
CASFinder: Detecting Common Attack
Surface

Mengyuan Zhang1, Yue Xin1, Lingyu Wang1(B), Sushil Jajodia2,
and Anoop Singhal3

1 Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, Canada

wang@ciise.concordia.ca
2 Center for Secure Information Systems, George Mason University, Fairfax, USA

jajodia@gmu.edu
3 Computer Security Division, National Institute of Standards and Technology,

Gaithersburg, USA
anoop.singhal@nist.gov

Abstract. Code reusing is a common practice in software development
due to its various benefits. Such a practice, however, may also cause
large scale security issues since one vulnerability may appear in many
different software due to cloned code fragments. The well known con-
cept of relying on software diversity for security may also be compro-
mised since seemingly different software may in fact share vulnerable
code fragments. Although there exist efforts on detecting cloned code
fragments, there lack solutions for formally characterizing their specific
impact on security. In this paper, we revisit the concept of software diver-
sity from a security viewpoint. Specifically, we define the novel concept
of common attack surface to model the relative degree to which a pair
of software may be sharing potentially vulnerable code fragments. To
implement the concept, we develop an automated tool, CASFinder, in
order to efficiently identify common attack surface between any given
pair of software with minimum human intervention. Finally, we conduct
experiments by applying our tool to real world open source software
applications. Our results demonstrate many seemingly unrelated soft-
ware applications indeed share significant common attack surface.

1 Introduction

Code reusing is a common practice in today’s software industry due to the fact
that it may significantly accelerate the development process [7,10]. However,
such a practice also has the potential of leading to large scale security issues
because a vulnerability may be shared by many different software applications
due to the shared libraries or code fragments. A well known example is the Heart-
bleed vulnerability in OpenSSL, which caused widespread panic on the internet
since the vulnerable library was shared by many popular Web servers, including
Apache and Nginx [11]. In addition to shared libraries, the reusing of existing
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 338–358, 2019.
https://doi.org/10.1007/978-3-030-22479-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_18

CASFinder: Detecting Common Attack Surface 339

code fragments may also lead to similar vulnerabilities shared by different soft-
ware applications. Unlike libraries, such reused codes are typically not traced
by any official documentation, which makes it more difficult to understand their
security impact. Finally, this phenomenon may also compromise the well known
concept of relying on software diversity for security, since seemingly unrelated
software applications made by different vendors may in fact share common weak-
nesses.

The issue of identifying and characterizing the security impact of shared code
fragments has received little attention (a more detailed review of the related
work will be given in Sect. 6). Most existing vulnerability detection tools focus
on identifying vulnerabilities for a specific software application based on static
and/or dynamic analysis, with no indication whether different software may
be sharing similar vulnerabilities due to common libraries or reused codes [12].
On the other hand, existing efforts on software clone detection mostly focus
on identifying reused code fragments based on either the textual similarity or
functional similarity, with no indication of the security impact [41]. Clearly, there
exists a gap between the two, i.e., how can we leverage existing efforts on software
clone detection to characterize the likelihood that given software applications may
share similar vulnerabilities?

In this paper, we address the above issue through defining the novel concept
of common attack surface and developing an automated tool, CASFinder, to cal-
culate the common attack surface of given software applications. Specifically, we
first extend the well-known attack surface concept to model the relative degree
to which a pair of software may be sharing potentially vulnerable code frag-
ments. Such a formal model enables the quantification of software diversity from
the security point of view, and its results may be used as inputs to higher level
diversity methods (e.g., network diversity [47] and moving target defense [20]).
Second, we develop CASFinder which is an automated tool that takes the source
code of two software applications as the input and outputs their common attack
surface result in an XML file or to a database. Third, we conduct experiments
by applying our tool to a large number of real-world open source software appli-
cations belonging to seven different categories from Github. More than 80,000
combinations of software applications are analyzed, and our results demonstrate
many seemingly unrelated software applications indeed share a significant level of
common attack surface. In summary, the contribution of this paper is threefold.

– First, to the best of our knowledge, this is the first effort on formally modeling
the security impact of reused code fragments. The common attack surface
model may serve as a foundation and provide quantitative inputs to higher
level security-through-diversity methods.

– Second, the CASFinder tool makes it feasible to evaluate the common attack
surface between open source software applications, which may have many
practical use cases, e.g., providing useful references for security practitioners
to choose the right combinations of software applications in order to maximize
the overall software diversity in their networks, and reusing the knowledge

340 M. Zhang et al.

about existing vulnerabilities in one software to potentially identify similar
ones in other software.

