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Abstract. This paper describes solving multi-objective reinforcement learning
problems where there are multiple conflicting objectives with unknown weights.
Reinforcement learning (RL) is a popular algorithm for automatically solving
sequential decision problems and most of them are focused on single-objective
settings to decide a single solution. In multi-objective reinforcement learning
(MORL), the reward function emits a reward vector instead of a scalar reward.
A scalarization function with a vector of n weights (weight vector) is a com-
monly used to decide a single solution. The simple scalarization function is
linear scalarization such as weighted sum. The main problem of previous
MORL methods is a huge learning cost required to collect all Pareto optimal
policies. Hence, it is hard to learn the high dimensional Pareto optimal policies.
To solve this, this paper proposes the novel model-based MORL method by
reward occurrence probability (ROP) with unknown weights. There are two
main features. The first feature is that the average reward of a policy is defined
by inner product of the ROP vector and the weight vector. The second feature is
that it learns ROP in each policy instead of Q-values. Pareto optimal deter-
ministic policies directly form the vertices of a convex hull in the ROP vector
space. Therefore, Pareto optimal policies are calculated independently with
weights and just once. The experimental results show that our proposed method
collected all optimal policies under four dimensional Pareto optimal policies,
and it takes a small computation time though previous MORL methods learn at
most two or three dimensions.

Keywords: Multi-objective reinforcement learning � Model-based �
Average reward � Reward occurrence probability � Reward vector

1 Introduction

This paper describes solving multi-objective reinforcement learning problems where
there are multiple conflicting objectives with unknown weights. Reinforcement learning
(RL) is a popular algorithm for automatically solving sequential decision problems
which is commonly modeled as Markov decision processes (MDPs). Despite numerous
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reinforcement learning methods, most of them focused on single objective settings
where the goal of an agent decides a single solution by the optimality criterion. This
reinforcement learning methods are classified according to the learning algorithm and
the optimality criterion. The former, there are two kinds of learning algorithms whether
directly estimating the MDPmodel or not, one is themodel-based approach such as real-
time dynamic programming (RTDP) [1] and H-Learning [16] which takes a small time
complexity but a large space complexity, and another one is the model-free approach
[18] such as Q-learning. The model-based approach starts with directly estimating the
MDP model statistically, then calculates the value of each state as V(s) or the quality of
each state action pair: (s, a) (is called a rule) Q(s, a) using the estimated MDP to search
the optimal solution that maximizes V(s) of each state. In contrast, the model-free
approach directly learns V(s) or Q(s, a) without estimating the MDP model.

The latter, there are two kinds of optimality criteria whether using a discount factor
or not, one is maximizing the sum of the discounted rewards, and another one is
maximizing the average reward without any discount factor [2, 8, 16, 18]. Most
previous RL methods are model-free approach with a discount factor since the model-
based approach takes the large space complexity.

A multi-objective MDP (MOMDP) is an MDP in which the reward function emits a
reward vector instead of a scalar reward. A scalarization function with a vector of n
weights (weight vector) is a commonly used to decide a single solution. The simple
scalarization function is linear scalarization such as weighted sum. In this paper, we
mainly target the weighted sum function for the scalarization function. However, our
method can be applied to other scalarization function such as Tchebycheff norm
method.

Multi-objective reinforcement learning (MORL) [6, 11, 13, 14] has several methods
which can be divided into two main approaches, the scalar combination and Pareto
optimization [3]. In the former case, the scalar combination is to find a single policy
that optimizes a combination of the rewards. MOMDP and known weights are input to
the learning algorithm, then it output a single solution. In the latter case, Pareto opti-
mization is to find multiple policies that cover the Pareto front, which requires col-
lective search for sampling the Pareto set [10].

MOMDP is input to the learning algorithm, then it output a solution set. Note that
there are two ways to select a single solution in the set, one is the scalarization with
known weight, another one is a user selection.

