
Redirecting Malware’s Target Selection
with Decoy Processes

Sara Sutton(B), Garret Michilli(B), and Julian Rrushi(B)

Department of Computer Science and Engineering, Oakland University,
Rochester, MI 48309, USA

{smsutton2,gdmichilli,rrushi}@oakland.edu

Abstract. Honeypots attained the highest accuracy in detecting mal-
ware among all proposed anti-malware approaches. Their strength lies in
the fact that they have no activity of their own, therefore any system or
network activity on a honeypot is unequivocally detected as malicious.
We found that the very strength of honeypots can be turned into their
main weakness, namely the absence of activity can be leveraged to easily
detect a honeypot. To that end, we describe a practical approach that
uses live performance counters to detect a honeypot, as well as decoy
I/O on machines in production. To counter this weakness, we designed
and implemented the existence of decoy processes through operating sys-
tem (OS) techniques that make safe interventions in the OS kernel. We
also explored deep learning to characterize and build the performance
fingerprint of a real process, which is then used to support its decoy
counterpart against active probes by malware. We validated the effec-
tiveness of decoy processes as integrated with a decoy Object Linking
and Embedding for Process Control (OPC) server, and thus discuss our
findings in the paper.

Keywords: Malware interception · Decoy processes ·
Operating system kernel · Deep learning

1 Introduction

Malware keep wreaking havoc in both general-purpose computing and industrial
control systems, despite various types of defense tools deployed against them.
Amongst those tools, honeypots showed exceptional promise. Malware detection
on honeypots is straightforward and unequivocal, since they have no activity
of their own. Any system or network operation is indicative of intrusion. High
interaction honeypots, in particular, provide the utmost protection. They run
operating system (OS) services that are identical to those on machines in pro-
duction. They also intentionally allow malware to run on the decoy machine.
These factors contribute to a deep insight into malware’s exploits and rootkit
operations, which the defender can turn into signature or rule-based detectors
to protect machines in production from the same or somewhat similar malware.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 398–417, 2019.
https://doi.org/10.1007/978-3-030-22479-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_21

Redirecting Malware’s Target Selection with Decoy Processes 399

Nevertheless, advanced malware select their targets wisely. They probe their
targets for inconsistencies that reveal decoys. In order to design better decoys,
we experimented with a practical approach that uses live performance counters
to detect a honeypot, as well as decoy I/O on machines in production. Decoy I/O
consists of phantom I/O devices and supporting mechanisms that are deployed
on machines in production [16]. Performance counters are data that characterize
the performance of a process, kernel driver, or the entire OS. Their intended use is
to help determine performance bottlenecks and fine-tune machine performance.
Performance counters are provided by the OS and hardware devices [3].

Contribution. This work defensively affects malware’s target selection by
means of decoy processes. It causes changes in malware’s findings in order to
enable a decoy to qualify as a valid target of attack. The existence of a decoy pro-
cess is projected onto a machine via instrumentation of data structures related
to performance counters in the OS kernel. The performance consistency of a
decoy process is attained via deep learning. We design and train a convolutional
neural network that can learn the performance profile of a real process, which
we use to support its decoy counterpart against active probes by malware. The
OS of reference in this work is Microsoft Windows.

Novelty. To the best of our knowledge, this work is the first to leverage OS-
level performance data to project a decoy process and protect it from adversarial
probes. We explored data structure instrumentation in our previous work to
emulate the existence of a decoy process [17]. Nevertheless, those data structures
were strictly related to processes and threads and hence only created partial
decoy process existence without run-time performance dynamics.

Saldanha and Mohanta from Juniper Networks proposed a deception method-
ology based on decoy processes called HoneyProcs, with a patent pending [1].
HoneyProcs aims at detecting malware that inject code into other processes.
HoneyProcs works by creating a real process, which tries to mimic a legitimate
process. Once the decoy process reaches a steady state, it stops making progress
with its execution, which leaves its state immutable. HoneyProcs uses such fixed
state as a baseline against any changes, including those caused by code injection.
HoneyProcs is vulnerable to the very same decoy detection technique that we
used in our honeypot experiment, which is discussed in detail later on in this
paper.

Real-time performance counters show that the resource utilization of a decoy
process freezes to constant or 0 values. For example, a simple analysis of the
working set of a decoy process reveals that its size, namely the number of its
memory pages that are currently present in physical main memory, remains
constant or decreases due to the global memory frame replacement algorithm.
This is abnormal, given that the working set is a moving window representing
memory localities. Similarly, the page fault rate of a decoy process swiftly drops
to 0, while a continuous 100% page hit rate simply is not possible due to demand
paging in virtual memory.

400 S. Sutton et al.

Organization. The remaining of this paper is organized as follows. Section 2
describes an experiment that reveals a detectability weakness of honeypots stem-
ming from their complete lack of activity. Section 3 visits the OS mechanisms
behind the display of decoy processes on a machine. Section 4 describes the deep
learning approach that protects a decoy process from malware probes. Section 5
reports on implementation, testing, and validation of this work. In Sect. 6 we
discuss research related to various aspects of this work. Section 7 summarizes
our findings and concludes the paper. The appendices desribe the threat model,
define what is out of scope, and discuss additional related works.

