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Abstract. Automatic speaker verification (ASV) has the potential to replace the
error-prone and expensive human-based security check to protect the ever
increasingly interconnected complex systems, such as power grid system.
However, state-of-the-art ASV system relies heavily on a large amount of mat-
ched development data and adequate long duration test utterance to maintain the
acceptable performance. Unfortunately, such large amounts of data are not
always feasible to collect in real world application. In this paper, we propose a
new method for i-vector extraction by incorporating historical test information to
reduce to requirement of long test utterance duration. The historical tests are
weighted by a world MAP estimator and then used in the computation of current
test’s Baum-Welch statistics. Meanwhile, we modify linear discriminant analysis
(LDA) to reduce the requirement of matched development data. In modified LDA
training, the variability between development and evaluation data is separated
and the objective is to simultaneously minimize the within-class variability and
domain variability when maximize the between-class variability. Experiments
are conducted on data collected from power grid dispatchers. By adding his-
torical test information, we observe consistent improvement over baseline system
especially for shorter duration condition. With modified LDA, at least 63% of
performance gap is recovered when system parameters are trained with mis-
matched development data. Finally, we integrate proposed methods in one sys-
tem and apply it to power grid dispatching room scenario. Experimental results
show our proposed methods achieve fair performance with limited voice data and
successfully reduce the amount of data required by ASV system.

Keywords: Speaker verification � Power dispatching � I-vector �
Linear discriminant analysis � Short utterance � Domain mismatch

1 Introduction

Power grid is essential for today’s society as an enabling infrastructure. The efficiency
and safety of power system have major consequences for maintaining stable electricity
supply, supporting economic growth and ensuring national security. With the rapid
development of technology, a lot of sophisticated automation has been introduced into
the power system operation. Since this equipment become more complex and start to
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affect each other, the risk and potential loss of malicious intrusion or attack also
increase. Thus, there is an increasing need for verifying the identity of the person
regarding authorized to operate the particular machine.

In this situation, conventional human-based authentication such as passwords,
tokens, and manual checks is no longer considered to offer high level security alone
because human operators are found one of the biggest sources of errors in complex
systems [1]. For example, passwords or pin numbers are easily forgotten or forged.
And even the most highly trained and alert operators are prone to fatigue and boredom
after a long period of continuous work. Therefore, the biometric identification tech-
nology can be a useful supplement to existing authentication techniques.

One of the most promising biometric identification technologies is automatic
speaker verification (ASV), which is the task of verifying an individual’s identity from
their voice samples using machine learning algorithms, without any human interven-
tion. Since voice has been one of the most casual means for natural interactions
between humans and machines, voice-based systems are easy and intuitive for human
operators to use. Further, voice is inherent to individuals and can neither be lost nor
stolen which makes it highly accurate and reliable. The availability of low-cost and
portable microphones gives it capability of easy integration. ASV has seen significant
advancements over the past few decades, giving rise to the successful introduction for
various sectors, such as health care, finance and manufacturing industry etc.

Although state-of-the-art i-vector/PLDA based systems exhibit satisfactory per-
formance with adequate speech data [2], a major challenge in ASV is to improve
performance with limited voice segments. On the one hand, to achieve fair perfor-
mance, ASV systems need to be presented with sufficient long utterance (two or three
minutes) for enrollment and test i-vectors extraction [3, 4]. Indeed, it is often difficult to
acquire such long speech for practice ASV systems because of background noise, voice
overlaps or faulty recording devices. Also, there are difficulties related to speaker
himself. In fact, unwilling speakers, the state of health, the character of speakers can all
contribute to a reduced available amount of speech data. On the other hand, the systems
require a large amount of development data to estimate reliable hyper-parameters.
Particularly, the success of PLDA modeling depends on the availability of a large set of
labeled in-domain data. In most real-life application, collection of such amount of
development data from target domain is infeasible. Hence, it is crucial to maintain ASV
performance when it is constrained on limited voice data.