– Third, our experimental results prove the possibility of similar vulnerabilities
shared by seemingly unrelated software applications made by different ven-
dors. We believe such a finding may help attract more interest to re-examining
the concept of software diversity and its security implication.

The remainder of this paper is organized as follows. Section 2 provides a
motivating example and background information. Section 3 defines the common
attack surface model. Section 4 designs and implements the CASFinder tool.
Section 5 evaluates the tool through experiments using real open source software.
Section 6 reviews related work and Sect. 7 concludes the paper and provides
future directions.

2 Preliminaries

In this section, we first present a motivating example in Sect. 2.1 and then provide
background knowledge and highlight the challenge in Sect. 2.2.

2.1 Motivating Example

As an example, consider an enterprise network with Web servers running either
the Apache HTTP server (Apache) or the Nginx HTTP server (Nginx), as well
as a Cyrus IMAP server (Cyrus). Assume all three software applications are of
the vulnerable versions that are affected by the Heartbleed vulnerability. This
vulnerability has reportedly affected an estimated 24–55% of popular websites
and gave attackers accesses to sensitive memory blocks on the affected servers,
which potentially contain encryption keys, usernames, passwords, etc. [11]. The
vulnerability is discovered inside the popular OpenSSL library, which is an exten-
sion of many Web and email server software applications for supporting the https
connections.

Specifically, Fig. 1 demonstrates how this vulnerability functions in relation
to the three software applications in our example. Those software simply hand
the encryption tasks to the OpenSSL extension, and the vulnerability appears
when the software make external calls to the OpenSSL extension. In establish-
ing the SSL connections, the API invocation SSL CTX new(method) is a func-
tion for establishing SSL content, SSL new() is for creating SSL sessions, and
SSL connect() for launching SSL handshakes. To exploit the Heartbleed vul-
nerability, attackers would craft a heartbeat request with a special length and
send it to the servers. This request would cause different software applications to
invoke the same library function memcpy() without any boundary check enabling
attackers to extract sensitive memory blocks from the servers.

CASFinder: Detecting Common Attack Surface 341

Fig. 1. An example of the Heartbleed vulnerability

The fact that this vulnerability exists inside the OpenSSL extension shared
by all three software means an attacker can compromise those different software
in a similar manner. This phenomenon is certainly not limited to this particular
vulnerability. In this example, since both the Apache and Nginx projects are
Web servers developed in C language, their similar functionality implies there is
a high chance that the developers of both projects would not only import the
same libraries, but also reuse the same or similar code fragments. In addition, as
will be shown through our experimental results, code reusing also exists among
software applications with very different functionalities. On the other hand, not
all server software that use SSL connections are affected by this vulnerability,
e.g., Microsoft IIS and Jetty are both immune to the vulnerability [11].

Clearly, there exists a need for identifying the software applications which
may share such a common vulnerability, and for characterizing the level of such
sharing since some software may share more than one such vulnerability. Such
a desirable capability may have many practical use cases. For instance, it may
allow similar software patches or fixes to be developed and applied to different
software applications in order to mitigate a common vulnerability, which may
significantly reduce the time and effort needed for developing such patches and
fixes. This capability may also allow administrators to better judge the amount
of software diversity in their networks, and to choose the right combinations of
software applications (e.g., Apache and IIS w.r.t. this particular vulnerability)
to increase the diversity. Finally, this capability would lead to a more refined
approach to moving target defense (MTD) [13] since it could potentially allow
us to quantify the amount of software diversity that is achieved by switching
between different software resources under a MTD mechanism.

2.2 Background

We take two steps towards measuring the potential impact of cloned codes on
security. The first step is to find similar code fragments in different software

342 M. Zhang et al.

applications. The second step is to characterize the security impact of such code
fragments. We first review some of the background concepts related to each step.

First, to detect similar code fragments between software, most clone detection
methods are based on either the textual similarity or the functional similarity,
and existing tools are mostly based on text, token, tree, graph, or metrics [41,42].
Among the existing tools, we have chosen CCFinder [23], a language-based
source code clone detection tool, to find cloned code fragments within given soft-
ware applications. As one of the leading token-based detection tools, CCFinder
has received the Clone Award in 2002, and it supports multiple languages, includ-
ing C, C++, Java, and COBOL. CCFinder first divides the given source code
into tokens using a lexical analyzer. It then normalizes some of those tokens
by replacing identifiers, constants and other basic tokens with generic tokens
representing their language role. Finally, it uses a suffix-tree based sub-string
matching algorithm to find common subsequences corresponding to clone pairs
and classes [23]. A key advantage of such a token-based tool is that it can toler-
ate minor code changes, such as formatting, spacing and renaming, in the reused
code.

However, the result from clone detection tools, including CCFinder, only
reveals similar code fragments between source codes, without indicating any
security impact. The primary challenge is therefore to model and quantify the
potential impact of clone detection on security in terms of leading to potential
vulnerabilities. To this end, a promising solution is to apply the attack surface
concept [36], which is a well known software security metric that measures the
degree of software security exposure. The measurement is taken as counts along
three dimensions, the entry and exit points (i.e., methods calling I/O functions),
channels (e.g., TCP and UDP), and untrusted data items (e.g., registry entries
or configuration files), and the counting results are then aggregated through
weighted summation. Attack surface measures the intrinsic properties of a soft-
ware application, e.g., how many times does each method invoke I/O functions
(which provides an estimate of security risks such as buffer overflow), regardless
of external factors such as the discovery of the vulnerability or the existence of
exploit code. Therefore, attack surface can potentially cover both known and
unknown vulnerabilities.

Therefore, we will combine clone detection (i.e., CCFinder) with attack sur-
face to quantify the likelihood that cloned code fragments may lead to potentially
similar vulnerabilities shared between different software applications. For sim-
plicity, we will focus on entry and exit points in this paper, and will consider
channels and untrusted data items in our future work. We also note that, since
it is not guaranteed that every entry or exit point will map to a vulnerability,
the attack surface concept is only intended as an estimation of the relative abun-
dance of vulnerabilities in software [36]. Consequently, our model and tool also
inherit this limitation, and the results will only indicate the potential, instead
of the actual existence, of common vulnerabilities.

Combining the result of clone detection with the attack surface concept is
not a straightforward task. We discuss a key challenge in the following. In Fig. 2,

CASFinder: Detecting Common Attack Surface 343

function handle response() and function quicksand mime() are both entry points
since they call I/O functions fseek() and ftell (from the standard C library). A
naive application of the attack surface concept here would indicate each function
count as one entry point and hence both have the same security implication.
However, such a coarse-grained application ignores the exact number of I/O
function calls (i.e., three calls in handle response() and two in quicksand mime())
whose difference may be significant in practice. In our model, we will take a more
refined approach to address such issues.

Fig. 2. Examples of entry points: /Simple-Webserverche/server.c handle response()
(Top) and /quicksand lite/libqs.c quicksand mime() (Bottom)

3 The Model of Common Attack Surface

In this section, we model the security implication of cloned code fragments
between software applications through two novel security metrics, namely, the
conditional common attack surface (ccas) and the probabilistic common attack
surface (pcas). Those two metrics are designed for different use cases as follows.

– The conditional common attack surface (ccas) is designed to be asymmetric
for use cases in which one software is of particular interest and evaluated
against all other software. For example, suppose a company has developed a
new Web server application and wants to understand any similarity between
their product and other existing Web servers such as Apache and Nginx. In
such a case, the key is to rank those other software applications based on the
relative percentage of shared attack surface, and the developer can apply the
metric ccas for this purpose.

– Second, in a different scenario, suppose an administrator wants to understand
the level of software diversity between all the software applications inside the
same network. In such a case, both software in comparison are considered
equally important, so the symmetric metric pcas would be more suitable,
which will yield a unique measurement of shared attack surface between any
pair of software. The following details the ccas and pcas metrics.

344 M. Zhang et al.

3.1 Conditional Common Attack Surface (CCAS) Metric

We first consider clone segments between two software applications identified
using CCFinder [23] through an example.

Example 1. Figure 3 demonstrates clone segments between a Web server appli-
cation SimpleWebserver and an ssh application SSHBen. In the figure, the Clone
id is a unique number labelling a group of related clones inside both software
applications. For instance, the code segments inside the solid line blocks indi-
cate the clone segments with the same Clone id 28, and the dashed line blocks
are for Clone id 78. Note that the same code may appear under different clone
ids, e.g., line 146 and 147 in Simple-Webserver appear under both clone ids.
Also note that, for Clone id 78, the matching between the two clone segments is
inexact [23] since strcat does not exist in SSHBen.

Fig. 3. An example of cloned segments

From the above example, it is clear that the clone segments belonging to the
same Clone id are not identical between the two software applications. Therefore,
the attack surface would be asymmetric as well. First, we define the Common
Attack Surface as the collection of I/O function calls inside the clone segments
as follows.

Definition 1 (Common Attack Surface). Given two software applications
A and B, the common attack surface of A w.r.t. B (or that of B w.r.t. A) under

CASFinder: Detecting Common Attack Surface 345

the Clone id i is defined as the multi-set (which preserves duplicates) of I/O
function calls that exist inside the clone segments of A under the Clone id i,
denoted as casi(A|B) (or casi(B|A)).

Example 2. To follow our example, we have

– cas28(SimpleWebserver|SSHBen) = 〈strcat, strcat, fopen〉,
– cas28(SSHBen|SimpleWebserver) = 〈strcat, strcat, strcat, fopen〉,
– cas78(SimpleWebserver|SSHBen) = 〈fopen, fseek, ftell〉, and
– cas78(SSHBen|SimpleWebserver) = 〈fopen, fseek, ftell, fopen, fseek, ftell,
fopen, fseek, ftell, fopen, fseek, ftell〉.
Since the attack surface concept is based on the number of entry and exit

points (i.e., methods invoking I/O functions), we follow the similar approach
to calculate the size of common attack surface by counting the number of I/O
function calls across different Clone ids, with those appearing under different
Clone ids counted only once. We demonstrate this through an example.

Example 3. For Clone id 78, this gives three for Simple-Webserver and 12 for
SSHBen. As to Clone id 28, we have three for Simple-Webserver and four
for SSHBen. Note that fopen is considered under both Clone ids for Simple-
Webserver, and hence we should count it only once. Based on those discussions,
we can calculate the total number of I/O function calls for both Clone ids as
five for Simple-Webserver and 16 for SSHBen.

Finally, we define the Conditional Common Attack Surface as the ratio
between the size of the common attack surface of a software application (w.r.t.
to another software) and the size of its entire attack surface (i.e., the total num-
ber of I/O function calls inside that software). This ratio indicates the degree
to which the software shares with others similar I/O function calls (entry/exit
points).

Definition 2 (Conditional Common Attack Surface). Given two software
applications A and B with totally n clone segments, and ASA and ASB as the
total number of I/O function calls inside A and B, respectively, the conditional
common attack surface of A w.r.t B (or that of B w.r.t. A), denoted as ccas(A|B)
(or ccas(B|A)), is defined as:

ccas(A | B) =
| ⋃n

i=1 cas(A | B) |
ASA

ccas(B | A) =
| ⋃n

i=1 cas(B | A) |
ASB

Example 4. The attack surface (i.e., the total number of I/O function calls)
of Simple-Webserver and SSHBen are 16 and 182, respectively. We thus
have ccas(SSHBen | SimpleWebserver) = 5

16 = 0.3125 and ccas(Simple-
Webserver | SSHBen)= 16

182 = 0.029. The results show that SSHBen con-
tains about 31% shared attack surface, whereas SimpleWebserver contains only

346 M. Zhang et al.

2.9%. By comparing a software application to many others, the developer of that
application may gain useful insights from such results in terms of vulnerability
discovery and security patch management.

3.2 Probabilistic Common Attack Surface Metric

The conditional common attack surface metric ccas is designed for evaluating
one software application against others. We now take a different approach of
defining a symmetric probabilistic common attack surface metric for two soft-
ware applications. Such a metric can be used to estimate the amount of effort
that a potential attacker may reuse while attempting to compromise both soft-
ware applications. The nature of such a use case implies the metric should be
symmetric.

We apply Jaccard index for this purpose, which is commonly defined as
J(A,B) = A∩B

A∪B and used for analyzing the similarity and diversity between
the two sets. To apply this metric in our case, we need to define both the inter-
section and union of the attack surface of two software applications. The common
attack surface defined in previous section (Definition 1) can be considered as the
intersection, but such a definition is not sufficient here since it is asymmetric in
nature. Instead, we will define the intersection between the attack surface of two
software applications using the standard multi-set intersection operation [43],
which is described below.

Definition 3 (Intersection of Multi-Sets [43]). Given two multi-sets A =
〈A, f〉 (where f is the multiplicity function such that for any a ∈ A, f(a) gives
the number of occurrences of a in the multiset) and B = 〈A, g〉, then their inter-
section, denoted as A∩B, is the multi-set 〈A, s〉, where for all a ∈ A:

s(a) = min(f(a), g(a)).

Example 5. Assume U ={a,a,a,b} and V = {a,a,b,b}, if we apply the multi-set
operation as defined above, we have U ∩V = {a,a,b}.

The union of the attack surface between two software applications can be
defined as ASA ∪ASB = ASA +ASB − cas(B | A) ∩ cas(A | B). With both the
union and intersection operations defined, we can now define the probabilistic
common attack surface metric as follows.

Definition 4 (Probabilistic Common Attack Surface Metric). Given
two software applications A and B, with their attack surface ASA and ASB and
the common attack surface cas(B|A) and cas(A|B), respectively, the probabilistic
common attack surface of A and B is defined as:

pcas(A.B) =
| cas(B | A) ∩ cas(A | B) |

| ASA ∪ ASB |

CASFinder: Detecting Common Attack Surface 347

Example 6. The size of attack surface in Simple-Webserver and SSHBen
is 16 and 182, respectively. From our previous discussions, we have cas
(SSHBen | SimpleWebserver) ∩ cas(SimpleWebserver | SSHBen) = 〈strcat,
strcat, fopen, fseek, ftell〉 whose size is 5, and hence pcas(SSHBen.Simple
Webserver) = 5

16+182−5 = 2.6%. Intuitively, this result indicates that, among
all the I/O function calls, about 2.6% are shared between the two software appli-
cations. Such a result, when applied to all pairs of software applications inside a
network, may allow administrators to estimate the degree of software diversity
in the network from a security point of view.

4 Design and Implementation

To automate the evaluation of common attack surface between software applica-
tions, we design and implement a tool, CASFinder. Figure 4 depicts the architec-
ture of CASFinder, which consists of three main components, the clone detection
module, the source code labeling module, and the visualization module. The fol-
lowing describes those modules in more details.

Fig. 4. The architecture

– The Clone Detection Module. As mentioned earlier, we choose CCFinder [23]
as the basis of our clone detection module. The following details challenges
and solutions for applying CCFinder. First, since our tool is developed and
operated under Linux, we apply only the back end of CCFinder. One chal-
lenge is that, since the default Linux version of CCFinder is designed to
work on Ubuntu 9, the newer versions of many libraries are no longer valid
for CCFinder. Therefore, several libraries need to be installed separately,

348 M. Zhang et al.

e.g., libboost-dev and libicu-dev, which will depend on the specific version of
the Linux system and can be determined based on the warnings and errors
produced by CCFinder. Second, various parameters can be fine tuned in
CCFinder to customize its execution mode [22]. In particular, the most impor-
tant parameters include b, the minimum length of the detected code clones,
and t, the minimum number of types of tokens involved. We have chosen
b = 20 and t = 8 based on experiences obtained through extensive experi-
ments. In addition, parameter w is used to determine whether CCFinder will
perform inner-file clone detection whose results contain clones between differ-
ent parts of the same software application, which is not our focus, and there-
fore w is set to be f-w-g+ to focus on inter-file clones. Finally, the default out-
put of the CCFinder is stored in a binary file with .ccfd extension. Since we do
not install any front end of CCFinder, we apply the command ./$PATH/ccfx
-p name.ccfd to translate the .ccfd file into a human-readable version. The
resultant file contains only the token information, which cannot be directly
mapped back to the source code files. Therefore, we have developed a script,
post-prettyprint.pl [38], to convert the token information into corresponding
line numbers in the source code.

– The Source Code Labeling Module. As mentioned above, the converted out-
put of CCFinder provides only the file name and line number of the clone
segments, without information needed for mapping them back to the original
source code. For the purpose of generating traceable output with source code
fragments, a mapping between the line number of the clone segments and the
source code needs to be established. This second module is designed for this
purpose by automatically retrieving a clone code segment from the source
code according to the result of CCFinder.

– The Visualization and CAS Calculation Module. The visualization module
generates the results of clone segments. The results include clone ID, file
path, function name, clone segment, start line number, and end line number.
The visualized output is organized as an XML tree with labels. The label
contents contains the source clone segments from CCFinder outputs. Label
funcname reveals the function names corresponding to the clone segments,
and label io contains the common I/O functions. To calculate the common
attack surface, we first need to identify the I/O functions. In our experiments,
we have obtained the list of I/O functions from the GNU C library [40] (glibc),
which is the GNU project’s implementation of C standard library, as the
database for examining the entry/exit points. In total, 256 I/O functions are
stored in our database, e.g., function memcpy or strcpy, which could take user
inputs as the source, and copy them directly to the memory block pointed to
by the destination. Such functions have caused many serious security flaws
including CVE-2014-0160 (i.e., the Heartbleed bug [8]). The final result of
common attack surface is calculated based on the I/O functions shared among
all software applications, and can be stored either in a file or into the database.

CASFinder: Detecting Common Attack Surface 349

5 Experiments

This section presents experimental results on applying our tool CASFinder to
real world open source software.

5.1 Dataset

To study the common attack surface among real world software applications,
we need a large amount of open-source software to apply our tool. For this
purpose, we have developed a script to automatically parse the download links
at the open-source software hosts. Our research shows that GitHub [15] provides
the customized API for users to search open-source software applications with
customized requirements and to download them automatically. The results are
presented in json code, which contains the download link of each application
together with other information. In our experiments, we have set the parameter
language to C programs, and use parameters q, sort, and order to specify the
query conditions and to customize the sequence of results. We have developed
the script to parse the json format output from the GitHub automatically and to
store the information of the software download link, authors, publish time, size,
and other descriptions into our local database. All the download links for each
software application are stored separately. Since Github has a limitation with
respect to the maximum requests in a certain amount of time, we design the
process to sleep for certain time after each query. Our experimental environment
is a virtual machine running Ubuntu 14.04, with the Intel core i3-4150 CPU
and 8.0 GB of RAM. We have applied our tool to totally 293 different software
applications belonging to seven categories. The software applications belong to
several categories as follows: 32 in Databases, 62 in Web servers, 25 in ssh servers,
79 in FTP servers, 41 in TFTP servers, 6 in IMAP servers, and 48 in firewalls.
Those amount to totally

(
293
2

)
= 42, 778 pairs of software applications tested

using our tool in the experiments.

5.2 Cross-Category Common Attack Surface

In this section, we apply the two proposed common attack surface metrics to
totally 42,778 pairs of real world software. The first set of experiments reveal
the existence of common attack surface between different categories of software
applications. To convert the results to a comparable scale, we have normalized
the absolute value of common attack surface reported by CASFinder by the size
of the software. Figure 5 shows the existence of common attack surface across
seven categories. The percentages on top of the bars inside each figure indicate
the level of common attack surface between the category mentioned in the title
of the figure and all the seven categories. We can observe that common attack
surface exists in all of the category combinations. For example, the DB category
has the highest level of common attack surface inside its own category (between
different software inside that category), 27.9%, and it also shares more than 9%
common attack surface with any other category.

350 M. Zhang et al.

Fig. 5. Common attack surface across categories

In summary, the results across all categories are shown in the heat map in
Table 1 where a darker color indicates a larger CAS value between the pair of
categories. A visible diagonal with the darkest color in the heat map indicates
the expected trend that different software in the same category yield the highest
level of common attack surface, most likely due to their similar functionality,
except for SSH. In fact, the category SSH has the lowest level of common attack
surface within its category. The reason is that the SSH category only contains 25
software applications, which is not sufficiently large to produce any reliable trend.
Due to similar reasons, we have omitted the results from the IMAP category in
the heat-map.

Table 1. HeatMap for common attack surface in different categories

After understanding the general existence of common attack surface among
the seven categories of software applications, we aim to study more specific trends
in our second sets of experiments. The left chart in Fig. 6 shows the accumulated
number of pairs of software applications in the absolute value of common attack
surface. The figure depicts only the results with a nonzero value, which include
totally 9,852 pairs (which amounts to about 1/8 of the total number of pairs).
We can observe that the accumulated number of pairs of software applications
increases quickly before the value of common attack surface reaches about 12 and
afterwards the accumulation flattens out. About 20% of software share common
clone segments, and 56% of the clone segments contain at least one common

CASFinder: Detecting Common Attack Surface 351

attack surface. The right chart in Fig. 6 depicts the relationship between common
attack surface and sizes of the software. We use the absolute values of common
attack surface in this experiment. For the sizes, we use the normalized combined
sizes log1000(AB)/1000 when software A is compared with software B. We can
observe that, with increasing sizes of the software, the value of common attack
surface generally increases. This is as expected since the number of I/O functions
would be roughly proportional to the size of the software.

Fig. 6. CAS in accumulated software application pairs (a), CAS trend vs size (b) (Color
figure online)

The left chart in Fig. 7 compares the average number of I/O functions and
the average common attack surface over several years. The blue bars indicate
the average number of I/O functions used in the software applications tested
in our experiments based on the publishing year. The average number of I/O
functions per software application does not have a simple trend and is used as a
baseline for comparison. We can observe a clear downward trend in the average
value of common attack surface over time, with software published around 2010
having a much higher value of common attack surface compared with more
recent years, regardless of the number of average I/O functions. We believe this
trend shows that code reusing plays a major role in common attack surface,
since the trend can be easily explained by the backward nature of code reusing
(i.e., programmers can only reuse older code). The right chart in Fig. 7 explores
the trend of the probabilistic common attack surface metric versus the size.
The value of the probabilistic common attack surface metric decreases since the
increase of the number of I/O functions in software applications is faster than
the increase of common attack surface.

In fact, those results match the results of existing vulnerability discovery
models, which generally show that larger software applications typically have
more vulnerabilities but a lower probability for having vulnerabilities per unit
of software size. For example, Google Chrome (with the number of lines at
14,137,145 [2]) has 1,453 vulnerabilities over nine years [9], while Apache (with

352 M. Zhang et al.

Fig. 7. CAS trend in years (a) and the probabilistic CAS metric (b) (Color figure
online)

the number of lines at 1,800,402) has 815 over 19 years. However, the probability
of having one vulnerability per unit of software size per year is 1.15 ∗ 10−3% for
Chrome and 2.4 ∗ 10−3% for Apache (i.e., the larger Chrome has less vulnerabil-
ities per unit of software size).

5.3 Common Attack Surface in the Same Category

We study the trend of common attack surface between software within the same
category in this section. Figure 8 depicts the common attack surface for different
sizes of software in the category WebServer and FTP, respectively, represented in
both scattered and trending results. The orange scattered points and the dotted
line indicate the result and the red dotted line is the same trend borrowed from
Fig. 6 for comparison. We can observe that the trend of common attack surface
in both categories increase with the size, which follows a similar trend as the
cross category result. However, the trend of WebServer increases faster than
the cross-category trend, which matches the results shown in Table 1. On the
other hand, the trend in the FTP category grows slightly slower than the cross
category trend, which can be explained by the fact that FTP shares a large
amount of common attack surface with WebServer and TFTP.

The left chart in Fig. 9 depicts the trend of common attack surface over
time in the same category. Each blue bar represents the average number of I/O
functions in the years in the same category of the experiments. The red line
shows the average number of common attack surface in those years. Compared
to Fig. 7, the common attack surface in the same category has higher values,
which also match the previous observations. The right chart in Fig. 9 reveals the
trend of the probabilistic common attack surface metric versus the size in the
same category, which shows a similar trend as the cross category result, although
the trend within the same category starts from a higher value around 0.20 (in
contrast, the cross-category metric starts from 0.06).

CASFinder: Detecting Common Attack Surface 353

(b)(a)

Fig. 8. Size trend in same category, WebServer (a) and FTP (b) (Color figure online)

)b()a(

Fig. 9. Common attack surface over time and vs size (Color figure online)

6 Related Work

There exist extensive research on clone code detection although many of these
tools are mainly for research purposes [42]. One of the popular tools in text-based
clone detection is the Dup [3]; if two lines of code are identical after removing
all whitespaces and comments, they are assigned as clone codes; the longest line
matches are the output, but the minimum length of the reported code can be
customized according to different needs. Another well-known approach [21] is
applying the fingerprint in order to identify the redundancy on a substring of
the source code. The fingerprinting calculation uses KARP-Rabins string match-
ing approach [25,26] to calculate the length of all n substrings. Ducasse devel-
oped [10] duploc which was designed to be a parsing free, language-independent
tool which first reads the source file and sequences of the lines, then removes
all comments and whitespace to create a set of condensed lines; afterward, a
comparison is made based on the hash result, where scatter-plots indicate the
visualization of a cloned result. Token-based clone detection is also one of the

354 M. Zhang et al.

widely applied methods. One of the representative tools in token-based detection
is CCFinder [23], which is applied in our work. Bakers Dup [3,4] implements
a similar approach as CCFinder. The detection process begins by tokenizing
the source code, then using a suffix-tree algorithm to compare tokens. Unlike
CCFinder, Dup does not apply transformation, but rather consistently renames
the identifier. Raimar Falke [30] develops a tool called iclones [16], which uses
suffix-trees to find clones in abstract syntax trees, which can operate in linear
time and space. CP-Miner [32] as a well-designed token-based clone detector, uses
frequent subsequence mining algorithms to detect tokenized segments. RTF [6]
is a token-based clone detector that uses string algorithms for efficient detection;
rather than using the more common suffix-tree, it utilizes more memory-efficient
suffix array.

One of the leading tools using AST-based algorithm is the CloneDR devel-
oped by Baxter [7] which can detect exact and near-miss clone through applying
hashing and dynamic algorithm. The ccdiml [39] developed by Bauhaus is similar
to the CloneDR in the way of dealing with hash and code sequences, but instead
of using AST, it applies IML algorithm in the comparing process. David and
Nicholas [14] develop a tool named Sim which uses a standard lexical analyzer
to generate a parsing-tree of two given software applications. The code similar-
ity is determined by applying the maximum common subsequence and dynamic
programming. One of the leading PDG-based tools is PDG-DUP presented by
Komondoor and Horwit [27] and Komondoor and Horwitz’s PDG-DUP [27] is
another leading PDG-based detection tool, which identifies clones together and
keeping the semantics of the source code to reflect software. As to metric-based
clone detection, Mayrand et al. [37] uses the tool Darix to generate the metric
and the clone identification is based on four values, which are name, layout,
expression and control flow. Kontogiannis [28] uses Markov models to compute
the dissimilarity of the code by applying the abstract pattern matching. Five
widely used metrics are applied in a direct comparison in [29]. There are also
some other approaches that using hybrid clone detections. In [30], the authors
apply the suffix trees to find clones in AST; this approach can find clones in
linear time and space.