2 Honeypot Experiment

Stress Testing Decoy Covertness. The purpose of this experiment was to
assess the ability of honeypots and decoy I/O to protect their decoy function in
practice. The experiment was performed from a red team’s perspective. It was
done separately on a Windows honeypot, and then on a Windows machine in
production equipped with decoy I/O. The testbed was comprised of two desktops
and a laptop machine, all three of which were connected to a local area network
that was logically and physically isolated from any other networks.

0-Value Exploit. We simply ran metasploit [2] to launch a publicly known
exploit against the honeypot, leveraging a publicly known vulnerability. The
exploit returned a command prompt, i.e. a shell, which was usable to fetch and
run additional code. The test was detected as soon as the first packet reached
the honeypot machine. Nevertheless, none of the exploit, nor the vulnerability,
was of any value to the defender by virtue of all of this material being public and
hence already well known. What was left for the defender was to wait for the
testers’ next steps, namely operations like those referenced in the threat model.

Engaging Performance Probes. At this point, we actively collected perfor-
mance data regarding host processor utilization, memory use, and secondary
storage activity. We wrote a PowerShell script with the purpose of gathering
those performance data live and in real-time. A large number of samples are
collected every second until a data repository is filled. The script enabled us
to view a table of the names and process identifiers of all processes currently
running on the system, as well as view and store all the details and attributes
of a specific process of our choice.

Searching for Patterns of Absent/Low Resource Utilization. We found
that per-process performance analysis is much more accurate in spotting inac-
tivity than machine-wide performance analysis. The honeypot was characterized
by host processor time that was somewhat comparable to a machine in produc-
tion in low use. Processor time refers to the percentage of elapsed time that the
processor spends executing an active thread. A similar observation holds for the
amounts of time the processor spent executing user space code and kernel space

Redirecting Malware’s Target Selection with Decoy Processes 401

Fig. 1. Visual comparison between a process’ performance on the honeypot and its
performance on a machine in production.

code. In this experiment, the code that generated all this machine-wide activ-
ity consisted of our own script in user space, and honeypot monitoring tools in
kernel space.

The execution of all this code overall also generated interrupt arrival rates
and page fault rates that were hardly distinguishable from their counterparts
on a machine in production in low use. A complicating factor is that, at times,
multiple independent threat actors may land on a honeypot. Often cases mal-
ware even compete with each-other. The lack of attribution in machine-wide
performance parameters hinders honeypot inactivity detection. These findings
informed our decision to direct deep learning towards the performance profile of
specific processes rather than the machine as a whole.

When directing our script towards specific processes, in most cases we
obtained performance counters that indicated a total lack of any resource uti-
lization. In a few cases, performance counters revealed existent but low resource
utilization, which we deemed to be related to our own moves on the honeypot.
Processes on a honeypot simply do not make progress with their execution, con-
sequently their processor time is 0. New pages in memory are not referenced,
consequently no page faults occur. Human-machine interaction is absent and
thus interrupts do not occur. Secondary storage is not accessed, consequently
the data rate and the number of I/O operations per second are both null.

Our findings are illustrated in Fig. 1. The data plot on the left shows some of
the performance parameters of the Desktop Windows Manager (DWM) on the
honeypot, where patterns of absent or low resource utilization are clearly evident.
The visualized performance parameters, except the working set, are constantly
0. There are a few processor time spikes, however those are very minimal. It is
interesting to see how the working set, which is represented by the flat horizontal
line at the very top, never changed from 87420928. Of course, with no page faults
occurring, the working set could not change. In the data plot, we have applied
a log10 reduction of the working set to make it fit within the same plot as the
other performance parameters.

402 S. Sutton et al.

The data plot on the right shows the same performance parameters of the
DWM process, but this time on a machine in production. The working set and
the disk data per second have both been reduced log10. They are high and
variable.

Experiment Repeated on Decoy I/O. This time, the probes were directed
against a decoy process amongst real processes on a machine in production.
Decoy I/O consisted of a decoy network interface controller, which projected a
decoy network providing connectivity to a decoy Object Linking and Embedding
for Process Control (OPC) server, as in [17]. The decoy process was an OPC
client, which, just like HoneyProcs, maintained a consistent appearance. More
specifically, it appeared to load the same libraries, had the same size on disk, and
created the same number of threads, as its real counterpart. Nevertheless, when
probed over performance counters, the decoy OPC process was immediately
detected as in the honeypot experiment.

Multiple Performance Samples are Needed for Accuracy. It is normal
for a machine in production, and hence a valid malware target, to have periods
of inactivity or low use, which may be quite common. In this experiment, perfor-
mance probes were collected over an extensive time window to make sure that
production activity was observed if existent.

Fig. 2. Decoy process visibility via performance data instrumentation.

3 Decoy Processes

Make Visible, but Do Not Create. In this work, the idea is to only project or
display the existence of a process for malware to see rather than concretely create
that existence. In other words, we aim at making a process that is as visible as its
real counterpart, without having to spawn it. The rationale is simple. Spawning

Redirecting Malware’s Target Selection with Decoy Processes 403

a real process, albeit for use as a decoy, consumes real resources on the machine,
which adds to the overhead of running detection tools specific to decoy processes.
The data, code, and libraries of a decoy process would need to be stored in real
frames in main memory. As we discussed earlier in this paper, freezing execution
to create an immutable state is ineffective, therefore there would have to be real
activity, which would consume CPU cycles and secondary storage.