Over the years, considerable research effort has been made to overcome such
challenges. In [5], the duration variability is mitigated by propagating the posterior
covariance of i-vectors to PLDA. However, scoring is computationally expensive in
this method. The work in [6] proposed full posterior distribution PLDA to address short
duration issue. The work in [7] attempted to improve short utterance system perfor-
mance by adaptation for i-vector estimation. Also, many techniques are proposed to
deal with inadequate target domain data in PLDA modeling. The work in [8] proposes
Bayesian adaptation of PLDA models. In [9], unsupervised clustering of i-vectors for
adapting covariance matrices of PLDA models is proposed. The work in [10] proposes
inter-dataset variability compensation (IDVC) to find a feature space that is more
domain independent. In this paper, we propose a new method by incorporating his-
torical test information for short utterance i-vector extraction. In addition, we modify

424 Z. Wang et al.



the conventional LDA projection to compensate the domain mismatch before PLDA
modeling. In contrast to the existing works address limited utterance length and limited
in-domain development data in separate view, we integrate proposed methods in one
system and validate it in a real-life power grid dispatching room scenario.

The rest of the paper is organized as follows. Section 2 describes i-vector/PLDA
framework as our baseline ASV system. The proposed method for i-vector extraction
and modification for LDA are detailed in Sect. 3. Section 4 presents the experimental
setups. Section 5 discusses system implementation and evaluation. Section 6 concludes
the paper and outlines future studies.

2 Baseline ASV System Description

2.1 I-Vector Extraction

As mentioned earlier, i-vector based system has become de facto choice for speaker
verification and related tasks. I-vector is essentially a low-dimensional representation of
the Gaussian mixture model (GMM) super-vector found through a factor analysis
process. Specifically, the speaker and channel dependent GMM super-vector M can be
generated by

M ¼ mþTw ð1Þ

where m is the speaker and channel independent super-vector, which is concatenated
means of universal background model (UBM), T is a low-rank total variability
(TV) matrix, and w is a random latent variable with standard normal distribution. In i-
vector approach, the universal background model (UBM) and total variability
(TV) matrix are trained with large amount speech data gathered from different speakers.
The i-vector x is given by the maximum a posteriori (MAP) point estimate of the
hidden variable w which is equal to the mean of the posterior distribution of w con-
ditioned on input utterance:

x ¼ Iþ TTR�1NT
� ��1

TTR�1N E � mð Þ ð2Þ

where R is a diagonal matrix, in which the diagonal blocks are corresponding
covariance matrices of Gaussian components of the UBM, N and E are zero and first
order Baum-Welch (BW) statistics matrices, respectively. Given an utterance
X ¼ x1; x2; . . .; xFf g, the zero and first order BW statistics are computed using UBM as

Ni ¼
XF

j¼1
Pr ijxj

� � ð3Þ

Ei Xð Þ ¼ 1
Ni

XF

j¼1
Pr ijxj

� �
xj ð4Þ

where Pr ijxj
� �

is posterior probability of generating xj by corresponding Gaussian
component density:
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Pr ijxj
� � ¼ xipi xj

� �

RC
k¼1 xkpk xj

� � ð5Þ

2.2 Linear Discriminant Analysis (LDA)

After the i-vector extraction, linear discriminant analysis (LDA) is used to compensate
within-class variations and reduce the dimensionality prior to probabilistic linear dis-
criminant analysis (PLDA) modeling. In LDA method, we simultaneously maximize
the between-class variability and minimize the within-class variability by maximizing
the following objective function:

J vð Þ ¼ vTRbv
vTRwv

ð6Þ

where v is eigenvector, Rb and Rw are between-class scatter matrix and within-class
scatter matrix, respectively, which are determined by

Rb ¼
Xs

s¼1
ns �xs � �xð Þ �xs � �xð ÞT ð7Þ

Rw ¼
Xs

s¼1

Xns

i¼1
xsi � �xs
� �

xsi � �xs
� �T ð8Þ

where S is the number of all speakers, ns is the number of utterances from speaker s, �Xs

is the average of the i-vectors from speaker s, and �x is the average of all i-vectors,
defined as follows

�xs ¼ 1
ns

Xns

i¼1
xsi ð9Þ

�x ¼ 1
N

Xs

s¼1

Xns

i¼1
xsi ð10Þ

where N is the total number of utterances.
The LDA projection matrix is found by solving the following eigenvalue problem:

Rbv ¼ KRwv ð11Þ

where K is eigenvalue matrix. The projection matrix A is formalized by selecting first k
eigenvectors corresponding to the k largest eigenvalues:

A ¼ v1; v2. . .vk½ � ð12Þ
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Finally, the LDA compensated i-vectors are calculated as

xLDA ¼ ATx ð13Þ

2.3 Probabilistic Linear Discriminant Analysis (PLDA)

Apart from compensating the within-class variations in i-vector space by subspace
transformation, probabilistic linear discriminant analysis (PLDA) is widely used to
reduce the redundant information such as channels from i-vectors. Here, the generative
model for length-normalized i-vectors of s speaker with ns sessions can be expressed as

xi;j ¼ lþVzi þ ei;j ð14Þ

where l is the mean of i-vectors, V defines the eigen-voice subspace, zi is the speaker
factor, and ei;j is the residual term.

The verification scores of PLDA system is given as batch likelihood ratio. For
projected enrollment and test i-vectors, ztarget and ztest, the batch likelihood ratio is
computed as

K ztarget; ztest
� � ¼ log

p ztarget; ztestjH1
� �

p ztargetjH0
� �

p ztestjH1ð Þ ð15Þ

where H1 denotes the hypothesis that i-vectors belong to the same speaker and H0

denotes the hypothesis that they are from different speakers. Figure 1 shows the pro-
cess of calculating scores from the enrollment and test utterance in our i-vector/PLDA
ASV system.

3 Proposed System Modification

3.1 Analysis of I-Vector Estimation for Short Utterance

In i-vector systems, the test utterance and enrolment utterance(s) are represented by test
and enrolment i-vectors extracted with pre-trained UBM and TV matrix. Then ASV is
addressed by comparing the test i-vector with enrolment i-vector(s) signed by the
individual to generate an accepted or rejected decision. Though the requirement of

Fig. 1. Block diagram of i-vector/PLDA ASV system
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speech duration can somehow be met in enrolment stage, it may not be possible to
maintain the same during the verification stage. This seriously limits the implemen-
tation of ASV system in real-world applications.

To better understand the effects of test duration variability on system performance,
we present a detailed analysis of i-vector extraction pipeline. With short utterance, there
is an increased uncertainty of BW statistics estimation due to lack of enough data to
compute statistics parameters, which leads to an uncertain i-vector estimation. For i-
vector systems, BW statistics totally represent the feature extracted from a test segment.
[7, 11] Particularly, the zero-order BW statistics defines the covariance matrix of the
posterior distribution given the utterance as

wR ¼ Iþ TTR�1NT
� ��1 ð16Þ

where wR is the covariance of the estimated i-vector, T is TV matrix, R is the UBM
covariance, N is a diagonal matrix, where the diagonal blocks are the zero-order BW
statistics of corresponding Gaussian components in UBM. Since the UBM and TV
matrix are pre-trained with large quantity of data from different speakers, the higher
variability introduced in BW statistics account for the uncertainty in i-vector estimation
for short test segment.

3.2 Incorporating Historical Test Information in I-Vector Extraction

In order to improve the i-vector estimation, we propose a new method for adding
historical test information in BW statistics computation. Rather than only use current
test utterance to compute the BW statistics, we also exploit the weighted historical test
utterance statistics to provide additional information. We define the weight ci as the
estimated probability of current test utterance and historical test utterance i belonging to
the same speaker. Then the BW statistics used to extract the current test i-vector is
given by

N ¼ Nc þRciNi ð17Þ

E ¼ Ec þRciEi ð18Þ

where Nc and Ec are BW statistics computed from current test utterance, Ni and Ei are
BW statistics computed from historical test utterance, and ci is corresponding weight
assigned to historical test.

