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Abstract. This paper investigates whether a frequency-domain model of
complexity can accurately predict human visual salience maps. The Sencogi
model uses the frequency domain to calculate maps of spatial (i.e., static) and
temporal (i.e., dynamic) complexity. This study compares the complexity maps
generated by Sencogi to human fixation maps obtained during a visual quality
assessment task on static images. This work is the first part of an ongoing multi-
step study designed to assess whether fixation maps are an accurate represen-
tation of saliency for spatio-temporal scenes. A supporting experiment con-
firmed that top-down factors, such as scene type, task or emotional states, did
not affect human fixation maps. Results show that the Sencogi visual complexity
model estimates human eye fixations of images with prediction scores that are
significantly above a Chance baseline and is able to compete with a Single
Observer baseline. We conclude that the Sencogi visual complexity model is
able to predict human fixations in the spatial domain. The next studies will focus
on the assessment of Sencogi’s performance predicting visual fixations in the
spatio-temporal domain.

Keywords: Visual complexity � Visual saliency �
Spatio-temporal saliency models � Computer vision

1 Introduction

Visual saliency is “an abstract representation of attentional priority” [1, 2]. The liter-
ature commonly uses the term “saliency” as a synonym for the total time of foveal
fixations. Most computational saliency models are designed as an estimate of the
overall probability that each image area influences fixations. The close relationship
between fixation length and visual saliency has led to a common methodology to assess
visual saliency models, by using human fixation maps as a ground truth to estimate
image saliency [3].

Visual saliency processes are driven by both bottom-up and top-down perceptual
processes. Bottom-up saliency is data-driven, i.e., it is based on the intrinsic features of
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visual scenes and is an automatic and implicit perceptual process. Top-down saliency is
guided by cognitive processes rather than the features of visual stimuli, meaning that
environmental and psychological components (e.g., nature of the task, context,
previous-knowledge or expectations) guide the spatio-temporal deployment of eye
fixations and attention over visual scenes [4]. State of the art saliency models mostly
embrace the bottom-up approach to visual saliency.

Computational saliency maps are usually compared with human fixation maps
created by free-viewing tasks [5]. However, free-viewing tasks are not able to control
top-down influences because there is no explicit task, thus causing idiosyncratic gaze
behaviors depending on subjective factors such as expectancies, mood, language and
gender [6, 7]. In a study by Köehler and colleagues, the authors studied the effects of
both free viewing and targeted tasks on the ability of saliency models to predict human
fixations. They showed that saliency models more accurately predicted human fixations
on judgement tasks than the widely used free viewing tasks [8].

Visual saliency prediction is a topic of broad and current interest in the field of
computational neuroscience and computer vision. The main challenge of visual sal-
iency prediction is to develop architectures that are able to model how human attention
behaves in visual scenes. More accurate visual saliency prediction models would
benefit fields such as image and video compression [4], as in the case of the Sencogi
model. Most saliency models for compression aim to predict visual saliency of images
and videos from the spatial properties of the visual frames [9]. These models consider
only the saliency properties within a video frame (i.e., spatial saliency), thus excluding
the influence of motion between frames in saliency (spatio-temporal saliency). Until
now, spatio-temporal saliency models have been mainly proposed in the cognitive
science research field for modelling perceptual processes (e.g., [10]), and in spectral
analysis research for extending frequency domain use of phase data (e.g., [11]).

Spatial models for video saliency do not take into account the fact that regions of
consecutive frames have a spatio-temporal correlation that may affect saliency (e.g., a
moving object has higher salience) [12]. Spatio-temporal models that process both
within-frames and between-frames information in dynamic visual scenes are rarely
used for compression applications (e.g., [12–16]) because discriminating salient motion
from noise is still one of the most challenging issues in this field [17].