Most of the state-of-the-art MORL are model-free value-based reinforcement
learning algorithms [4, 7, 9, 13] with a main problem that is MORL previous methods
incorporate a huge learning cost to collect all Pareto optimal policies. First, they need a
sufficient number of executions for each state-action pair (rule) to collect all Pareto
optimal policies since they are model-free methods. Secondly, Pareto optimal set is
calculated for each V (state) or Q (state, action) since these methods are value-based.
Thirdly, when updating V-values or Q-values, Pareto candidates are added or updated
as V/Q-value vector, it must keep a large number of candidates until each Pareto
optimal set is converged. Therefore, previous MORL methods take large number of
calculations to collect Pareto optimal set for each V/Q-value vector. In contrast, model-
based MORL can reduce such a calculation cost [19] than model-free MORLs.
However, second and third problems as described above are still remained, and this
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method is for only deterministic environments. Thus, it is hard to learn high dimen-
sional Pareto optimal policies by previous methods.

To solve these problems, this paper proposes the novel model-based MORL
method by reward occurrence probability with unknown weights. Our approach is
based on the average reward model-based reinforcement learning [8] and there are two
main features to it. The first feature is that the average reward of a policy is defined by
inner product of the ROP vector and the weight vector. The second feature is that it
learns ROP in each policy instead of Q-values. Pareto optimal deterministic policies
directly form the vertices of a convex hull in the ROP vector space. Therefore, Pareto
optimalpolicies are calculated independently with weights and just one time.

The key points of our approach are as follows:

(1) Each objective is defined by a reward rule and its unknown weight.
(2) Multi-objective is defined by the fixed reward rule set and the unknown weight

vector.
(3) Each policy is assigned to the reward occurrence probability (ROP) vector where

nth value is the occurrence probability of nth reward rule of the policy.
(4) In the ROP vector space (rectangular coordinate system), any stationary policy is

mapped to a point where coordinates are indicated by its ROP vector.
(5) Optimal deterministic stationary policies with unknown weights form the vertex

of convex hull in the ROP vector space.
(6) Average reward of a policy is defined by the inner product of the ROP vector of

the policy and the weight vector.
(7) The range of the weight vector of each optimal deterministic stationary policy can

be calculated geometrically.
(8) The stochastic learning environment can be learned by standard MDP model

identification method and our proposed search method collects all Pareto optimal
policies.

The experimental results show that our proposed method collect all optimal policies
under four rewards (four dimensional Pareto optimal policies), and it takes a small
computation time though previous MORL methods learn at most two or three
dimensions.

2 Model-Based Reinforcement Learning

This chapter describes the framework of model-based RL methods that estimate a
model of the environment while interacting with it and search for the best policy of its
current estimated model under some optimality criterion. Some comparisons have
shown model-based RL are much more effective than model-free methods such as
Q-learning [1]. Figure 1 shows an overview of the model-based reinforcement learning
system. Note that s is an observed state, a is an executed action, and Rw is an acquired
reward. At each time step, the learner is in some state s, and the learner may choose any
action that is available in states. At the next time step, the environment responds by
randomly moving into a new state s0, giving the learner a corresponding reward R(s, a).
In Fig. 1 the learning agent consists of three blocks which are model identification
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block, optimality of policies block and policy search block. The details of these blocks
are described in following section. The novelty of our method lies in policy search
block which collects all reward acquisition policies on an identified mode according to
average reward optimality. The detail of this block is described in Sects. 2.4 and 3.3.

2.1 MDP Model and Markov Chains

A Markov decision process (MDP) [12] in this paper is a discrete time and a discrete
state space stochastic control process. It provides a mathematical framework for
modeling decision making in situations where outcomes are partly random and partly
under the control of a decision maker. Note that for a decision maker, actions are the
allowing choice, and rewards are giving motivation. A MDP model is defined by of
following four elements;

1. Set of states: S = {s0, s1, s2, …, sn}
2. Set of actions: A = {a0, a1, a2, …, an}
3. State transition probabilities Pðs0js; aÞ: a probability of occurring state s0 when

execute action a at state s
4. Reward function R(s, a): an acquired reward when execute action a at state s

State action pair (s, a) is called a rule. R(s, a) means that a reward is assigned to a
rule (s, a). A stochastic policy p is a probability distribution over actions for every
possible state. A deterministic policy is defined by a function that selects an action for
every possible state. This paper mainly deals with deterministic policies. Pðs0js; aÞ
means that the probability that the process moves into its new state s0 is influenced by
the chosen action. Thus, the next state s0 depends on the executed rule, that is the
current state s and the decision maker’s action a, and is independent of all previous
executed rules. It is called Markov property.