To compute the weight ci for historical test utterance, we use a world MAP esti-
mator which was proposed in [12] and successfully applied to unsupervised GMM
adaptation thereafter in [13, 14]. We first train a two-class Bayesian classifier based on
two score models - target and non-target scores - learned from a development set. [14]
Each score distribution is modelled by a 12 components GMM. Given the priori target
and non-target score distributions, we can compute the posteriori probability of having
a target. Specifically, for every encountered test utterance, ASV system output a raw
score. Given current test raw score, s0, the posteriori probability of this test belonging
to the target speaker is defined as
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P tarjs0ð Þ ¼ P s0jtarð ÞPtar

P s0jtarð ÞPtar þP s0jnonð ÞPnon
ð19Þ

where P s0jtarð Þ and P s0jnonð Þ are the probabilities of the score given the target and
non-target score distributions, Ptar and Pnon are the prior probabilities of target and non-
target test respectively. Then for historical test utterance i with raw score, si, we can
compute weight ci as follows:

ci ¼ P tarjsoð ÞP tarjsið Þþ 1� P tarjs0ð Þ½ � 1� P tarjsið Þ½ � ð20Þ

Note that all scores used are normalized. In proposed method, we do not require access
to the historical test utterances as well as i-vectors. To utilize historical test information,
only raw score and corresponding BW statistics are needed, which do not put a heavy
burden on real-life applications. Figure 2 shows the flow diagram of the proposed
method.

3.3 Modified LDA for Domain Mismatch Compensation

One of the keys to the success of i-vector/PLDA framework is the use of a large
quantity of previously collected speech data to characterize and model speaker and
channel variability. However, it is unrealistic to assume such a large set of development
data for every domain of interest. This is especially true for PLDA modeling, which
needs labeled speech data, whereas the training of UBM and TV matrix only need
unlabeled data. Studies have found that when PLDA is trained using out-domain data,
the ASV system performance degrades rapidly due to the mismatch between devel-
opment and evaluation data [15].

Current 

Test 

H istorical 

Tests 

World MAP 

Estimator 

BW Statistics 

i-vector 

Fig. 2. Flow diagram of the proposed i-vector extraction method
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Conventional LDA projection falls to compensate this domain variability because it
captures the domain variability in between-class scatter matrix. Instead of minimizing
the domain mismatch in projected i-vectors, LDA maximizes domain variability when
training the projection matrix. In order to address such problem, we modify the LDA
training to separate domain variability from scatter matrix estimation. For simplicity,
we assume the speakers do not overlap across different domains. In our method, the
new between-class scatter matrix and within-class scatter matrix are defined as

R0
b ¼

XSOUT

s¼1
ns �xs � �xoutð Þ �xs � �xoutð ÞT þ

Xsin

s¼1
ns �xs � �xoutð Þ �xs � �xoutð ÞT ð21Þ

R0
w ¼

XSOUT

s¼1

Xns

i¼1
xsi � �xs
� �

xsi � �xs
� �T þ

Xsin

s¼1

Xns

i¼1
xsi � �xs
� �

xsi � �xs
� �T ð22Þ

where Sout and Sin are the number of out-domain and in-domain speakers, �xout and �xin
are the average of the out-domain and in-domain i-vectors, respectively. Also, we
define inter-domain variability matrix as

Rd ¼ Sout �xout � �xð Þ �xout � �xð ÞT þ Sin �xin � �xð Þ �xin � �xð ÞT ð23Þ

Finally, the modified LDA projection matrix can be calculated by maximizing the
following objective function,

J vð Þ ¼ vT
P0

b v
vT

P
wd v

ð24Þ

where v is eigenvector, and Rwd ¼ R0
wR

T
d . By maximizing above objective function, we

can simultaneously maximize the between-class variability and minimizing both
within-class variability and domain variability.

4 Experimental Setups

4.1 Speech Data and Acoustic Features

Audio data are collected by an integrated microphone from power grid dispatching hall
and dispatcher training simulator (DTS) room. All speakers are male. The raw data are
automatically saved in a memory card every 3 min. The two locations have different
room sizes, background noises, telephone channels, and so on. Figure 3 shows different
environmental setting of audio data collection. From raw audio data, 19 dimensional
Mel-frequency cepstral coefficients (MFCCs) together with energy coefficient are
extracted and appended with delta and delta-delta features to form a 60-dimensional
vector. The vector is extracted every 10 ms, using a Hamming window of 20 ms. And
silence frames are detected and discarded by an energy-based voice activity detector
(VAD).
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Unless stated otherwise, we partition data gathered from DTS room into two
subsets. We use one subset as development data and the other as evaluation data. In
order to carry out experiments for short utterance conditions, original speech utterances
are split into 2 s, 5 s, 10 s (only contain active frames) duration as short test segments.
We randomly select initial frame and create 500 truncated segments for each duration.
To test the effectiveness of modified LDA in ASV tasks with limited target domain
data, we frame the domain mismatch compensation problem as reducing the mismatch
between the data collected from different locations. We regard speech utterances col-
lected from power grid dispatching hall as in-domain data, and utterances collected
from dispatcher training simulator (DTS) room are considered as out-domain data. In
this case, the speech files from DTS room are used as development data and speech
files from power grid dispatching hall are used as evaluation data.

4.2 I-Vector Extraction and PLDA Modeling

To extract i-vector, we train a UBM with 512 Gaussian components on development
data and use UBM to estimate the BW statistics. The TV subspace has a dimension of
400 and is trained on same development data. For LDA and modified LDA training, the
reduced dimension is kept at 200. Length normalization is applied to LDA projected i-
vectors to convert their behavior into Gaussian. Then a PLDA model with 150 latent
variables is trained. We train the World MAP estimator on development data. The prior
probability used are 0.1 for target and 0.9 for non-target.

Fig. 3. Different locations of audio data collection. (a) Power grid dispatching hall. (b) DTS
room
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4.3 Evaluation Criteria

There are two kind of mistakes in ASV system: a false rejection happens when a
genuine speaker is incorrectly rejected and a false alarm when an imposter is accepted.
In our experiment, the system performance is evaluated using equal error rate (EER) in
which the false rejection rate and false alarm rate are equal. Also, we report experi-
mental results in terms of minimum detection cost function (minDCF).

5 Results and Discussions

5.1 Baseline ASV System Performance

In the first series of experiments, we compare the performance of baseline ASV system
in different test durations. The experiments are conducted on speech files collected
from DTS room. We use 3 min raw speech for enrollment and three types of truncated
segments (contain 2 s, 5 s 10 s active frames respectively) for test i-vector extraction.
The results are presented in Fig. 4.
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Fig. 4. Baseline ASV system performance for different test duration conditions
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It can be observed that system performance in terms of both EER and minDCF
degrades monotonically with the decrease in speech duration. When ASV system is
presented with 2 s short utterance, the EER and minDCF increase 182% and 142%
respectively compared to 10 s test utterance. This illustrates the need for proposed i-
vector extraction method.

Next, we use speech files from power grid dispatching hall as evaluation data.
Similarly, 3 min raw speech is used for enrollment and 2 s, 5 s, 10 s truncated speech
segments are used for testing. This series of experiments aims to show the effect of in-
domain development data on the performance of baseline system. The results are
presented in Fig. 5.
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Fig. 5. Performance comparison using in-domain and out-domain development data
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As shown in Fig. 5, there is a gap in performance on power grid dispatching hall
enroll/test set when hyper-parameters are trained with development data gathered from
DTS room. In Sect. 5.3, we employ modified LDA to reduce this performance
degradation.

5.2 Proposed Method for I-Vector Extraction

In this section, we conduct experiments to test the effectiveness of incorporating his-
torical test information in short utterance i-vector extraction. We use speech files
collected from DTS room as both development and evaluation data. The results are
presented in Table 1.

Experimental results reported in Table 1 show when enough historical information
is inserted, the proposed method could achieve noticeable improvement in terms of
EER and minDCF compared with the baseline i-vector system in different short
duration conditions. We observe that the relative improvement increases with the
decrease in test utterance duration. This suggests that incorporating historical infor-
mation is useful for short utterance.

To analyze the behavior of our method more precisely, we investigate the system
performance in terms of EER for each newly added test utterance. We conduct the
experiment on 10 random draws from the entire truncated speech segments pool and

Table 1. Performance comparison of baseline system and system incorporating historical test
information (proposed-1) in i-vector extraction

EER minDCF
10 s 5 s 2 s 10 s 5 s 2 s

Baseline (matched) 7.48 12.33 21.07 0.0372 0.0547 0.0901
Proposed-1 7.09 11.45 19.08 0.0359 0.0518 0.0827
Relative improvement 5.2% 7.1% 9.4% 3.4% 5.3% 8.2%
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Fig. 6. Average EER of the 10 s test utterance condition
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evaluate the performance individually. The results are averaged over 10 random draws
for statistical significance. We notice that a minimum amount of data should be pre-
sented for proposed system to obtain stable gain. The average EER of 10 s test
utterance condition are presented in Fig. 6. In 2 s and 5 s utterance conditions, the
patterns are similar.

5.3 Modified LDA

As shown in Sect. 5.1, when ASV system is developed using data which is outside the
target domain, it significantly affects the performance due to the mismatch between
development and evaluation data. To investigate this situation, we use speech files
collected from DTS room as development data and speech files collected from power
grid dispatching hall as evaluation data. We use modified LDA projection to replace the
conventional LDA in baseline system. System performance in terms of EER and
minDCF are presented in the Table 2.

From Table 2, a relative gain of at least 16.4% in EER and 18.3% in minDCF is
observed after applying modified LDA. In terms of bridging the performance gap
between a matched baseline (DTS room data for both development and evaluation) and
a mismatched baseline (DTS room data for development, power grid dispatching hall
data for evaluation) system, we are able to recover at least 63% of the performance gap
for different duration conditions. It demonstrates that modified LDA is quite successful
in reducing the volume of in-domain development data.

Finally, we conduct experiment on system integrating the proposed i-vector
extraction method and modified LDA. We develop system on speech data collected
from DTS room and evaluate performance on data collected from power grid dis-
patching hall. From Table 3, it can be observed that further improvement is achieved
with combined approach. Compared to baseline, it shows at least 20% improvement for
different test segment durations.

Table 2. Performance comparison of baseline system, system with modified LDA (proposed-2)

EER minDCF
10 s 5 s 2 s 10 s 5 s 2 s

Baseline (matched) 7.48 12.33 21.07 0.0372 0.0547 0.0901
Baseline (mismatched) 9.73 17.25 27.11 0.052 0.0739 0.1135
Proposed-2 7.74 14.15 22.67 0.0398 0.0588 0.0927

Table 3. Performance of system using combined approach (proposed-3)

EER minDCF
10 s 5 s 2 s 10 s 5 s 2 s

Baseline (mismatched) 9.73 17.25 27.11 0.052 0.0739 0.1135
Proposed-3 7.3 13.19 21.63 0.0367 0.0546 0.0903
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6 Conclusions and Future Work

The performance of i-vector/PLDA ASV systems depends on a large quantity of in-
domain development data for PLDA training. During the evaluation, it is also critical
that the speech duration is long enough to reduce the uncertainty in i-vector estimation.
In many practical applications, the speaker verification performance is affected due to
the difficulty in collecting significant amount of speech data. In this study, we propose
modification for i-vector ASV system to address the issue of performance degradation
with limited voice data. With the aid of historical test information, we observe a
relative improvement of 9.4% in EER for 2 s test duration condition. When system is
trained on mismatched development dataset, we are able to recover at least 63% of
performance gap using modified LDA projection. The best performance is achieved
with combined method, where we obtain relative improvement in the range of 20–29%
over baseline system.

Despite the promising results, there are still some problems to study in the future.
For example, currently world MAP estimator assumes the prior probabilities when the
corresponding scores are not encountered in the score GMM training data. While it is
anticipated that this situation is rare, we intend to investigate its effect on system
performance. In addition, speakers can overlap in different domains and the data in one
domain can be multi-modal. Such multi-modality can lead to misrepresentation of the
speaker and non-speaker information [16]. We intend to extend our modified LDA
method to compensate for speaker population difference among different portions of
training data. Also, we intend to investigate the relationship between system perfor-
mance and different sizes of in-domain data used for LDA training. In our future work,
we intend to explore applying proposed methods onto deep neural networks
(DNN) based systems. Using DNN instead of GMM to derive speaker specific infor-
mation is a very promising direction to look at.
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