This work is part of an ongoing multi-step study for the assessment of Sencogi. It
describes the assessment of the spatial component of Sencogi on static images. Sencogi
is a bottom-up spatio-temporal model for visual compression applications (see [19–
21]). The model calculates visual complexity maps using a frequency-domain
remapping of the visual complexity of blocks of pixels. The aim of the model is to
predict visual fixations on scenes in the spatial and temporal domain. The model has
been validated on subjective quality scores with both images and videos for com-
pression applications [19–21]. In this study, the evaluation of the spatial component of
Sencogi model was conducted by comparing Sencogi visual complexity maps with
human fixation maps derived from a judgment task on an image database. Commonly
used metrics for the assessment of saliency models were used to compare Sencogi’s
maps with human fixation maps. Two additional models were computed to compare the
Sencogi model performance with (i) a Chance baseline with visual fixations maps
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randomly assigned and (ii) a Single Observer baseline with visual fixations maps as
predicted by a model computing a single observer performance.

Saliency maps are affected by top-down factors such as interest and mood. Some of
the factors that influence top-down salience can be measured using biometric sensors, to
determine whether the top-down motivations of all participants are similar. Eye fixa-
tions, EEG correlates of decision making and motivation, and facial expressions of
emotional states have been studied. Frontal EEG asymmetry in alpha oscillations is an
important decision-making marker related to approach/withdraw processes [22]. The
Frontal Alpha Asymmetry (FAA) power indicates subjects’ approach/withdraw from
unexpected or affective stimuli. Facial expressions coded by the Facial Action Coding
System (FACS) [23] are patterns of involuntary muscular movements related to affective
valence (positive, negative and neutral) and the seven universal basic emotions proposed
by Ekman, i.e., joy, sadness, anger, contempt, disgust, fear, and surprise [23].

1.1 Sencogi: A Visual Complexity Model

Sencogi is a frequency-domain algorithm which extracts from input images (or videos)
a number of features and combines them linearly. It models the variations of brightness
between pixels of a visual frame in order to create a map called a “visual complexity
map”. Sencogi’s visual complexity map represents predictions of which parts of the
input image is perceptually relevant and might be affected by visual distortions if
heavily compressed. The visual complexity model is able to estimate the degree that a
portion of the input image is visually relevant. Visual complexity maps can be used to
compress images, by removing data from areas that have low visual complexity.

In order to avoid visual degradation due to information removal, Sencogi’s
architecture is comprised of four independent visual complexity maps. They are
simultaneously computed on the real-time visual scene stream and combined to drive
the compression task. The four visual complexity maps are: (1) “Static image visual
complexity”, measuring visual complexity within each video frame. (2) “Spatio-
temporal saliency”, measuring visual complexity between multiple frames. (3) “Delta-
quality”, that detects when quality changes to the image quality introduce artefacts that
might be subjectively perceived by the human visual system, thus affecting scene
saliency [24]. (4) “Pixel noise detection” that differentiates between scene motion and
sensor pixel noise.

The four visual complexity maps are weighted by tunable thresholds, and then
combined to return a final visual complexity map driving compression. In this paper,
the result of this combination, i.e., the final visual complexity map, has been tested.
More details on Sencogi model can be found in [25].

2 Method

The study evaluates the performance of Sencogi, a visual complexity model for pre-
dicting human visual fixations. Typically, fixation prediction models are compared to
human fixation datasets provided by MIT [26]. However, MIT ground truth datasets are
based on free viewing tasks. As Sect. 1 explains, explicit tasks are better at controlling

334 M. L. Mele et al.



top-down influences, to avoid subjective factors. A judgement task has been used as
described in Sect. 2.3. An analysis investigating whether scene type and cognitive
factors related to the test affect human performance was performed through eye
tracking and EEG. As visual fixations can be affected by emotional states [6], an
emotion recognition method based on facial expressions was used to ascertain whether
the test affected emotions.

2.1 Apparatus

The Sencogi Visual Complexity model was evaluated by three psychophysiological
tools synchronized together using a biometric research platform called iMotions. The
evaluation test was conducted with an MSI laptop computer, CPU Intel(R) Core(™) i7-
7820HK CPU @2.90 GHz, RAM 32.0 GB. A second screen was used at native res-
olution (HP 22vx IPS Monitor 546 � 305 mm, 21.5-in. LED backlight, full HD
1920 � 1080) to present images to the participants. The eye tracker, the electroen-
cephalography (EEG) and the facial expression recognition software specifications are
detailed as follows.