A Markov chain is a stochastic model describing a sequence of possible states in
which the probability of each state depends only on the previous state. It’s an intension
of Markov decision processes, the difference is that there is neigher actions nor rewards
in a Markov chain. This paper focuses on the property that a policy of a MDP forms a
Markov chain of the MDP, it is described later in Sect. 3.4.

 
Environment

Goal

Learning Agent

(1) Model
Identification

(2) Optimality
of policies

(3) Policy search

s

a

Rw

Fig. 1. Framework of model-based reinforcement learning
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We assume MDP model is ergodic where the model satisfies these conditions as
follows;

1. irreducible: All states can be reached from all others.
2. aperiodic: Each state is visited without any systematic period.
3. finite states: The number of states is finite.

2.2 Model Identification

In model identification block, the state transition probabilities Pðs0js; aÞ and reward
function R(s, a) are estimated incrementally by observing a sequence of (s, a, r). This
estimated model is generally assumed by MDP.

Model-based RL methods learn the transition and reward models of the environ-
ment by making use of counters that are used in a Maximum-Likelihood Estimation
(MLE) to compute approximate transition probabilities and average rewards [19].

Note that the MLE probability is same as the occurrence based probability. Each
time the agent selects rule (s, a) and makes a transition to state s0, the transition model’s
counter values C(s, a) and Cðs; a; s0Þ are increased by one. In a similar fashion, the
obtained reward r is added to the value Rt (s, a) which computes the sum of all rewards
obtained by selecting rule (s, a). Finally, the maximum likelihood model of the MDP is
computed as Eq. (1).

Pðs0 s; aj Þ ¼ Cðs; a; s0Þ=Cðs; aÞ and Rðs; aÞ ¼ Rtðs; aÞ=Cðs; aÞ ð1Þ

2.3 Average Reward Optimality Criterion

Optimality of policies block defines the optimality criterion of the learning policy. In
this research, a policy which maximizes average reward is defined as an optimal policy.
There are two kinds of optimality criteria on average reward RL, one is gain-optimal
which considers acquired rewards only in a stationary cycle, the other is bias-optimal
which considers acquired rewards both on a temporally path and the stationary cycle
[8]. Equation (2) shows the definition of gain optimal average reward.

gpðsÞ � lim
N!1

E
1
N

XN�1

t¼0

rpt ðsÞ
 !

ð2Þ

where N is the number of step, ( )sπ
τ

is the expected value of reward that an agent

acquired at step t where policy is p and initial state is s and E() denotes the expected
value.

2.4 LC-Learning

This section summarizes LC-Learning [5, 15] which is our basic method of policies
search. LC-Learning is one of the average reward model-based reinforcement learning
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methods. It collects all reward acquisition deterministic policies under unichain con-
dition. The unichain condition requires that every policy in an MDP result in a single
ergodic class, and guarantees that the optimal average cost is independent of the initial
state [17]. The features of LC-Learning are following; (1) Breadth search of an optimal
policy started by each reward rule. (2) Calculating average reward using reward
acquisition cycle of each policy.