Own real activity comes with its own complexities, since it needs to be distin-
guished from malicious activity, thus bringing the malware detection challenge
almost in a form similar to conventional intrusion detection. The browsing pres-
ence of a decoy process is achieved by inserting a synthetic entry in the process
table in the OS kernel. Furthermore, most of the known techniques to hide a
malicious process are usable to create exactly the opposite effect, namely show
the existence of a process that does not exist. The task manager tool, the tasklist
command, and the ps command, all display an entry for the nonexistent process
in their output.

The visibility of a decoy process is attained as illustrated in Fig. 2. Perfor-
mance counters originate in drivers in the OS kernel. These drivers operate as
performance counter library (PERFLIB) providers, which furnish performance
data in response to queries. Performance data are accumulated in data struc-
tures, such as linked lists. We have written data structure instrumentation code,
which deposits synthetic performance data for a decoy process in the repository
of performance counters. These performance data, real and synthetic, are then
provided to a consumer in user space, including possible malware. This way we
project the existence of a decoy process by means of synthetic resource utilization
dynamics. Clearly the synthetic performance data need to be consistent, which
we address via a neural network and discuss in detail later on in this paper.

Timing the Replies to Performance Queries. Performance data are counted
in the OS kernel during specific time windows as related events occur. For exam-
ple, a counter of page faults is incremented each time a trap to the OS kernel
is made as a result of a reference to a page that is not present in physical main
memory. The counter’s value is not stored immediately in the repository of per-
formance counters. Instead, it is buffered until the counting period is complete.
Consumers of performance data in user space will not receive fresh counter data
until after the counting period. It is of paramount importance that the data
instrumentation driver depicted in Fig. 2 does not deposit the synthetic perfor-
mance data too fast or too slow in the repository of performance counters.

In this work, the synthetic performance data are decided and produced by a
neural network. This process takes relatively little time, since the neural network
is already fully trained at the time it is utilized as a source of such data. The
neural network needs the performance counters that pertain to all real processes
on the machine in order to function. The data instrumentation driver collects
these performance counters by accessing directly the repository where they are
stored. Once the neural network delivers the performance counters for a decoy
process to the data instrumentation driver, the latter buffers them until the end
of the counting period, at which point it stores them in the repository.

404 S. Sutton et al.

Safety. Making a nonexistent and hence a decoy process visible via synthetic
performance data is safe on honeypots. There are no humans who interact with
honeypots while the latter are in operation, consequently the risk of a user
interacting with a decoy process is null. The risk on a machine in production
equipped with decoy I/O is considerable. We rely on a safety measure from
related previous work [17], which is a filter driver integrated into the driver
stack of the monitor device. The driver filters out decoy entries from frames of
bytes bound for the monitor, before those data have traveled far enough to be
displayed on the monitor. Since we know the name and the performance data of
the decoy process a priori, we can have them filtered out from the user’s visual.

4 Performance Support for a Decoy Process

We now discuss how our approach learns the performance fingerprint of a real
process, to be able to perform performance recognition tasks in support of the
process’ decoy counterpart. We express details of our approach through the lenses
of deep learning. The reader is referred to [7] for a detailed discussion of deep
learning. In this paper, we base our reasoning on an OPC client process on a
machine in production. The rationale for selecting an OPC client as a subject
of deep learning and decoy process is connected to its integration with a decoy
I/O capability, which we developed in our previous work [17]. Nevertheless, we
deem that this work is applicable to all processes.

The rationale for solving the decoy process performance challenge on a
machine in production is that the latter presents an environment that is much
more complex than the environment of a honeypot. On a honeypot, most or all
processes can be configured to be decoy processes, whose performance param-
eters we can choose ourselves. This makes it easier to calculate their projected
resource utilization. On a machine in production, the performance of real pro-
cesses is beyond our control, therefore our approach needs to be robust enough
to work with any possible values they may have. And all this while malware are
probing for performance inconsistencies.

4.1 Heatmaps

Heatmap Design. We model the machine’s resource utilization as a heatmap,
where performance parameters are represented as a color with a given strength.
An example heatmap used in this work is depicted in Fig. 3. The higher a per-
formance parameter, the stronger its color in the heatmap. An excerpt from the
set of performance parameters that we used in this work is given in Table 1.
These parameters are taken from the whole resource utilization spectrum, in the
hope that they can enable our approach to learn the performance fingerprint
of a process. With performance parameters and real processes aligned along the
ordinate and abscissa, respectively, each heatmap cell visually indicates the value
of a performance parameter for a specific real process.

Redirecting Malware’s Target Selection with Decoy Processes 405

Table 1. Some of the performance counters visually assembled in heatmaps.

CPU Memory Secondary storage

User Time Page Faults/sec IO Read Operations/sec

Privileged Time Working Set IO Write Operations/sec

- Working Set Peak IO Other Operations/sec

- Pool Paged Bytes IO Read Bytes/sec

- Pool Nonpaged Bytes IO Write Bytes/sec

The idea is to train the neural network by feeding it a large number of images
generated by heatmaps. Each image of heatmap is labeled in such a way that
its class label, i.e. an object type associated with the heatmap, is an array of
color strengths, namely one color strength for each performance parameter of the
decoy process. If training succeeds, the neural network can be used for heatmap
recognition. The neural network reads a heatmap, which most likely was not seen
during the training phase, and produces in output a class label. The class label,
in turn, informs our approach as to what specific values to give the performance
counters of the decoy process.

Fig. 3. A performance heatmap for neural network consumption.

Adapting to the Performance of Real Processes. The decoy process, in
our case the decoy counterpart of an OPCExplorer process, exhibits performance
parameters that depend directly on the resource utilization of real processes on

406 S. Sutton et al.

the machine. When probed by malware, we take a screenshot of the perfor-
mance counters of real processes, metaphorically speaking, and turn them into
a heatmap for recognition by the neural network. All processes are taken into
account when estimating the performance parameters of the decoy process. We
only show a few in Fig. 3 to make the heatmap fit within the page borders. In
reality, heatmaps are much larger.

The resource utilizations of any processes created by malware are also
included in the heatmaps. Those processes are referred to as foreign processn
in the heatmaps, regardless of how they are named by the threat actors. Stan-
dard internal names for such processes prevent the neural network from getting
confused. Multiple processes may be created off the same executable file. For
example, the user may be running several chrome tabs, each of which runs as a
separate process. Of course, we include the performance of all such processes in
the heatmaps. This is what makes our approach cognizant of the current resource
utilization load on the machine.

Performance Correlation with Input Data. The heatmap of Fig. 3 contains
an explicit process activity indication at the very top. This is for the neural net-
work to include in its internal heatmap processing. The activity indicator ties
the performance fingerprint of the process to be mimicked with the input data
of that process. When fed with different input data, a real OPCExplorer process
may have totally different resource utilizations for the same resource utilization
load on the machine. The same heatmap leads to different performance param-
eters for different input data. We noticed that the performance of a process is
insensitive to small variations of input data. Instead, a better input categoriza-
tion is needed, which can indeed cause a visible change in resource utilization.

All processes have well defined operations in their design, which we find to be
meaningful enough to resource utilization to cause changes. In this work, we use
such operations to relate input with resource utilization. The operations that we
used within heatmaps pertaining to the OPCExplorer process are summarized
in Table 2. OPC consists of objects that are based on the Microsoft Distributed
Component Object Model (DCOM). COM enables objects on the same machine
to exchange data with each-other. DCOM is basically COM, but with the added
functionality of enabling objects that reside on different machines to exchange
data with each-other over the network.

An OPC object is a DCOM object. As all objects, an OPC object has meth-
ods and attributes. The attributes are also known as tags, or data points, which
represent parameters of a physical system. Examples include voltage, phase, and
current. An OPC server hosts OPC objects, which an OPC client can access in
reading or writing over the network. The reader is referred to [10] for a detailed
specification of OPC. Some of the operations in Table 2 refer to groups. These
are sets of tags, possibly from different OPC objects, which the system operator
has reasons to gather together when performing a given OPC task.

We assign numerical values to OPC operations, which we refer to as opcodes.
These are identifiers that we use to differentiate OPC operations from each-other.
Opcodes are then included in heatmaps for the neural network to process along

Redirecting Malware’s Target Selection with Decoy Processes 407

with the other data. For example, the heatmap of Fig. 3 shows an opcode of 1,
which corresponds to viewing OPC server properties on the OPC client.

During testing experience we noticed the I/O performance parameters includ-
ing I/O write and read operations from secondary storage are always 0 value as
those processes didn’t consume any I/O resources during our testing experi-
ment. These counters are included in the label construction, however they are
always of value zero and therefore do not effect classification. The collected label
measurements are used for training our neural network.

Table 2. Categories of operations on an OPC client as used in heatmaps.

OPC Server Ops Group-level Ops Tag Related Ops

View OPC server properties View group properties List tags of an OPC object

Add an alarm Change group properties Add a tag to an OPC object

- Create a new group Include a tag in a group

- Delete an existing group Remove a tag from a group

- - Read a tag

- - Write a tag

4.2 Deep Learning of Performance Fingerprints

Training Set and Labeling. As we run the OPCExplorer process to perform
the operations of Table 2 one at a time, we collect the performance counters
of all other processes on the machine. Those performance data enable us to
build heatmaps. We also collect the performance counters of the OPCExplorer
process, which collectively enable us to unequivocally establish a class label for
each heatmap. All these labeled heatmaps are used to train the neural network.

Test Set. We repeat the previous steps, but this time do not include the labeled
heatmaps in the actual training of the neural network. We set aside these labeled
heatmaps for later use, once the neural network is fully trained.

Algorithmic Approach. A convolutional neural network has multiple layers
of neurons which include at least one input layer and one output layer and some
number of hidden layers including Rectified liner unit, pooling, fully connected
and softmax. The hidden layers are used to adjust and scale the activation of
given features from the heatmap images. Thus, the number of layers are critical.

The inner workings of the convolutional neural network are given in Algo-
rithm 1. One of the most critical steps is the configuration of the layers of
this neural network. We add a standard input layer to load and initialize the
heatmaps from the training set for further processing. Several rectified linear
unit (ReLU) layers are also added to the neural network. ReLU layers increase
the pace and effectiveness of the performance fingerprint learning. They zero
out negative values and maintain positive values in convolved heatmaps under-
going processing. We also add several pooling layers, which reduce the number
of heatmap image parameters that the neural network needs to work with.

408 S. Sutton et al.

The neural network includes several batch normalization layers, which adjust
and scale the activations of given features from the heatmap images. The fully
connected layer produces a vector with size equal to the number of class labels.
Each element of this vector is the probability for a class label of the heatmap
image that was just processed by the neural network. Some of these probabilities
may be negative. Furthermore, the sum of all these probabilities may not be
1.0. The softmax layer corrects such anomalies, and thus normalizes the vector
in question into a probability distribution. The classification layer assigns the
correct class label to a heatmap image that was just processed, on the basis of
that probability distribution.

Once the training is complete, we run the neural network to classify heatmaps
from the test set. We compare the known class labels for those heatmaps with the
class labels produced by the neural network, in order to calculate the heatmap
recognition accuracy. If the attained level of accuracy is low, we add more layers
to the neural network and retrain it from scratch. We keep revising the neural
network design until we attain a satisfactory accuracy.

Algorithm 1. Algorithm to train and test a convolutional neural network
for heatmap classification.
1 Function Learn-Performance-Fingerprint (G, V);

Input : Training set of heatmaps G, testing set of heatmaps V .
Output: Convolutional neural network Π, heatmap recognition accuracy δ.

2 δ ← 0
3 for ∀ heatmap ν ∈ G do
4 Read ν into array α in memory;
5 Add Label(ν) to α;

6 end
7 while δ < 90 do
8 Empty Π if any layers present;
9 Define the input layer of Π;

10 Add count1 ReLU layers to Π;
11 Add count2 pooling layers to Π;
12 Add count3 batch normalization layers to Π;
13 Add a fully connected layer to Π;
14 Add a softmax layer to Π;
15 Add a classification layer to Π;
16 Select Π’s training options;
17 trainNetwork(Π);
18 for ∀ heatmap ε ∈ V do
19 δ ← Π(ε)
20 end
21 Increase count1, count2, and count3;

22 end

Redirecting Malware’s Target Selection with Decoy Processes 409

Usable Oracle. At this point, a fully trained neural network with high accuracy
can be queried by the data structure instrumentation code. A query contains a
heatmap that is representative of the resource utilization of all processes on the
machine, of course excluding the decoy OPCExplorer process. The response by
the neural network contains a class label, which the data structure instrumenta-
tion code can easily convert into performance data for the decoy OPCExplorer
process. Those data are reported to malware in the form of performance counters
in response to their probes.

5 Experimental Testing and Validation

Implementation. We wrote Matlab code to implement the deep learning app-
roach. We also wrote other Matlab code to generate heatmaps. We extended
the PowerShell script that we used in the honeypot experiment to collect live
performance data from all processes running on the machine. These data are
stored in files, which are then read by Matlab code to produce heatmaps. The
sample interval and number of samples collected are specified by the operator.
Increasing the number of samples collected per interval creates a heatmap with
greater density of data points. Labeling the heatmaps was a tedious task, which
we completed manually one heatmap at a time. To that end, we exercised the
OPC client operations referenced in Table 2 manually by interacting with the
OPC client software similarly to a system operator. As we ran those operations,
we measured the performance counters of the real OPCExplorer process, which
we then used for labeling heatmaps.

The need for manual and hence time consuming work limited the number of
heatmaps that we could label and use to train the neural network, which in turn
affects negatively the accuracy of the neural network itself. As an aside note,
in terms of future work, an artificial intelligence approach that uses a virtual
keyboard and mouse to drive the functionality of the OPC client software would
be most useful to improve the feasibility of this work.

Testing Against Live Malware. A large set of OPC malware samples involved
in the Dragonfly malware campaign have been publicly available for academic
research for quite some time. Those malware samples come in many versions.
Nevertheless, none of these samples appeared to analyze system or network activ-
ity on the compromised machine prior to attacking an OPC server. They perform
a network search for servers, identify those specific servers that host OPC objects,
and then simply pursue the tags in those objects over the network. BlackEnergy
style of malware attacks also seem to ignore system or network activity prior to
initiating keystroke interception, or prior to making VPN connections over the
network.

Extended/Revised Honeypot Experiment. Since the use of performance
counters to detect decoys is new, and thus there are no malware that use it, we
do not seem to have the means of testing this work against real-world malicious

410 S. Sutton et al.

code, as we have in our previous works. We had to return to the honeypot exper-
iment, which, at the beginning, had succeeded to detect the honeypot and decoy
I/O. We repeated the various experimental trials on a machine in production
equipped with decoy I/O. This time, the red team approach was equipped with
the details of the entire contribution made in this paper. In other words, the
red team was assumed to have awareness of the fact that system activity on
the machine might be due to decoy processes, and that the performance data
of those decoy processes are regulated by a deep learning algorithm based on
heatmap recognition.

Visually, decoy processes resemble their real counterparts. Most importantly,
they also have performance dynamics, which we assessed by putting the red team
in the best attack conditions possible. The thought processes are illustrated in
Fig. 4. More specifically, in our red team role, we had a replica of the machine
to be protected, with the only difference being that the OPCExplorer process
was real. We measured empirically the performance parameters of all processes,
including those of the real OPCExplorer process. As we were performing those
measurements on the replica, in some cases we intentionally left all processes in
low or moderate use, except the real OPCExplorer process.

Since most of the performance parameters of the other processes were low
or near constant, they perturbed the performance of the real OPCExplorer pro-
cess by a lesser amount than on a usual machine in production. We called these
performance measurements group 1 (G1). In other cases, we drove the other
processes such as to perform average or higher load tasks, and called the corre-
sponding performance measurements group 2 (G2) and 3 (G3), respectively. In
G2 and G3 conditions, the other processes affected the performance of the real
OPCExplorer process by a larger amount than in G1 conditions. Overall, these
maneuvers enabled us in our red team role to collect measurements that stati-
cally tied the performance of all processes on the replica with the performance
of the real OPCExplorer process.

Our convolutional neural network is trained to cope with any arbitrary
amount of effect that the other processes may have on the performance of the real
OPCExplorer process, and thus reproduce consistent performance parameters on
its decoy counterpart under all circumstances. The reason we are emphasizing
specific G1, G2, and G3 conditions, is that, from a testing or probing perspective,
our experience with this research suggests that the likelihood of seeing perfor-
mance parameters on a machine in production that are similar to those observed
and recorded on the replica varies across the G1, G2, and G3 spectra. After all,
the feasibility of these testing/probing techniques depends on the portability of
resource utilization dynamics from the replica onto the compromised machine,
i.e. the machine in production.

G1 conditions are the most favorable to a threat actor, since their occurrence
is statistically more common, especially on client machines in production. At
times, users commonly interact with a few application programs at a time. Some
users place higher demand on their machine, in which case G2 and G3 conditions
take place. Nevertheless, we found that, even when G2 and G3 conditions occur,

Redirecting Malware’s Target Selection with Decoy Processes 411

they are hardly stationary enough to resemble a specific predefined resource
utilization pattern characterized on the replica. A threat actor may attempt to
interact with processes in order to force their resource utilization to get close to
a precalculated resource utilization signature. However, we deem the following
adversarial actions to be out of reach:

– Non-invasively reduce the resource utilization of a process that is taking input
from the legitimate user. Thus, a threat actor may be able to adjust the
resource utilization of a process by increasing it. If the adjustment requires a
decrease, the threat actor is impotent.

– Interact with a process that has a graphical user interface (GUI). The reason
is simple, namely the legitimate user will certainly notice. Making process
AcroRd32 load a portable document format (PDF) file and scrolling over the
pages, or making Chrome browse a website, will display the respective GUI
components on the screen.

Instead of requiring our red team approach to adjust the resource utilization
of processes, if possible, and/or wait for a lucky resource utilization combination
to occur, we facilitated the red team assessment by creating usable G1, G2, and
G3 dynamics on the compromised machine. This is what we meant with putting
the red team in the best attack conditions possible earlier in this section. The
appearance of usable G1, G2, and G3 dynamics on the compromised machine
may be a rare event, but we assume it to be possible in order to favor the highest
strength of the red team assessment.

In some of the tests, we left most of the processes on the compromised
machine in low or moderate use. In other tests, we used same or similar stimuli
as on the replica to create G2 and G3 conditions that were close enough to the
performance signatures taken on the replica.

This is the culmination of the target validation on the compromised machine.
Since in our red team role we had prior knowledge of the performance of the
real OPCExplorer process within a precalculated resource utilization signature,
we could simply compare the expected performance of the OPCExplorer process
with the performance collected on the compromised machine. If the two diverged
by a non-negligible amount, the conclusion would be that we had landed on a
decoy. Some of the findings of these trials are depicted in Fig. 5.

The Performance Fingerprint of a Process is not Fixed. The data plots
in Figs. 5 and 6 show that, often cases, we get slightly different performance
data for a real process such as OPCExplorer, although the performance data
of the other processes do not change or change minimally. For example, under
identical or similar underlying performance dynamics, we measured a processor
user space time for real process OPCExplorer equal to 3.61. A few seconds later,
without any change of conditions, we measured 3.05. Consequently, a decoy
performance inconsistency has to be a considerable departure from patterns of
resource utilization, since small departures are normal.

Overall, our work is able to keep the performance data of a decoy process
within the normal variability of the performance fingerprint of its real counter-

412 S. Sutton et al.

Fig. 4. Assessing the accuracy of our convolutional neural network in protecting a
decoy OPCExplorer process from malware probes. (Color figure online)

part. We had cases of incorrect class labels produced by the neural network,
however those were relatively infrequent. We deem that those misses were due
to the small number of heatmaps in the training set. With a larger training set,
this work may attain a higher accuracy. We also had a few challenges during
the actual measurements of performance data. The OPC client software that
we worked with displayed hints and other help via pictures and other graphics
on its graphical user interface. We noticed that the reading and displaying of
those graphics one at a time, and for specific periods of time, did affect the
performance parameters that we were measuring.

Load Disturbance Attempts. In our red team role, we created processes
that requested large amounts of memory, consisted mostly of CPU bursts, or
generated heavy I/O traffic. We also created processes that changed the amount
of resources abruptly and quickly, from very high to very low, and then back to
very high. The neural network tolerated these disturbances, with no noticeable
class label changes.

6 Related Work

Several works have explored prediction models to estimate resource utilization at
runtime. Matsunaga et al. surveyed supervised machine learning to train data
points and predict execution time. However, the authors only attain detailed
estimated in relation to fixed input data [12]. In contrast, in our work we con-
sider any input data. Miu et al. examined features extracted from input data to
find specific instances that maximize the accuracy of predicted execution time
of a process. They used a combination of input features to learn regression mod-
els using C4.5 decision tree builders. Their method depends on learning from
historical data [13]. Li et al. predicted scheduling in a Round Robin manner in
the distributed stream data processing. For scheduling, a greedy algorithm is

Redirecting Malware’s Target Selection with Decoy Processes 413

Fig. 5. Sample I - Empirical measurements of performance data versus deep learning
class labels.

Fig. 6. Sample II - Empirical measurements of performance data versus deep learning
class labels.

used to assign threads to machine under the guidance of prediction results [11].
Amiri et al. reviewed prediction models, including machine learning methods, to
estimate performance and workload in the cloud [4].

Pietri et al. proposed a method to predict execution time for a parallel work-
flow based on its structure in the cloud [14]. Their approach divides tasks to
various levels based on their data dependency. Other related works focus on
using machine learning to build a framework for mobile devices that can find
features related to computational resource consumption from the input data
that are given to a program [9]. These works use program slicing and sparse
regression to extract pertinent information from program execution. Our work
is different in that it is load dependent, and hence can predict the resource
utilization parameters of a decoy process as other real processes continuously
change their own performance parameters.

414 S. Sutton et al.

7 Conclusions

Live real-time performance counters enable a deep insight into the performance
of a process. Our honeypot experiment showed that performance analysis of
processes can catch the many inconsistencies of high interaction honeypots and
decoy real processes, and can also be a threat to decoy I/O if left unaddressed.
We described interventions in the OS kernel that project the existence of a decoy
process, without having to spend resources on creating an actual process. We
devised a convolutional neural network that can learn the performance finger-
print of a process in support of its decoy counterpart. In conclusion, we validated
and quantified the ability of such decoy processes to sustain a realistic resem-
blance with a valid target of attack, thus possibly causing changes to malware’s
target selection.

Acknowledgment. This material is based on research sponsored by the USAFA and
Oakland University under agreement number FA7000-18-2-0022. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

The opinions, findings, views, conclusions or recommendations contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the USAFA or the U.S.
Government.

Appendix A: Threat Model

Probes Originate from the Inside. A malware sample has compromised a
machine, and is now assessing whether or not it is a decoy. We have observed that
this target validation assessment is commonly a precursor to attack operations
such as the following:

– Launching local exploits to escalate the current privilege.
– Installing rootkits to preserve access.
– Installing I/O interceptors to capture keystrokes, webcam traffic, file system

and network traffic.
– Accessing data and sending them to a threat actor over the network.
– Launching an exploit on the compromised machine against another target

over the network.

These operations are typically implemented as separate malware modules,
which follow the initial exploit. A multi-stage dropper downloads them onto
the compromised machine over the network from another machine under threat
actor’s control. A single-stage dropper comes with these modules incorporated
in it. The dropper itself is downloaded over the network similarly to the malware
modules.

Redirecting Malware’s Target Selection with Decoy Processes 415

The Initial Exploit May Yield Partial or 0 Value. On several occasions,
the initial exploit may go undetected, consequently the malware operations ref-
erenced previously are the defender’s opportunity to detect the malware based
on its contact with decoys. A common case of this occurrence is when the initial
exploit leverages a 0-day vulnerability on a machine in production equipped with
decoy I/O. When targeting a honeypot, the same exploit is certainly detected
upfront. Nevertheless, as we wrote earlier in this paper, it is possible to avoid
making network contact with a honeypot on the basis of its lack of network
activity. Some initial exploits yield no value to the defender, as in our honeypot
experiment.

Withstanding Probes is of Significance. Decoy processes and their perfor-
mance consistency, along with other types of consistency, are decisive on whether
malware fall into a trap, or step away from a decoy target, erase themselves and
hence disappear even before the defender sees any cues at all. An ineffective
decoy results in none of the malware modules or even the dropper ever being
brought onto the machine.

Appendix B: Out of Scope

The deep learning in this work needs to be hidden and protected from malware,
otherwise threat actors may manipulate its computations and evade it. One
solution is to run the deep learning on a virtual machine (VM), which is managed
by a hypervisor and is isolated from the host machine. The overhead of a VM
solution needs to be carefully assessed. Another solution is to run the deep
learning on a hardware sideboard physically isolated from the host machine.
This other solution comes with an added cost, which could be kept as low as
under $50 with the right hardware design.

A honeypot’s lack of network activity can be leveraged remotely to avoid
attacking it. A threat actor operating on a compromised machine in production
may select the next targets to be only those machines that the compromised
machine is observed to communicate with. Since, by definition, no machine in
production communicates with a honeypot, the threat actor will never hit a
honeypot.

Because of room limitations, and to be able to describe the main contribution
thoroughly, we do not include these efforts in this paper.

Appendix C: Additional Related Works

Several related works use stealth techniques to hide computer resources. Hook-
ing, which prevents a request from accessing resource usage, and Direct Kernel
Object manipulation (DKOM), which manipulates specific data in the OS ker-
nel. Butler et al. described a non-hooking method to implement a device to hide
and unlinked processes in EPROCESS blocks on Microsoft Windows [5]. On
the other hand, Tsai et al. identified DKOM that can target all resources of an

416 S. Sutton et al.

object directory, and thus alter and hide kernel objects that are commonly used
by the OS in memory [18].

Jones et al. presented a technique to detect a virtual machine monitor
(VMM)-based process that is maliciously hidden. This technique uses cross view
validation, and then patches the executable code in order to affect its execu-
tion. The authors can detect any hidden processes that are running within a
guest virtual machine. Their technique leverages CPU inflation, which is the
CPU time consumed by each process within VMM and the guest operating sys-
tem [8]. Unlike all these related works that we just discussed, our research stands
out through the emphasis placed on creating a decoy process in EPROCESS to
appeal to a threat actor, while hiding the decoy process from legitimate users.

As far as resource utilization prediction goes, we also use machine learning
to predict performance parameters for a decoy process. However, our work is
different than related works. As we mentioned earlier in this paper, our app-
roach is load dependent. The other related works do not make load dependent
estimations. Secondly, our work leverages input categorization based on process
operations. Along with heatmap design and deep learning, these factors provide
for a high level of accuracy, which is adequate to withstand malware probes.

Malware have a history of validating their targets prior to carrying out their
operations. Some of these malware detect debuggers and/or virtual machines.
An active debuger may be indicative of an execution environment operated by
defenders in support of dynamic code analysis. Furthermore, a virtual execution
environment is commonly used to host honeypots [6]. Similarly, some malware
detect CPU emulators, which are also used for dynamic code analysis and hon-
eypots [15]. As we wrote earlier in this paper, no other works appear to leverage
OS-level performance data to detect decoys as of this writing.

References

1. Honeyprocs: Going beyond honeyfiles for deception on endpoints. https://
forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-
for-Deception-on-Endpoints/ba-p/385830. Accessed 23 Feb 2019

2. Metasploit framework. https://www.metasploit.com/. Accessed 23 Feb 2019
3. Performance counters. https://docs.microsoft.com/. Accessed 23 Feb 2019
4. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for

resources provisioning in cloud. J. Netw. Comput. Appl. 82(C), 93–113 (2017)
5. Butler, J., Undercoffer, J.L., Pinkston, J.: Hidden processes: the implication for

intrusion detection. In: IEEE Systems, Man and Cybernetics SocietyInformation
Assurance Workshop, 2003, West Point, NY, USA, pp. 116–121, June 2003

6. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
In: Proceedings of the IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, pp. 177–186 (2008)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://www.metasploit.com/
https://docs.microsoft.com/
http://www.deeplearningbook.org

Redirecting Malware’s Target Selection with Decoy Processes 417

8. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-
cess detection and identification using Lycosid. In: Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
New York, NY, USA, pp. 91–100 (2008)

9. Kwon, Y., et al.: Mantis: efficient predictions of execution time, energy usage,
memory usage and network usage on smart mobile devices. IEEE Trans. Mob.
Comput. 14(10), 2059–2072 (2015)

10. Lange, J., Iwanitz, F., Burke, T.: OPC - From Data Access to Unified Architecture.
VDE VERLAG GMBH, 4th edn. (2010)

11. Li, T., Tang, J., Xu, J.: Performance modeling and predictive scheduling for dis-
tributed stream data processing. IEEE Trans. Big Data 2(4), 353–364 (2016)

12. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, Washington, DC,
USA, pp. 495–504 (2010)

13. Miu, T., Missier, P.: Predicting the execution time of workflow activities based on
their input features. In: Proceedings of the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, Washington, DC, USA, pp. 64–72
(2012)

14. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate
execution time of scientific workflows on the cloud. In: 9th Workshop on Workflows
in Support of Large-Scale Science, pp. 11–19, November 2014

15. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1 1

16. Rrushi, J.: Phantom I/O projector: entrapping malware on machines in production.
In: 12th International Conference on Malicious and Unwanted Software (MAL-
WARE), Fajardo, Puerto Rico, USA, pp. 57–66, October 2017

17. Rrushi, J.: DNIC architectural developments for 0-knowledge detection of OPC
malware. IEEE Trans. Dependable Secure Comput. 1 (2018)

18. Tsaur, W.-J., Chen, Y.-C., Tsai, B.-Y.: A new windows driver-hidden rootkit based
on direct kernel object manipulation. In: Hua, A., Chang, S.-L. (eds.) ICA3PP
2009. LNCS, vol. 5574, pp. 202–213. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03095-6 21

https://doi.org/10.1007/978-3-540-75496-1_1
https://doi.org/10.1007/978-3-642-03095-6_21
https://doi.org/10.1007/978-3-642-03095-6_21

	Redirecting Malware's Target Selection with Decoy Processes
	1 Introduction
	2 Honeypot Experiment
	3 Decoy Processes
	4 Performance Support for a Decoy Process
	4.1 Heatmaps
	4.2 Deep Learning of Performance Fingerprints

	5 Experimental Testing and Validation
	6 Related Work
	7 Conclusions
	References