Eye Tracker. A Tobii X3, with 120 Hz gaze sample rate, 0.4° accuracy, 0.24° pre-
cision, headbox size 500 � 400 mm, affixed to the second screen.

Electroencephalograph. We used a 256 Hz B-Alert (Advanced Brain Monitoring,
CA, USA) X10 EEG, a wireless EEG headset recording up to 9 channels of monopolar
EEG based on the international 10–20 system [27] and one optional channel of elec-
trocardiography (ECG) data. The FAA index was calculated as the difference between
the alpha EEG power right electrode (in this study, F4) and the alpha EEG power left
(in this study, the F3 electrode) [28].

Facial Expression Recognition Software. The Affectiva Affdex technology was used.
The Affdex algorithm uses an index of facial expressions, called Facial Action Coding
System (FACS) [23] to classify the fundamental actions of muscles involved in facial
expressions, called Action Units [29]. The Action Units processed by Affdex are
unconscious psychomotor processes corresponding to emotional valence rated from
−100 (Negative valence) to 100 (Positive valence), and the seven universal human
emotions rated from 0 (absent) to 100 (present). Measures were computed with a 20%
confidence threshold. The facial expressions that fall outside the threshold were
assigned with a “neutral” valence or “lack of facial expressions”.

2.2 Methods for Data Representation

Human Visual Fixations Representation. Human fixations can be represented in
different formats, either preserving their discrete nature or smoothing the fixation loca-
tions to have a continuous representation, called a heatmap. Common practice is to use a
Gaussian to blur the points and spread them to mimic visual acuity at one degree [30].

Sencogi Visual Complexity Representation. Sencogi maps have a blocky nature: the
model measures the visual complexity per region of neighboring pixels. Those regions,
hereafter called macroblocks, can have configurable size (8 � 8, 16 � 16 or 32 � 32,
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depending on the compression). Each pixel within a macroblock has the same visual
complexity value. Visual complexity values are independently computed for each mac-
roblock, meaning that visual complexity can greatly vary among nearby macroblocks.

Common Representation. To fairly compare Sencogi maps to visual fixation heat-
maps, a common representation was needed. First, the Gaussian heatmaps were
computed according to Le Meur and colleagues [30], then the Gaussian heatmaps were
transformed into a macroblock version by adopting the maximum heatmap value within
the covered area. Gaussian heatmaps are commonly compared to the blurred version of
saliency maps, however blurring a Sencogi map would lead to the loss of neighboring
values’ independence. In order to not blend independently-computed information, we
opted for a subsequent blocky transformation on the visual fixation heatmaps. Heat-
maps were computed with the code provided by Bylinskii and colleagues [26], using a
cut off value (fc = 8) which corresponds to a Gaussian width of 37 pixels (roughly 1° of
visual angle). Each Sencogi macroblock dimension (8 � 8, 16 � 16, 32 � 32) falls
within the Gaussian width, thus the blocky transformation does not introduce artefacts
that may affect the information conveyed by heatmaps values due to exceeding 1° of
visual angle.

2.3 Metrics

A Chance baseline and a Single Observer baseline were computed. The Chance
baseline was calculated by assigning a random value to image pixels and using it as a
saliency map [26]. We used the Chance baseline as a reference bound for each metric
and macroblock combination (see Sect. 4) in order to calculate whether Sencogi pre-
dicts eye fixations of participants significantly above chance. The Single Observer
baseline was computed by calculating how well a fixation map from a baseline of a
single human observer predicts all the subjects of the test, averaged over all images and
five variations of observers per image. The Single Observer baseline was computed by
following the procedure described by Judd and colleagues [31]. The Single Observer
baseline was created in order to understand how a fixation map of one observer predicts
fixations of the other observers’ fixations. The literature shows that the Single Observer
baseline provides values “about as accurate as the best saliency models” ([31], p. 12).
The performance of Sencogi Visual Complexity models in predicting the average
visual fixations of our cohort, was compared with both the Chance baseline and Single
Observer baseline.

The performance assessment of both the Sencogi model and the Single Observer
baseline was measured by four of the most used saliency evaluation metrics chosen
according to the recommendations provided by Bylinskii and colleagues in a recent
paper [26]. Although using only one metric is considered enough for assessing one
saliency model, the same metric may be not appropriate for comparing its performance
with a model designed with different assumptions and for different applications, as in
this study. For our purposes, we chose to use metrics that differ in the way they
consider fixation locations (i.e., location based or distribution based) and how they
compare saliency maps with fixation maps (i.e., similarity or dissimilarity). Three
similarity measures, i.e., Linear Correlation Coefficient (CC), Shuffled AUC (sAUC),
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and Similarity (Sim), and one dissimilarity measure, i.e., Kullback–Leibler divergence
(KL) were used. CC is a correlation coefficient metric returning a measure of the linear
correlation between two maps. A CC value of one reflects a total correlation between
the maps. KL is a nonlinear measure often used in machine learning and neuroscience
to calculate the overall dissimilarity between two probability distributions. KL range is
from zero to infinity, where a value close to zero indicates a higher similarity. Area
Under the ROC curve (AUC) uses fixation and non-fixation points. The shuffled-AUC
(sAUC) uses gaze fixations from other images to sample non-fixation distribution.
While in AUC the sampling of non-fixation points is random, in sAUC there is more
control on the sampling strategy, meaning that points are taken from regions of other
images that are highly fixated. sAUC values of one indicates a perfect correlation.

Sim measures the similarity between two distributions, which are considered as
histograms. Sim is calculated as the sum of the minimum values at each pixel, after
normalizing the input maps [26]. Sim values close to one indicate a higher similarity of
distributions, while Sim values close to zero indicate no correlation.

These are the most commonly used metrics for the evaluation of saliency maps and
they are reported in the MIT Saliency Benchmark [32].

2.4 Procedure

A selection of forty images taken from the MIT1003 database [33] was used. The
database consists of a collection of 1003 random images from Flickr creative commons
and LabelMe [33]. The images were selected by dimension (selected pictures were all
1024 � 768 pixels), format (images were all landscape format) and scene type (ten
pictures were selected according to four scene types: closeup, indoor, outdoor and
subjects). The selected pictures were used for an image quality judgment test using the
Single Stimulus Continuous Quality Scale [34] procedure. The test consists of showing
a series of single images and asks participants to rate their subjective perceived quality
on a slider numerically marked from one to one hundred and divided into five equal
portions, which are labelled as “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. The
image quality ratings that the participants provide in their judgement task are not used -
its role is only to provide a judgement task for the participants. The test was admin-
istered to participants using the iMotions platform. Subsequent images were interleaved
with a central fixation stimulus displayed for 300 ms. Each image was displayed for
5000 ms at screen native resolution. After the image was displayed, the participant was
asked to rate the perceived quality on a dim-grey page lasting at least 300 ms. The
experimental task of judging the quality of forty images lasted about 10 min. The test
was conducted under an artificial constant dim light. Participants were seated at about
600 mm from the screen and equipped with the EEG headset. Before starting the test,
the electrodes impedance was assessed, EEG benchmark data was acquired, and a 16-
point eye-tracking calibration was conducted. The whole pre-setting phase required
about 20 min per participant.
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3 Results

This part reports the results of comparisons between the Sencogi model, a Chance
baseline and a Single Observer baseline, compared to human eye fixation data obtained
from our cohort on a selection of pictures taken from MIT1003 database. Results on
eye tracking data, facial expression recognition and electroencephalography are also
described.

3.1 Subjects

An experimental test with twenty right-handed subjects was conducted. Participants
(40% female, mean age 28.75 years old) declared normal or corrected-to-normal vision,
no color blindness, and no professional experience in the field of video systems.
Participants were rewarded for performing the test. One outlier was excluded by the eye
tracking dataset.

3.2 Experimental Eye Tracking Ground Truth

Fixation number (total mean number of fixations for the entire test = 5.79, S.D. =
174.36) and fixation duration (total mean time of fixations for the entire test = 174.37,
S.D. = 31) were calculated for all participants and for each type of image (closeup,
indoor, outdoor, subjects). We discarded the first fixation from eye tracking data of
each image in order to avoid adding irrelevant information from the initial center
fixation [33]. For each measure, comparisons by image type were conducted. The one
way analysis of variance (ANOVA) found no significant difference for both fixation
number (F(3,72) = 0.144, p > 0.05) and fixation duration (F(3,72) = 0.427, p > 0.05)
among all image types.

3.3 Performance Assessment of the Sencogi Visual Complexity Model

An analysis was performed to see whether visual complexity could be a predictor of
human fixations. An example of fixation and visual complexity maps is given by Fig. 1.

Performance Assessment Metrics. To test the hypothesis that visual complexity is a
predictor of human gaze, four metrics were performed for comparisons with human
fixations: Pearson’s Correlation Coefficient (CC), Kullback–Leibler divergence (KL),
Shuffled AUC (sAUC), and Similarity or histogram intersection (Sim) (see Sect. 3.1).
Table 1 shows the results of metrics for visual complexity maps calculated for 8 � 8,
16 � 16 and 32 � 32 macroblocks size. A Chance baseline and a Single Observer
baseline were calculated as explained in Sect. 3.1 (Table 1).

Comparisons Between the Sencogi Model Performance Scores and Chance: Chance
values and visual complexity values were calculated for each metric. Results of paired
t-test show a highly significant difference for all the metrics at each macroblock size
(Table 2).
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Fig. 1. Figure shows an example of (a) original picture, (b) fixations of all the participants
measured with the eye tracking methodology, (c) fixations heatmap mapped into the same range
of values of Sencogi maps, (d) Sencogi visual complexity heatmaps according to the three
different macroblock sizes (8 � 8, 16 � 16, 32 � 32).

Table 1. Table shows the results obtained by the Sencogi model, the Single Observer baseline,
and the Chance baseline at each macroblock size.

CC " KL # sAUC" Sim"
Single observer 8 � 8 0.396 8.030 0.582 0.313
Sencogi 8 � 8 0.121 1.127 0.542 0.409
Chance 8 � 8 0.001 1.496 0.501 0.375
Single observer 16 � 16 0.413 7.800 0.587 0.328
Sencogi 16 � 16 0.128 1.036 0.543 0.433
Chance 16 � 16 0.000 1.439 0.501 0.390
Single observer 32 � 32 0.447 7.328 0.599 0.360
Sencogi 32 � 32 0.132 0.913 0.539 0.469
Chance 32 � 32 0.000 1.320 0.496 0.417

Table 2. Comparisons between the Sencogi model performance scores and the chance baseline
for each macroblock size.

8 � 8 16 � 16 32 � 32
t(201) p-value t(201) p-value t(201) p-value

CC −11.657 0.000 −11.741 0.000 −12.187 0.000
KL 30.181 0.000 33.897 0.000 31.925 0.000
sAUC −9.011 0.000 −9.217 0.000 −8.373 0.000
Sim −12.091 0.000 −17.882 0.000 −24.512 0.000
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Comparisons Among the Sencogi Model Performance and the Single Observer
Baseline Performance: Comparisons at three macroblock sizes show significantly
better CC and sAUC scores for the Single Observer baseline than Sencogi model
(Table 3).

Significantly better KL scores and better Sim scores for Sencogi model than the
single observer model were found (Table 4).

The Effect of Scene Type on the Sencogi Model Performance: Visual complexity
maps were calculated for 8 � 8 macroblock resolution. No significant difference among
metric values for image type was found (KL, F(3, 36) = 1.213, p > 0.05; sAUC, F(3, 36) =
0.860, p > 0.05; Sim, (F(3, 36) = 1.367, p > 0.05), except for CC where outdoor images
have significantly better CC values than closeup images (CC, F(3, 36) = 2.962, p = 0.042).
Visual complexity maps were calculated for 16 � 16 macroblock resolution. No sig-
nificant difference amongmetric values for image typewas found (CC, F(3, 36)= 2.704, p
> 0.05; KL, F(3, 36) = 0.874, p > 0.05; sAUC, F(3, 36) = 0.615, p > 0.05; Sim, F(3, 36) =
0.746, p > 0.05). Visual complexity maps were calculated for 32 � 32 macroblock
resolution. No significant difference among metric values for image type was found (CC,
F(3, 36) = 1.733, p > 0.05; KL, F(3, 36) = 0.520, p > 0.05; sAUC, F(3, 36) = 1.068, p >
0.05; Sim, F(3, 36) = 0.417, p > 0.05).

3.4 Facial Expression Recognition

The Effect of the Test on Participants’ Affective Valence and Basic Emotions
Responses. The mean time percent of both valence and basic emotions related to test
pictures, out of the total time recorded for all the whole test, was calculated (Table 2).

Table 3. Comparisons between the CC and the sAUC scores of Sencogi and the Single
Observer baseline for each macroblock size.

8 � 8 16 � 16 32 � 32
t(201) p-value t(201) p-value t(201) p-value

CC 15.126 0.000 15.671 0.000 17.279 0.000
sAUC 6.733 0.000 6.733 0.000 9.109 0.000

Table 4. Comparisons between the KL and the Sim scores of Sencogi and the Single Observer
baseline.

8 � 8 16 � 16 32 � 32
t(201) p-value t(201) p-value t(201) p-value

KL 29.468 0.000 29.358 0.000 28.702 0.000
Sim −9.213 0.000 −9.853 0.000 −10.048 0.000
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Emotions were calculated by iMotions1 as the mean of 100* (count frames in which
emotion appears/count frames in stimulus) (Table 5).

The one way ANOVA on affective valence means shows significant differences among
neutral, positive and negative affective values (F(2, 119) = 19840.4, p = 0.000). The
post-hoc test (Bonferroni corrected) shows a meantime percent of facial expressions
related to neutral affective states that is significantly longer at p < 0.01 than both
negative and positive valence values. A multivariate analysis of variance (MANOVA)
was performed on affective valence mean time percent, showing no significant dif-
ference among image types (subjects, outdoor, indoor, closeup) for neutral, positive
and negative affective values (Wilks’ Lambda F(9, 180) = 0.387, p > 0.05).

Significant time differences among basic emotions were found with respect to each
other (F(6, 279) = 70.735, p = 0.000). The post-hoc test (Bonferroni corrected) shows a
meantime percent of facial expressions related to fear (mean time = 3.281%) and
surprise (mean time = 2.240%) that is significantly higher at p < 0.01 than the other
measured basic emotions.

A paired t-test comparison among the subsections of the test composed by center-
fixation slide, image slide, and image quality rating slide shows significantly higher
values of emotions of fear and surprise during the image slides (fear t(39) = 4.380, p =
0.000; surprise t(39) = 3.177, p = 0.003) and quality rating slides (fear t(39) = −4.954,
p = 0.000; surprise t(39) = −4.737, p = 0.001) compared to center-fixation slides. No
significant differences were found for emotions of fear and surprise between the image
slides and quality rating slides (fear t(39) = −0.187, p > 0.05; surprise t(39) = −0.137, p
> 0.05)

Table 5. Comparisons between the KL and the Sim scores of Sencogi and the Single Observer
baseline.

Affective valence MTP S.D.

Neutral valence 58.039 4.060
Positive valence 0.089 0.330
Negative valence 1.820 3.270
Basic emotions MTP S.D.

Contempt 0.562 2.562
Fear 3.280 9.298
Surprise 2.239 7.799
Joy 0.092 0.541
Disgust 0.012 0.089
Sadness 0.002 0.014
Anger 0.013 0.103

1 www.imotions.com.
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The Effect of Scene Type on Participants’ Basic Emotions. A MANOVA was per-
formed on emotions mean time percent, showing no significant difference among
image types (subjects, outdoor, indoor, closeup) for basic emotions (Wilks’ Lambda F
(21, 201) = 0.565, p > 0.05).

Eye Tracking Data Compared to Facial Expression Recognition. No correlation
between fixation number, affective valence, and basic emotions was found. A negative
correlation was found between fixation duration and fear (Pearson’s r = −0.383, p =
0.015) and disgust (Pearson’s r = −0.324, p = 0.041). No other correlation between
fixation duration, affective valence, and basic emotions was found.

3.5 EEG

The Effect of the Test on Participants’ Approach/Avoidance States. After a previous
automatic decontamination process for artefact removal, the Frontal Alpha Asymmetry
(FAA) mean values were calculated (Table 6).

The one way ANOVA on mean FAA values shows no significant differences among
image types (F(3, 72) = 0.001, p > 0.05).

Eye Tracking Data Compared to EEG Frontal Alpha Asymmetry. No significant
correlation between fixations and FAA was found (Pearson’s r = 0.066, p > 0.05).

4 Discussion

The aim of this work was to investigate whether the Sencogi model of visual com-
plexity can accurately predict human foveal vision, and to control for factors that might
affect salience. Three experimental investigations were performed to verify (i) whether
Sencogi visual complexity predicts visual fixations, (ii) whether saliency prediction
performs better with certain types of visual scenes than others, and (iii) whether the
experimental test introduces top-down factors affecting foveal fixations.

(i) Does Sencogi visual complexity predict visual fixations? Sencogi visual
complexity maps were compared to human visual fixation maps using four of the most
suitable, commonly used assessment metrics (CC, KL, sAUC, and Sim).

Table 6. FAA mean value for each scene type.

Scene type FAA

Closeup 79.915
Indoor 82.761
Outdoor 81.488
Subjects 81.693
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Statistical comparisons of the results with a Chance baseline were performed. The
Chance baseline assigns saliency values to random pixels (chance). The results show
that Sencogi has significantly better scores than chance (i.e., they are closer to human
fixations).

Sencogi performs better than the Single Observer baseline at predicting overall
visual saliency in two assessment metrics, i.e., Kullback–Leibler divergence and
Similarity, likely because they both penalize sparser sets of predictions such as the
Single Observer baseline, which might miss fixations that emulate average fixation
behavior [26]. Comparisons were made between the Sencogi model performance and
the Single Observer baseline performance in predicting visual fixations. The Single
Observer baseline obtained significantly higher scores for the Pearson’s Correlation
Coefficient (CC) metric and for the shuffled AUC metric. These results can be
explained by the nature of the metrics used for assessing the two models. As the CC
metric does not assume that saliency models are probabilistic [26], it will produce a
worse score for models such as Sencogi that don’t include any possible systematic bias
of observers. The other metric in which Sencogi received significantly lower values
than the Single Observer baseline is sAUC. sAUC is not invariant to center bias.
A model with high central predictions is ranked lower than a model with more
peripheral predictions [26].

Sencogi received significantly lower sAUC scores than the Single Observer base-
line, meaning that the Single Observer baseline could have sets of predictions that are
too sparse to emulate average viewing behavior in the central part. In this perspective,
the Single Observer baseline is not penalized by the sAUC metric because it does not
account for the central predictions of all the observers’ fixations as Sencogi does.
Therefore, for most measures that are not biased, Sencogi correctly predicts visual
fixations.

(ii) Is Sencogi visual saliency prediction sensitive to scene type? The experimental
images shown during the test were divided into four groups according to the type of
scene depicted, i.e., images showing closeup, indoor, outdoor, and subject scenes in
order to investigate whether image type influences the Sencogi performance scores. We
found no significant difference for 16 � 16 and 32 � 32 visual complexity maps. Only
maps with 8 � 8 pixels macroblocks had significantly higher linear correlation scores
(CC) for images showing outdoor scenes compared to the other scene types, in par-
ticular closeup scenes. This result might be related to the nature of outdoor scenes, in
which subjects are usually smaller than other scene types. However, this result is
related to a barely detectable statistically significant difference that happens only for
one of the four metrics (CC). The other assessment metrics (KL, sAUC, and Sim) do
not seem to be sensitive to any difference among scene types. A new in-depth inves-
tigation on the effects of scene type on Sencogi performance is needed.

(iii) Does the experimental test introduce top-down factors affecting eye foveal
fixations? Eye fixation duration reflects how much the fixated information is processed
by cognitive processes [35]. The more a visual stimulus requires the allocation of the
analysis process, the more fixation time is prolonged [36] because of the increase in
mental load. In this work, the average eye fixation lasts about 180 ms per image, which
is about 20% of the presentation time, meaning that the nature and the duration of the
task did not cause any significant increase in cognitive workload to participants. No
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differences among visual scene type were found for fixation numbers and fixation
duration, meaning that in this study, scene type did not affect eye fixations in a
significant way.

During the presentation of experimental images, the overall neutral emotional state
in participants was significantly higher than positive and negative emotional states.
Both emotional valence and basic emotions were not affected by scene type, confirming
that the type of content in the images used for this study did not affect the emotional
quality of the interaction. However, if we analyze only the longitudinal differences
among basic emotions, participants’ facial expressions related to fear and surprise were
significantly higher than the others (joy, sadness, anger, contempt and disgust). This
result suggests that the emotions of fear and surprise might be due to the nature of the
task, which is a time-based trial (participants have five seconds to examine the quality
of each image) that does not provide any feedback to let the participant know whether
they are correctly performing the assigned task. This assumption is supported by
significantly higher scores of fear and surprise during both images and scoring slides
presentation, compared to neutral areas where participants are not asked to perform a
judgment task, such as the center fixations period. Emotional states do not correlate
with the number of fixations, but the duration of eye fixations negatively correlates with
emotions of fear and disgust, confirming that the more observers feel negative emo-
tions, the less likely they are to keep gazing at a certain fixation point [37].

Findings on EEG measures showed no differences in FAA mean values among
image types, nor the number and the duration of fixations, meaning that participants’
approach/withdraw psychophysiological processes did not significantly change during
the test. These findings highlight that no intervening top-down factor related to test or
to the material affected eye foveal fixations in a significant way.

5 Conclusion

In this paper, we validated the performance of the Sencogi visual complexity model for
predicting visual fixations of static frames. Visual complexity maps were compared
with human fixations derived from a judgment task. Findings show that Sencogi sig-
nificantly surpasses Chance and performs better than the model of a single observer for
metrics that penalize models that are too sparse to emulate average viewing behavior
(in particular, the KL metric and the Sim metric). We found no noteworthy differences
in predicting visual saliency among the four scene types of the images (closeup, indoor,
outdoor, and subjects).

Investigations of psychophysiological measures during the test excluded the pos-
sibility that, in this test, cognitive and affective psychological factors such as
approach/withdraw processes, emotional valence or basic emotions relate to fixation
number and/or duration. This lack of emotional correlation suggests that psychological
factors did not affect the participants’ performance. Observers’ mental load and
affective valence (overall neutral) were not influenced by task-related factors such as
scene type. The only basic emotions seen during the test (fear and surprise) were not
significantly present over the whole test. Fear and surprise are most likely related to the
demand of assigning a quality score rather than to the image content. Future work will
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focus on comparisons between the performance in predicting saliency of Sencogi and
traditional state of the art saliency methods. This study has shown that Sencogi can
produce visual complexity maps that predict visual fixations for static images, but
Sencogi can also produce spatio-temporal visual complexity maps, so future studies on
video databases will be conducted in order to validate the temporal components of the
Sencogi model.
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