3 Model-Based MORL by Reward Occurrence Probability

3.1 Weighted Reward Vector

To represent multi objective, the reward is divided into d reward types one for each
objective, and a weight which represents the importance or preference of that reward is
associated with each reward type [4, 10]. In this paper, the reward function is defined
by a vector of d rewards (reward vector)~r ¼ r0; r1; . . .; rd�1ð Þ where each ri represents
a position of reward rule and the weight vector ~w ¼ w0;w1; . . .;wd�1ð Þ which repre-
sents a trade-off among multi objective. A scalarization function with a weight vector is
called a weighted sum of rewards. Equation (3) shows a weighted sum of rewards
defined by inner product of the reward vector ~r ¼ r0; r1; . . .; rd�1ð Þ and the weight
vector ~w ¼ w0;w1; . . .;wd�1ð Þ:

r ~wð Þ ¼
Xd�1

i¼0

wiri ¼ ~w �~r ð3Þ

3.2 Average Reward by Reward Acquisition Probability

Average reward is the expected received rewards per step when an agent performs state
transitions routinely according to a policy. A step is a time cost to execute an action.
Under an unichain policy p and reward vector ~r ¼ r0; r1; . . .; rd�1ð Þ, Reward Acqui-
sition Probability (ROP) vector ~Pp is defined as shown in Eq. (4). In that, Pi is the
expected occurrence probability per step for reward ri.

~Pp � P0;P1; . . .;Pd�1ð Þ ð4Þ

Average reward qp under a policy p is defined by the inner product of the ROP
vector ~Pp and the weight vector ~w as shown in Eq. (5).

qp ~wð Þ ¼
Xd�1

i¼0

wiPi ¼ ~w � 2 ð5Þ
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3.3 Collecting All Reward Acquisition Policies [15]

Our searching method for reward acquisition policies is based on LC-learning as we
described in Sect. 2.4. Deterministic policies which acquire some rewards are searched
by converting a MDP into the tree structures where reward acquisition rules are root
rule. Figures 2, 3 and 4 shows an illustrated example. The MDP shown in Fig. 2 which
consists of four states, six rules and two rewards is converted into the two tree struc-
tures shown in Fig. 3. In a tree structure, the path from the root node to the state that is
same state to the initial node is the policy. In stochastic environment, some of the rule
is deliquesce stochastically. In such case, path from parent node of stochastic rule to the
state that is already extracted is part of a policy that contains the stochastic rule.
Figure 4 shows all reward acquisition policies in Fig. 2.

After collecting all reward acquiring policies, for each policy, the state transition
probability matrix Pp of the policy p is prepared as Markov chain by estimated by
MDP model as we described in Sect. 2.2.

3.4 Calculating ROP Vector for Each Reward Acquisition Policy

When the occurrence probability of state i is ai, it is equivalent to the occurrence
probability of the reward rule (i, a) under a deterministic policy p. Calculating method
of each ROP vector ~Pp for each reward acquisition policy p associated with Pp. From
the reward acquisition policy set is as follows;

step 1: Set up simultaneous linear equations for each Pp.
Under a deterministic policy p, the occurrence probability vector for all states ~ap
defined as Eq. (6) is the solution of simultaneous linear equations Eq. (7).

~ap � a0; a1; . . .; a Sj j�1
� � ð6Þ

~apPp ¼~ap ð7Þ

step 2: For each Pp, solve Eq. (7) by Gaussian elimination.
step 3: For each ~ap derived at step 2, forms ROP vector ~Pp by picking up the
occurrence probability of each reward rule.

A B

C D

r1

r2

Fig. 2. An example of MDP model
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step 4: Make a ROP vector set from the ROP vectors derived at step 3.
step 5: Make a mapping from the reward acquisition policy set to the ROP vector set.

Note that in Eq. (6), ai is the occurrence probability of state i, the sum of all ai is 1.
In Eq. (7), Pp is the state transition probability matrix of the policy p since the
occurrence probability of each state under a policy forms the Markov chain as we
described in Sect. 2.1.

3.5 Calculating a Convex Hull from a ROP Vector Set

After collecting all ROP vectors as a set, each ROP vector is located at a point in the
reward occurrence probability (ROP) vector space. Figure 5 shows an illustrated
example of 2 dimension ROP vector space. In Fig. 5, there are two axis, where the
horizontal axis is ROP P0, and the vertical axis is ROP P1. For example, the ROP
vector of ~Pp2 is (0.33, 0.33). There are four ROP vectors which are the vertices of the
convex hull. We use n dimension convex hull algorithm of free Python library. Note
that ~Pp1;3 is associated with two policies p1 and p3.

A

B

D

C

A

DA

B

r1

D

C

D

B

AC

r2

r2

C

r1Policy 1

Policy 12

Policy 2

Fig. 3. Searching reward acquiring policies

A B

C D

r1

r2

A B

C D

r1

r2

Policy 1

Policy 2 Policy 12

Fig. 4. Three kind of reward acquiring policies
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The advantage of the proposed method is that Pareto optimal deterministic policies
directly form the vertices of a convex hull in the ROP vector space. Therefore, Pareto
optimal policies are calculated independently with weights and just one time. Besides,
our method can be easily applied to other scalarization function such as Tchebycheff
norm method in the ROP vector space.

4 Experiments

4.1 Experimental Setup

We conduct the experiment to analyze the bottle neck of our proposed method by
evaluating the computation cost of our major processes described in Sect. 3.3 to 3.5.

Experimental conditions on stochastic MDP model as the learning environment are
as follows;

(1) The number of states is four cases, 7, 8, 9, and 10 states.
(2) The number of actions is three.
(3) The number of rewards is four.
(4) The transition probability or each rule is setup randomly under the condition that

the number of branches of transitions is randomly setup between 1, 2 or 3.

Experimental results are averaged one hundred experiments. Measurement items are
Calculation time for each process from Sect. 3.3 to 3.5 as follows;

(1) Section 3.3: Collecting All Reward Acquisition Policies
(2) Section 3.4: Calculating ROP vector for each Reward Acquisition Policy
(3) Section 3.5: Calculating a Convex Hull from a ROP vector set

4.2 Experimental Results

We conducted the learning experiment for one hundred times and each measurement
item is an averaged calculation time, its unit is second. In stochastic and ergodic envi-
ronment, our proposed method successfully collected all reward acquisition determin-
istic policies including all Pareto optimal policies under a weighted sum scalarization
function where weights are unknown. Note that the numbers of stationary cycles of the
reward acquisition policies are from 600 (7 states) to 6000 (10 states), the numbers of
vertices of the convex hull are from 31 (7 states) to 46 (10 states). Table 1 shows the
calculation time for each process of Sects. 3.3 to 3.5 as we described before section.

Fig. 5. An illustrated example of 2D ROP vector space with four ROP vectors

Model-Based Multi-objective Reinforcement Learning 319



Table 1 shows that the calculation time of our proposed method is much small
under ten states. However, the calculation costs of both (1) Collecting All Reward
Acquisition Policies and (2) Calculating ROP vector for each Reward Acquisition
Policy seem to be increase exponentially. The increase rate of item (1) is about 10 times
and that of item (3) is about 100 times. In contrast, increase rate of the calculation costs
of (3) Calculating a Convex Hull from a ROP vector set is about 3 times and is much
smaller than (1) and (2).

5 Conclusions

This paper proposed the novel model-based MORL method by reward occurrence
probability (ROP) with unknown weights and reported our work under the stochastic
learning environment with up to ten states, three actions and three or four reward rules.
There are two main features. First one is that average reward of a policy is defined by
inner product of the ROP vector and the weight vector. Second feature is that it learns
ROP in each policy instead of Q-values. Pareto optimal deterministic policies directly
form the vertices of a convex hull in the ROP vector space. Therefore, Pareto optimal
policies are calculated independently with weights and just once. The experimental
results show that our proposed method collected all optimal policies under four
dimensional Pareto optimal policies, and it takes a small computation time though
previous MORL methods learn at most two or three dimensions.

Future works is to reduce calculation cost for collecting Pareto optimalpolicies. We
are planning two ways, one is pruning in the policy search on collecting all reward
acquisition policies by estimating the length of the reward acquisition cycle. Another
approach is applying parallel computing techniques, multi processing by Multi-core
CPU for policy search, and GPGPU for calculating ROP vector.
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