The concept of attack surface is originally proposed for specific software,
e.g., Windows, and requires domain-specific expertise to formulate and imple-
ment [17]. Later on, the concept is generalized using formal models and becomes
applicable to all software [35]. Furthermore, it is refined and applied to large
scale software, and its calculation can be assisted by automatically generated
call graphs [33,34]. Attack surface has attracted significant attentions over the
years. It is used as a metric to evaluate Android’s message-passing system [24],
in kernel tailing [31], and also serves as a foundation in Moving Target Defense,
which basically aims to change the attack surface over time so to make attackers’
job harder [18,19]. The study on automating the calculation of attack surface is
another interesting domain, e.g., COPES uses static analysis from bytecode to
calculate attack surface and to secure permission-based software [5]. Stack traces
from user crash reports is used to approximate attack surface automatically [44].

CASFinder: Detecting Common Attack Surface 355

The correlation between attack surface and vulnerabilities has also been inves-
tigated, such as using attack surface entry points and reachability to assess the
risk of vulnerability [46]. A study about the relationship between attack surface
and the vulnerability density is given in [45], although the result is only based on
two releases of Apache HTTP Server. Despite such interest in attack surface, to
the best of our knowledge, the common attack surface between different software
has attracted little attention.

7 Conclusion

In this paper, we have defined the concept of common attack surface and imple-
mented an automated tool for evaluating the common attack surface between
given software applications. We have conducted experiments on real open source
software and examined the common attack surface both within and between
software categories. Our results have shown common attack surface to be perva-
sive among software. Our work still has some limitations which will lead to our
future work. First, since we rely on CCFinder our tool also inherits its limita-
tions, and one future direction is to explore other clone detection tools. Second,
we have focused on entry/exit points of attack surface, and one future direction
is to also consider channels and untrusted data items. Third, we have focused
on the C language in this work, and extending it to other languages with dif-
ferent entry and exit libraries is an interesting future direction. Forth, we plan
to extend the effort on correlating between common attack surface and known
vulnerabilities. We have focused on reused codes only, and a future direction is
to also consider their indirect impact on other parts of the software. Finally, one
interesting future direction is to evaluate common attack surface between two
binary files. Existing disassembling and de-compiling tools, such as IDA Pro [1],
could reverse the binary code to source code for further common attack surface
study.

Acknowledgment. Authors with Concordia University are partially supported by
the Natural Sciences and Engineering Research Council of Canada under Discovery
Grant N01035. Sushil Jajodia was supported in part by the National Institute of Stan-
dards and Technology grants 60NANB16D287 and 60NANB18D168, National Science
Foundation under grant IIP-1266147, Army Research Office under grant W911NF-13-
1-0421, and Office of Naval Research under grant N00014-15-1-2007.

References

1. Interactive disassembler. https://www.hex-rays.com/products/ida/
2. Open hub (2017). https://www.openhub.net/
3. Baker, B.S.: A program for identifying duplicated code. Comput. Sci. Stat. 24, 49

(1993)
4. Baker, B.S.: On finding duplication and near-duplication in large software systems.

In: Proceedings of 2nd Working Conference on Reverse Engineering, pp. 86–95.
IEEE (1995)

https://www.hex-rays.com/products/ida/
https://www.openhub.net/

356 M. Zhang et al.

5. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
Android. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pp. 274–277. ACM (2012)

6. Basit, H.A., Jarzabek, S.: Efficient token based clone detection with flexible tok-
enization. In: Proceedings of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 513–516. ACM (2007)

7. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: 1998 Proceedings of International Conference on Software
Maintenance, pp. 368–377. IEEE (1998)

8. Carvalho, M., DeMott, J., Ford, R., Wheeler, D.A.: Heartbleed 101. IEEE Secur.
Privacy 12(4), 63–67 (2014)

9. CVE Community. Common vulnerabilities and exposures (1999). https://cve.
mitre.org/

10. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: Proceedings of IEEE International Conference on Software
Maintenance, ICSM 1999, pp. 109–118. IEEE (1999)

11. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, pp. 475–488. ACM (2014)

12. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: a survey. ACM Comput. Surv.
(CSUR) 50(4), 56 (2017)

13. Ghosh, A.K., Pendarakis, D., Sanders, W.H.: Moving target defense co-chair’s
report-national cyber leap year summit 2009. Technical report, Federal Networking
and Information Technology Research and Development (NITRD) Program (2009)

14. Gitchell, D., