the SC15 Gordon Bell Prize Paper [2] uses multi-grid solvers for simulation of
extremely large mantle convection problems, and the SC16 Gordon Bell Prize
Paper uses the Sunway Taihu Light Supercomputer to solve climate problems
[3]. Also, an SC15 Gordon Bell Prize Finalist [4] solves an urban earthquake
problem on the K computer. However, all of these simulations use structured or
semi-structured mesh, which are both SIMD and multi-core friendly, for efficient
computation of matrix-vector products for the implicit solvers. However, for
solving general manufacturing or geoscience problems, use of pure unstructured
mesh is required. The state-of-the-art of low-order unstructured finite-element
method on CPU based systems is SC14 Gordon Bell Prize Finalist GAMERA [5].
Targeting architectures with high arithmetic capabilities and relatively low mem-
ory bandwidth, GAMERA uses a matrix-free kernel for computation of matrix
vector products (i.e., the Element-by-Element kernel, EBE [6]). Here, instead
of storing and reading the global matrix from memory, element matrices are
generated and multiplied with the right hand side vector every time a matrix-
vector product is called. This enables fast computation of matrix-vector products
with good load balance on massively parallel systems with relatively low mem-
ory bandwidth, which lead to high application performance and high scalability.
However, as GAMERA is targeted for the K computer which comprises 8 core
CPUs with 2 wide SIMD cores [7], the computation algorithm used for the EBE
kernel does not consider the wider SIMD and larger core counts of current and
near future many-core CPUs. Thus, a new time-parallel computation algorithm
GHYDRA was developed in a 2018 IPDPS paper [8], that enables use of uni-
formity of mesh in time domain to reduce random data access. This algorithm
is suitable for recent wide SIMD CPUs; however, EBE kernel algorithms suit-
able for this type of architecture is required to fully exploit its performance.
In this paper, we develop EBE kernel algorithms for efficient computation of
the GHYDRA finite-element solver algorithm on many-core CPU systems, and
compare with conventional EBE algorithms on the K computer, Intel Xeon Phi
Knights Landing based Oakforest-PACS, and an Intel Skylake Xeon Gold CPU
based system. We also show an urban earthquake simulation example using

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 269

the unstructured finite-element solver accelerated by the developed EBE kernel
algorithms.

2 Finite-Element Solver Algorithm

2.1 Target Problem

Earthquake simulations involve large domain nonlinear time-evolution problems
with locally complex structures. For example, soft soil near surface have complex
geometry and softens during strong ground motion under large earthquakes.
Thus, we solve the target dynamic nonlinear continuum mechanics problem using
a nonlinear dynamic 3D finite-element method with low-order solid elements
because this method is suitable for modeling complex geometry and analytically
satisfies the traction-free boundary condition at the surface. The target equation
using Newmark-β method (β = 1/4, δ = 1/2) for time integration is:

An δun = bn, (1)

where {
An = 4

dt2M + 2
dtC

n + Kn,

bn = fn − qn−1 + Cnvn−1 + M
(
an−1 + 4

dtv
n−1

)
,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qn = qn−1 + Knδun,

un = un−1 + δun,

vn = −vn−1 + 2
dtδu

n,

an = −an−1 − 4
dtv

n−1 + 4
dt2 δun.

(2)

Here, δu, u, v, a, and f are incremental displacement, displacement, velocity,
acceleration, and external force vectors, respectively. M, C, and K are the con-
sistent mass, damping, and stiffness matrices, respectively. dt is the time incre-
ment and n is the time step. We use Rayleigh damping for C, where the element
damping matrix Cn

e is calculated using the element consistent mass matrix Me

and the element stiffness matrix Kn
e as Cn

e = αMe + βKn
e . Here, α and β are

obtained by solving the following least squares equation:

minimize

[∫ fmax

fmin

(
h − 1

2

(
α

2πf
+ 2πfβ

))2

df

]
,

where, fmax, fmin, and h are the maximum and minimum target frequency and
the damping ratio, respectively. Although arbitrary constitutive models can be
used, we use the Ramberg Osgood model [9] and Masing rule [10] for the non-
linear constitutive modeling in urban earthquake simulations. In summary, time
history response un is computed by repeating the following steps.

270 K. Fujita et al.

1. Read boundary conditions.
2. Evaluate Cn and Kn based on the constitutive relations and strain at time-

step n − 1.
3. Obtain δun by solving Eq. 1.
4. Update Eq. 2 using δun.

Since most of the computation cost is incurred in solving Eq. 1, we explain the
details of the solver in the next subsection.

Fig. 1. Standard and time-parallel solver algorithm. The same solution is obtained
within error tolerance ε using both of the solver algorithms.

2.2 Overview of Time-Parallel Finite-Element Solver Algorithm

Solving Eq. 1 is a common target problem arising from low-ordered implicit finite-
element methods used in solid continuum mechanics problems in engineering and
science fields. In these low-ordered (e.g., second-ordered) implicit simulations,
iterative solvers such as Conjugate Gradient (CG) methods are generally used.
Since these solvers involve much random access and intensive memory access, it
is difficult to attain performance on current systems.

The time-parallel algorithm in GHYDRA aims to accelerate this solver by
reducing random access by using the uniformity of mesh in the time domain [8].
As shown in Fig. 1, instead of solving one time step at a time, several time steps
are solved together in parallel. When solving m time steps together, the arith-
metic count per iteration of the iterative solver becomes m times larger. However,
as the solutions for future time steps can be used as accurate initial solutions, the
total number of iterations becomes approximately 1/m (see [8] for detailed com-
parison of convergence of this method). Thus, the total arithmetic count does
not change by using this algorithm. However, since the mesh connectivity does
not change in time, the random access involved in the kernel used to compute
matrix-vector products can be reduced, which leads to shorter time-to-solution
of the application with the same solution within the solver error threshold ε.
This time-parallel algorithm is different from parallel-in-time integration meth-
ods intended to improve the time-to-solution at the strong scaling limits, as the
GHYDRA algorithm uses the uniformity of mesh in the time domain to reduce

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 271

random data access and thus enables speedup of the application even within the
strong scaling limits.

In GHYDRA, the time-parallel algorithm is combined with inexact precon-
ditioned conjugate gradient method, multi-grid method, and mixed precision
computation. Below we briefly summarize these components:

– Inexact preconditioned conjugate gradient method [11]: An inexact precon-
ditioned conjugate gradient method is a preconditioned conjugate gradient
method which uses another solver for solving the preconditioning matrix equa-
tion instead of multiplying a fixed preconditioning matrix. As it is common to
use another iterative solver for solving the preconditioning matrix equation,
we call the original CG loop as the “outer loop” and the preconditioning solver
as the “inner loop”. As the inner loop does not need to be solved exactly, this
makes room for making improvements such as multi-grid and mixed precision
arithmetic.

– Multi-grid method: We reduce the computation cost and communication size
of the inexact preconditioned conjugate gradient method by using a multi-
grid solver for the inner loop. Here we use a two step geometric multi-grid; we
use the targeted second-ordered tetrahedral mesh FEmodel for the inner fine
loop, and use the same mesh without intermediate nodes of each element for
the inner coarse loop (i.e., a first-ordered tetrahedral mesh FEmodelc). We
use a 3 × 3 block Jacobi preconditioned conjugate gradient solver for solving
the inner fine and inner coarse loops.

– Mixed precision arithmetic: Even for a target problem in FP64, we need
only to solve the preconditioning matrix equation roughly. Thus, we compute
the whole multi-grid preconditioner in FP32. This leads to halving memory
access and communication size, and enable usage of high-performance FP32
arithmetic units equipped in recent CPUs.

When using the algorithm above, we can move most of the compute cost of
the outer loop to the inner loops by using appropriate threshold values in the
inner CG solvers. Thus, even though it may seem a complicated algorithm,
the performance of the whole solver is dependent on kernels such as matrix-
vector product kernels, inner product kernels, or saxpy kernels which are in
common with standard CG solvers. In the following, we explain the most time
consuming matrix-vector product kernel used in the inner fine loop, which is not
straightforward to attain performance on many-core wide SIMD CPUs.

2.3 Baseline Element-by-Element Kernel Algorithm

As the relative memory transfer capability to floating point computation capa-
bility is becoming lower, using an algorithm that can reduce memory access
is becoming important for fast time-to-solution. Thus, the Element-by-Element
(EBE) method, which is a matrix-free matrix-vector multiplication method, is
used for computation of f = Au. Here, u, f are displacement and nodal force
vectors, and A is the global matrix that is generated by superimposing element

272 K. Fujita et al.

matrices Ae
i . A

e
i can be computed by using coordinates of nodes (x) and element

material properties. In standard matrix-vector product methods, f = Au is com-
puted by reading the global matrix A from memory and multiplying it with u.
In the contrary, in the EBE method, matrix-vector products are computed by
computing local matrix-vector products

fei = Ae
iu

e
i = Ae

iQ
eT
i u, (3)

and adding them up as
f =

∑
i

Qe
i f

e
i . (4)

Here, Qe
i are matrices for mapping element-wise nodal values to global nodal

values. Since the coordinates, displacement and force vectors x,u, f can be kept
on cache by reordering of nodes and elements, we can drastically reduce memory
access when compared with methods reading the global matrix from memory. On
the other hand, the EBE method involves more computation and consequently
transfers memory access cost to computation cost.

1 !$OMP PARALLEL DO
2 do iu=1,numberofthreads ! for each thread
3 do i=1,nnum(iu)
4 i1=nlist(i,iu)
5 do im=1,m
6 ft(im,1,i1,iu)=0.0 ! clear temporary vector
7 ft(im,2,i1,iu)=0.0
8 ft(im,3,i1,iu)=0.0
9 enddo
10 enddo
11 do ie=npl(iu)+1,npl(iu+1)
12 cny1=cny(1,ie)
13 cny2=cny(2,ie)
14 cny3=cny(3,ie)
15 cny4=cny(4,ie)
16 xe11=x(1,cny1)
17 xe21=x(2,cny1)

...
18 xe34=x(3,cny4)
19 do im=1,m
20 ! compute BDBu using ue11~ue34 and xe11~xe34
21 ue11=u(im,1,cny1)
22 ue21=u(im, 2,cny1)

...
23 ue34=u(im, 2,cny1)
24 ! compute BDBu using ue11~ue34 and xe11~xe34
25 BDBu11=...
26 BDBu21=...

...
27 BDBu34=...
28 ! add to temporary vector
29 ft(im,1,cny1,iu)=BDBu11+ft(im,1,cny1,iu)
30 ft(im,2,cny1,iu)=BDBu21+ft(im,2,cny1,iu)

...
31 ft(im,3,cny4,iu)=BDBu34+ft(im,3,cny4,iu)
32 enddo ! im
33 enddo ! ie
34 enddo ! iu
35 !$OMP END PARALLEL DO

SIMD computation
with width m

2. Update
components by
EBE (black)

1. Initialize necessary
components (gray)

Core-wise
temporary
vectors (ft)

36 !$OMP PARALLEL DO
37 ! clear global vector
38 do i=1,n
39 do im=1,m
40 f(im,1,i)=0.0
41 f(im,2,i)=0.0
42 f(im,3,i)=0.0
43 enddo
44 enddo
45 !$OMP END PARALLEL DO
46 do iu=1,numberofthreads
47 !$OMP PARALLEL DO
48 ! add to global vector
49 do i=1,nnum(iu)
50 i1=nlist(i,iu)
51 do im=1,m
52 f(im,1,i1)=f(im,1,i1)+ft(im,1,i1,iu)
53 f(im,2,i1)=f(im,2,i1)+ft(im,2,i1,iu)
54 f(im,3,i1)=f(im,3,i1)+ft(im,3,i1,iu)
55 enddo
56 enddo
57 !$OMP END PARALLEL DO
58 enddo

3. Add necessary
components

+ =
=
=

+ =
=

+ =

Global left hand side vector (f)

Fig. 2. Baseline EBE kernel with m vectors

Although the EBE method has low algorithmic Byte/FLOP and is poten-
tially suitable for current computers, it is not straightforward for parallel com-
putation due to the data recurrence for adding local force vectors of elements
with shared nodes in Eq. 4. Figure 2 shows the multi-core EBE computation

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 273

algorithm for GHYDRA. Here, temporary vectors ft are allocated for each core,
initialized on lines 3–10, and the core wise results are added to ft in lines 11–
33. Finally, the core-wise results are added to the global vector f in lines 46–58.
The innermost loop for time-parallelism (m) can be computed using SIMD units.
However, in practice, we use m = 4 in earthquake problems as increasing m leads
to deterioration of the accuracy of the predicted solutions and thus increase in
the total number of arithmetic counts. Thus, only 1/4 of the SIMD lanes of 512
bit SIMD registers (i.e., 4 out of the 16 FP32 lanes) can be used. Although this
is better than the non-time-parallel algorithm in which SIMD cannot be used
completely due to the data recurrence involved in lines 29–31, this EBE imple-
mentation is expected to lead to poor performance on recent many-core CPUs
with wider SIMD units. Development of EBE kernel algorithms that uses SIMD
in full width is required for improving performance.

1 !$OMP PARALLEL DO
2 do iu=1,numberofthreads ! for each thread
3 do i=1,nnum(iu)
4 i1=nlist(i,iu)
5 do im=1,m
6 ft(im,1,i1,iu)=0.0 ! clear temporary vector
7 ft(im,2,i1,iu)=0.0
8 ft(im,3,i1,iu)=0.0
9 enddo
10 enddo
11 ! block loop with blocksize NL/m
12 do ieo=npl(iu)+1,npl(iu+1),NL/m
13 ! load ue, xe
14 do ie=1,min(NL/m,npl(,iu+1)-ieo+1)
15 cny1=cny(1,ieo+ie-1)
16 cny2=cny(2,ieo+ie-1)
17 cny3=cny(3,ieo+ie-1)
18 cny4=cny(4,ieo+ie-1)
19 do im=1,m
20 ue11(im+(ie-1)*m)=u(im,1,cny1)
21 ue21(im+(ie-1)*m)=u(im,2,cny1)

...
22 ue34(im+(ie-1)*m)=u(im,3,cny4)
23 xe11(im+(ie-1)*m)=x(1,cny1)
24 xe21(im+(ie-1)*m)=x(2,cny1)

...
25 xe34(im+(ie-1)*m)=x(3,cny4)
26 enddo
27 enddo

SIMD computation

SIMD
(width=m)
computation

28 ! compute BDBu
29 do i=1,NL
30 BDBu11(ie)=...
31 BDBu21(ie)=...

...
32 BDBu34(ie)=...
33 enddo
34 ! add to global vector
35 do ie=1,min(NL/m, npl(icolor,iu+1)-ieo+1)
36 cny1=cny(1,ieo+ie-1)
37 cny2=cny(2,ieo+ie-1)
38 cny3=cny(3,ieo+ie-1)
39 cny4=cny(4,ieo+ie-1)
40 do im=1,m
41 ft(im,1,cny1,iu)=BDBu11(im+(ie-1)*m)+f(im,1,cny1,iu)
42 ft(im,2,cny1,iu)=BDBu21(im+(ie-1)*m)+f(im,2,cny1,iu)

...
43 ft(im,3,cny4,iu)=BDBu34(im+(ie-1)*m)+f(im,3,cny4,iu)
44 enddo
45 enddo
46 enddo ! ieo
47 enddo ! iu
48 !$OMP END PARALLEL DO
49 Add ft in to f (same as lines 36-58 of Fig. 2)

SIMD
(width=m)
computation

Fig. 3. EBE kernel with m vectors for wide-SIMD CPUs

3 Developed EBE Kernel Algorithms for Many-Core
Wide SIMD CPUs

In this section, we show the developed algorithms for faster EBE computation
on many-core wide SIMD CPUs.

We first develop an algorithm to utilize SIMD units in the main computa-
tion loop (Fig. 3). As the data recurrence in addition of results into the ft vector
was blocking the use of SIMD units, we split the innermost loop into two loops;
i.e., the computation part of fei = Ae

iu
e
i (Fig. 3 lines 14–33) and the summation

part of fei to f (lines 35–45). This leads to use of SIMD operations to the com-
putationally rich first loop. Here, we reduce the overhead of loop splitting by

274 K. Fujita et al.

1 !$OMP PARALLEL DO
2 ! clear global vector
3 do i=1,n
4 do im=1,m
5 f(im,1,i)=0.0
6 f(im,2,i)=0.0
7 f(im,3,i)=0.0
8 enddo
9 enddo
10 !$OMP END PARALLEL DO
11 do icolor=1,ncolor ! for each color or element set
12 !$OMP PARALLEL DO
13 do iu=1, numberofthreads
14 ! block loop with blocksize NL/m
15 do ieo=npl(icolor,iu)+1,npl(icolor,iu+1),NL/m
16 ! load ue, xe
17 do ie=1,min(NL/m,npl(icolor,iu+1)-ieo+1)
18 cny1=cny(1,ieo+ie-1)
19 cny2=cny(2,ieo+ie-1)
20 cny3=cny(3,ieo+ie-1)
21 cny4=cny(4,ieo+ie-1)
22 do im=1,m
23 ue11(im+(ie-1)*m)=u(im,1,cny1)
24 ue21(im+(ie-1)*m)=u(im,2,cny1)
25 ...
26 ue34(im+(ie-1)*m)=u(im,3,cny4)
27 xe11(im+(ie-1)*m)=x(1,cny1)
28 xe21(im+(ie-1)*m)=x(2,cny1)

...
29 xe34(im+(ie-1)*m)=x(3,cny4)
30 enddo
31 enddo

SIMD computation

SIMD
(width=m)
computation

32 ! compute BDBu
33 do i=1,NL
34 BDBu11(ie)=...
35 BDBu21(ie)=...

...
36 BDBu34(ie)=...
37 enddo
38 ! add to global vector
39 do ie=1,min(NL/m, npl(icolor,iu+1)-ieo+1)
40 cny1=cny(1,ieo+ie-1)
41 cny2=cny(2,ieo+ie-1)
42 cny3=cny(3,ieo+ie-1)
43 cny4=cny(4,ieo+ie-1)
44 do im=1,m
45 f(im,1,cny1)=BDBu11(im+(ie-1)*m)+f(im,1,cny1)
46 f(im,2,cny1)=BDBu21(im+(ie-1)*m)+f(im,2,cny1)

...
47 f(im,3,cny4)=BDBu34(im+(ie-1)*m)+f(im,3,cny4)
48 enddo
49 enddo
50 enddo ! ieo
51 enddo ! iu
52 !$OMP END PARALLEL DO
53 enddo ! icolor

SIMD
(width=m)
computation

Fig. 4. Coloring/thread partitioning of EBE kernel with m vectors for wide-SIMD
CPUs. The same code can be used for both coloring/thread partitioning methods
shown in Fig. 5.

blocking the loop with small block size (NL, which is typically set to the SIMD
vector length). This keeps the temporary buffers BDBu11-34 on cache.

When using many cores, the size of the thread-wise temporary buffer ft
becomes large. In addition, the overhead of initializing ft and adding the thread-
wise results to the global vector f is not negligible in the total kernel cost. Thus,
we developed a thread partitioning method to eliminate the use of thread-wise
temporary buffers (Fig. 4). The procedure in standard coloring methods are to
color the whole mesh such that elements in each color does not have shared
nodes (Fig. 5a). Instead, we partition the domain with prescribed thread numbers
(Fig. 5b). Here, we partition the overall mesh into the number of threads using a
graph partitioning method (METIS [12]). Then, we remove elements that share
nodes between the thread partitions. The remaining elements becomes the first
set of elements to be computed (Set #1 of Fig. 5b). The removed elements are
partitioned again to recursively decompose the mesh into sets (Set #2 and #3
of Fig. 5b). As will be shown in Sect. 4, the proposed thread partitioning method
enables better cache reuse of nodal values u, x and f when compared with the
case of standard coloring methods.

In practice, we use m = 4 in earthquake problems as increasing m leads to
deterioration of the accuracy of the predicted solutions and thus increase in the
total number of arithmetic counts. On the other hand, 16 FP32 floats can be
packed in a single 512 bit SIMD register; thus, we can only use the first 1/4 of
the SIMD capability in the vector load/store computation. In order to accelerate
this part, we used 16 wide SIMD for loading from u while using 4 wide SIMD
for storing to local vectors ueXX (Fig. 6a). Similarly, we used 4 wide SIMD for

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 275

loading local vectors BDBuXX while using 16 wide SIMD for loading and storing
f (Fig. 6b). This enables reduction of inefficient 4 wide SIMD accesses and thus
improvement in overall kernel performance.

4 Performance Measurements

We measure performance of the developed kernels and the accelerated finite-
element application on the K computer, Intel Xeon Phi Knights Landing based
Oakforest-PACS, and an Intel Skylake Xeon Gold CPU based system. The latter
two systems are examples of many-core systems with 512-bit SIMD. Table 1
summarizes the configuration of the systems. K computer (K) [7] consists of
82,944 compute nodes, each with a single eight-core SPARC64 VIIIfx CPU.
Each core has two sets of SIMD FMA arithmetic units of width 2. Oakforest-
PACS (OFP) [13] is a supercomputer system introduced by the Joint Center
for Advanced HPC, which was established by the University of Tokyo and the
University of Tsukuba. The system comprises 8,208 nodes with a 68-core Intel
Xeon Phi 7250 (Knights Landing) CPU [14], 96 GB of DDR4 RAM, and 16 GB
of stacked 3D MCDRAM. Intel Skylake Xeon Gold CPU based system comprises
two 20-core Intel Skylake Xeon Gold 6148 CPU [15] and 192 GB of DDR4 RAM.

Overall mesh Color #1 Color #2 Color #3
All threads compute each color

Overall mesh

Thread 1, Thread 2, Thread 3

Set #1 Set #2 Set #3
(Threads
2,3 idle)

Decompose mesh using graph
partitioning method

b) Developed thread partitioning methoda) Standard coloring method

…

Fig. 5. Coloring/thread partitioning methods for the EBE kernel

Table 1. Performance measurement environment. Memory bandwidth on OFP is mea-
sured values of STREAM benchmark, while others are hardware peak values.

K computer Oakforest-PACS Intel Skylake Xeon
Gold based server

Nodes 8 1 1

Sockets/node 1 1 2

Cores/socket 8 68 20

FP32 SIMD width 2 16 16

Clock frequency 2.0GHz 1.4GHz 2.4GHz

Total peak FP32 FLOPS 1024 GFLOPS 6092 GFLOPS 6144 GFLOPS

Total DDR bandwidth 512GB/s 80.1GB/s 255.9GB/s

Total MCDRAM bandwidth - 490GB/s -

276 K. Fujita et al.

22 do im=1,m
23 ue11(im+(ie-1)*m)=u(im,1,cny1)

! Load u(1:4,1,cny1) to xmm1
! Store xmm1 to ue11(1+(ie-1)*m: 4+(ie-1)*m)

24 ue21(im+(ie-1)*m)=u(im,2,cny1)
! Load u(1:4,2,cny1) to xmm1
! Store xmm1 to ue21(1+(ie-1)*m: 4+(ie-1)*m)

25 ue31(im+(ie-1)*m)=u(j,3,cny1)
! Load u(1:4,3,cny1) to xmm1
! Store xmm1 to ue31(1+(ie-1)*m: 4+(ie-1)*m)

...
30 enddo

SIMD width=4
computation

44 do im=1,m
45 f(im,1,cny1)=BDBu11(im+(ie-1)*m)+f(im,1,cny1)

! Load f(1:4,1,cny1) to xmm1
! Load BDBu11(1+(ie-1)*m: 4+(ie-1)*m) to xmm2
! Store (xmm1+xmm2) to f(1:4,1,cny1)

46 f(im,2,cny1)=BDBu21(im+(ie-1)*m)+f(im,2,cny1)
! Load f(1:4,2,cny1) to xmm1
! Load BDBu21(1+(ie-1)*m: 4+(ie-1)*m) to xmm2
! Store (xmm1+xmm2) to f(1:4,2,cny1)

47 f(im,3,cny1)=BDBu31(im+(ie-1)*m)+f(im,3,cny1)
! Load f(1:4,3,cny1) to xmm1
! Load BDBu31(1+(ie-1)*m: 4+(ie-1)*m) to xmm2
! Store (xmm1+xmm2) to f(1:4,3,cny1)

…
48 enddo

SIMD width=4
computation

23-25 ! Load u(1:16,cny1) to zmm1
! Store zmm1(1:4) to ue11(1+(i-1)*4:4+(i-1)*4)
! Store zmm1(5:8) to ue21(1+(i-1)*4:4+(i-1)*4)
! Store zmm1(9:12) to ue31(1+(i-1)*4:4+(i-1)*4)
...

45-47 ! Load f(1:16,cny1) to zmm1
! Load BDBu11(1+(i-1)*4:4+(i-1)*4) to zmm2(1:4)
! Load BDBu21(1+(i-1)*4:4+(i-1)*4) to zmm2(5:8)
! Load BDBu31(1+(i-1)*4:4+(i-1)*4) to zmm2(9:12)
! Store (zmm1+zmm2) to f(1:16,cny1)
...

SIMD width=16
computation

SIMD width=4
computation

SIMD width=16
computation

SIMD width=4
computation

b) Summation of BDBuXX

a) Loading of ueXX

Fig. 6. Tuning of m vector EBE kernel for 512 bit SIMD architecture. Here, xmm indi-
cate 128 bit FP32 registers and zmm indicate 512 bit FP32 registers.

Both the Xeon Phi 7250 CPU and Skylake Xeon Gold 6148 CPU support AVX-
512 SIMD instructions.

We first measure performance of the EBE kernel. For the K computer, we
use 8 nodes each with 1 MPI process with 8 OpenMP threads per process. For
OFP, we use quadrant/flat mode, and run 8 MPI processes with 8 OpenMP
threads per process on a single node. Each thread is bound to one CPU core
(hyperthreading is not used), and we use numactl --preferred=1 option such
that memory is preferentially allocated to MCDRAM. For the Skylake system,
we use 8 MPI processes with 5 OpenMP threads per process on a single node.
Each MPI process on K/OFP/Skylake runs on a mesh with 6,534,144 second-
order tetrahedral elements and 9,044,560 nodes and elapsed time for computing
529 times of matrix-vector products is measured. Figure 7 shows the EBE ker-
nel performance. Comparing the K computer and OFP for the baseline kernel
with one vector, we can see that high performance of 26.1% FP32 peak effi-
ciency is attained for the K computer; however, only 1.98% is attained on OFP.
The kernel performance is improved by using the time-parallel algorithm with
m = 4; a 9.45 s/7.52 s = 1.25-fold speedup was obtained on K computer and
20.1 s/7.50 s = 2.68-fold speedup was obtained on OFP, respectively, for elapsed
time per vector. This performance is expected to be further improved by using
the developed EBE algorithms. First we see the effectiveness of the kernel algo-
rithm enabling use of SIMD for the main computation part. By using SIMD by
loop splitting and blocking for the main computation part of the EBE kernel,
we can shorten elapsed time from 7.50 s to 3.75 s on OFP. Note that loop split-
ting and blocking is disabled for the K computer as the 2 wide FP32 SIMD of

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 277

9.
45

7.
52

7.
52

11
.5

2

6.
62

20
.1

0

7.
50

3.
75

8.
85

3.
25

2.
60

14
.0

7

3.
98

3.
05

8.
20

2.
14

2.
04

0

5

10

15

20

25
)s(rotcev rep e

mit d espalE

K computer (8 nodes) Oakforest-PACS (1 node) Skylake Xeon Gold 6148 x 2 socket

4 vector
with SIMD
& developed
thread partitioning
& AVX-512 tuning

Baseline
kernel
(1 vector)

Baseline
kernel
(4 vector)

4 vector
with SIMD

4 vector
with SIMD
& standard
coloring

26
7

]
%9.2 1[)

%1.62(SP
OLF

G

33
6

]
%4.41[)

%9.23(SP
OLF

G

21
8

G
FL

O
PS

 (2
1.

3%
)

[3
5.

8%
]

38
0

G
FL

O
PS

 (3
7.

1%
)

[1
0.

7%
]

12
1

G
FL

O
PS

 (1
.9

8%
)

34
1

G
FL

O
PS

 (5
.5

5%
)

68
6

G
FL

O
PS

 (1
1.

1%
)

87
96

 G
FL

O
PS

 (1
2.

9%
)

10
00

 G
FL

O
PS

 (1
6.

3%
)

4 vector
with SIMD
& developed
thread partitioning

33
6

G
FL

O
PS

 (3
2.

9%
)

[1
4.

4%
] 28

9
G

FL
O

PS
 (4

.7
2%

)

17
5

G
FL

O
PS

 (2
.8

5%
)

[1
3.

5%
]

63
7

G
FL

O
PS

 (1
0.

4%
)

[5
1.

6%
]

85
6

G
FL

O
PS

 (1
3.

9%
)

[6
5.

3%
]

31
8

G
FL

O
PS

 (5
.1

8%
)

[6
4.

2%
]

12
21

 G
FL

O
PS

 (1
9.

8%
)

[5
9.

2%
]

12
87

 G
FL

O
PS

 (2
0.

9%
)

[6
5.

1%
]

Fig. 7. EBE kernel performance. Elapsed time per vector is shown. Numbers in brackets
indicate efficiency to FP32 peak, and numbers in square brackets indicate memory
bandwidth efficiency to hardware peak of K computer and Skylake system. 8 nodes
of the K computer (1 MPI process × 8 OpenMP threads per node), 1 node of OFP
(8 MPI processes × 8 OpenMP threads), and a Skylake system (8 MPI processes × 5
OpenMP threads) is used for computation.

the K computer can be directly applied to the innermost time-parallel m loop.
Next we see the effectiveness of using coloring and thread aware partitioning.
When using standard coloring generated by serial greedy algorithm, the mesh
was decomposed into 41 colors, resulting in total of 263.9 GB memory trans-
fer per node incurred for computation of the EBE kernel on the K computer.
This is more memory transfer than the baseline algorithm with 69.3 GB memory
transfer, as the cache reuse for u, x and f/ft is disabled; which lead to longer
elapsed time. When using the developed thread partitioning method, the mesh
was decomposed into 5 colors. With more cache reuse, the total memory transfer
was reduced to 45.3 GB, which resulted to 7.52 s/6.62 s = 1.13-fold speedup on
the K computer and 3.75 s/3.25 s = 1.15-fold speedup on OFP. Furthermore, by
using the AVX-512 tuning for reducing random data access, the elapsed time
was decreased to 2.60 s on OFP. This lead to high performance of 16.3% of peak
FP32 performance on 64 cores of OFP’s Intel Xeon Phi Knights Landing CPU.
We can see that the effective use of SIMD and circumventing random access to
temporary vectors lead to significant speedup of 7.50 s/2.60 s = 2.88-fold from
the baseline algorithm with m = 4 vectors on OFP. Compared with the base-
line algorithm without time-parallelism (m = 1), this is 20.1 s/2.60 s = 7.73-fold
speedup on OFP. The developed EBE algorithm is also effective for the Skylake
system, and lead to 3.98 s/2.04 s = 1.95-fold from the baseline algorithm with

278 K. Fujita et al.

236 [cm/s]113
b) Elevation of interfaces of three soil layers

10 40m

c) Response at ground surface (merged
horizontal component of SI value)

a) Model of 1.25 km x 1.25 km area of Tokyo
with 4066 structures

Fig. 8. Urban earthquake problem settings and computation results. Earthquake wave
propagation in the three-layered soil structure is computed in this application example.

m = 4 vectors. Compared with the baseline algorithm without time-parallelism
(m = 1), this is 14.1 s/2.04 s = 6.89-fold speedup on the Skylake system.

Next we see the performance of developed application on an urban earthquake
problem targeting a 1.25 km × 1.25 km area of Tokyo. Using digital elevation map
of [16] and soil information of [17], we constructed a soil model consisting of
three soil layers. We discretized this problem with minimum element size of 1 m,
which lead to a problem size of 1,022,620,536 degrees-of-freedom, 252,738,195
second-order tetrahedral elements and 340,873,512 nodes (Fig. 8a, b). We input
the wave observed during 1995 Kobe Earthquake [18] with time stepping dt =
0.01 s. The mesh is partitioned with METIS into 1,152 partitions and computed
using 144 nodes of OFP (8 MPI processes per node). Figure 9 shows the elapsed
time for solving the first 25 time steps using GHYDRA with the baseline EBE
kernel and GHYDRA with the developed EBE kernel (both with m = 4). We
also show performance of GAMERA, which can be considered as the non-time
parallel version of GHYDRA with the baseline EBE kernel (m = 1). We can see
that the application was accelerated by 125.6 s/61.9 s = 2.03-fold by using the
developed EBE kernel algorithms leading to high peak performance of 11.6% of
FP64 peak. Together with the 247.2 s/125.6 s = 1.97-fold speedup using time-
parallelism, the application was accelerated by total of 3.99-fold when compared

247.2

125.6

61.9

0

50

100

150

200

250

300

 e
mit des pa lE

(s
)

2.03 x faster
3.99 x faster

1.97 x faster

EBE kernel algorithm Baseline (m=1) Baseline (m=4) Developed (m=4)

Solver algorithm GAMERA (without
time parallelism)

GHYDRA (with
time parallelism)

GHYDRA (with
time parallelism)

Fig. 9. Elapsed time for solving the first 25 time steps of application problem. Measured
on 144 nodes of OFP.

Element-by-Element Kernel Algorithms for Many-Core Wide-SIMD CPUs 279

to the SC14 Gordon Bell Prize Finalist solver GAMERA. We can see that the
acceleration of the EBE kernel with algorithms suitable for wide SIMD and
multi-cores are effective for attaining high performance and shorter time-to-
solution of the overall application. With less energy-to-solution, we can afford to
conduct more detailed simulations of larger areas of interest, which is expected
to contribute to earthquake disaster mitigation.

5 Closing Remarks

In this paper we developed algorithms to accelerate the Element-by-Element
kernel in unstructured low-order implicit finite-element methods on systems with
many-core wide SIMD CPUs. By using the developed algorithm on the Intel
Xeon Phi Knights Landing based Oakforest-PACS system, the elapsed time of
the EBE kernel and total unstructured finite-element application was accelerated
by 2.88-fold and 2.03-fold, respectively. The developed EBE kernel algorithms
were also effective for the K computer and an Intel Skylake Xeon Gold CPU
based system. These insights are expected to enable high performance on other
large-scale many-core wide CPU based supercomputer systems, enabling energy
efficient finite-element computation towards exascale computing.

Acknowledgments. Our results were obtained using the Oakforest-PACS at the
Joint Center for Advanced HPC and the K computer at the Center for Computational
Science, RIKEN (hp170249, hp180217). We acknowledge support from the Japan Soci-
ety for the Promotion of Science (17K14719, 26249066, 25220908, 18H05239).

References

1. Outline of the Development of the Post-K computer. https://www.r-ccs.riken.jp/
en/postk/project/outline

2. Rudi, J., et al.: An extreme-scale implicit solver for complex PDEs: highly hetero-
geneous flow in earth’s mantle. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC 2015), p. 5.
ACM (2015)

3. Yang, C., et al.: 10M-core scalable fully-implicit solver for nonhydrostatic atmo-
spheric dynamics. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC 2016), p. 6. IEEE Press
(2016)

4. Ichimura, T., et al.: Implicit nonlinear wave simulation with 1.08T DOF and 0.270T
unstructured finite elements to enhance comprehensive earthquake simulation. In:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC 2015), p. 4. ACM (2015)

5. Ichimura, T., et al.: Physics-based urban earthquake simulation enhanced by 10.7
BlnDOF x 30 K time-step unstructured FE non-linear seismic wave simulation.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC 2014), pp. 15–26. IEEE Press (2014)

https://www.r-ccs.riken.jp/en/postk/project/outline
https://www.r-ccs.riken.jp/en/postk/project/outline

280 K. Fujita et al.

6. Winget, J.M., Hughes, T.J.: Solution algorithms for nonlinear transient heat con-
duction analysis employing element-by-element iterative strategies. Comput. Meth-
ods Appl. Mech. Eng. 52(1–3), 711–815 (1985)

7. Miyazaki, H., Kusano, Y., Shinjou, N., Shoji, F., Yokokawa, M., Watanabe, T.:
Overview of the K computer system. FUJITSU Sci. Tech. J. 48(3), 302–309 (2012)

8. Ichimura, T., et al.: A fast scalable implicit solver with concentrated computation
for nonlinear time-evolution problems on low-order unstructured finite elements.
In: IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Vancouver, BC 2018, pp. 620–629 (2018). https://doi.org/10.1109/IPDPS.2018.
00071

9. Idriss, I.M., Dobry, R., Sing, R.D.: Nonlinear behavior of soft clays during cyclic
loading. J. Geotech. Eng. Div. 104(ASCE 14265) (1978)

10. Masing, G.: Eigenspannungen und Verfestigung beim Messing. In: Proceedings of
the 2nd International Congress of Applied Mechanics, pp. 332–335 (1926)

11. Golub, G.H., Ye, Q.: Inexact conjugate gradient method with inner-outer iteration.
SIAM J. Sci. Comput. 21(4), 1305–1320 (1997)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

13. Oakforest-PACS. http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html
14. Sodani, A.: Knights landing (KNL): 2nd Generation IntelR Xeon Phi processor. In:

IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA, pp. 1–24 (2015). https://
doi.org/10.1109/HOTCHIPS.2015.7477467

15. Kumar, A.: The New Intel Xeon Processor Scalable Family (Formerly Skylake-SP).
In: 2017 IEEE Hot Chips 29 Symposium (HCS), Cupertino, CA (2017)

16. 5m mesh digital elevation map, Tokyo ward area, Geospatial Information Authority
of Japan. https://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm

17. National Digital Soil Map, The Japanese Geotechnical Society. https://www.jiban.
or.jp/?page id=432

18. Strong ground motion of The Southern Hyogo prefecture earthquake in 1995
observed at Kobe JMA observatory, Japan Meteorological Agency. https://www.
data.jma.go.jp/svd/eqev/data/kyoshin/jishin/hyogo nanbu/dat/H1171931.csv

https://doi.org/10.1109/IPDPS.2018.00071
https://doi.org/10.1109/IPDPS.2018.00071
http://www.cc.u-tokyo.ac.jp/system/ofp/index-e.html
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm
https://www.jiban.or.jp/?page_id=432
https://www.jiban.or.jp/?page_id=432
https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/hyogo_nanbu/dat/H1171931.csv
https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/hyogo_nanbu/dat/H1171931.csv

	Development of Element-by-Element Kernel Algorithms in Unstructured Implicit Low-Order Finite-Element Earthquake Simulation for Many-Core Wide-SIMD CPUs
	1 Introduction
	2 Finite-Element Solver Algorithm
	2.1 Target Problem
	2.2 Overview of Time-Parallel Finite-Element Solver Algorithm
	2.3 Baseline Element-by-Element Kernel Algorithm

	3 Developed EBE Kernel Algorithms for Many-Core Wide SIMD CPUs
	4 Performance Measurements
	5 Closing Remarks
	References

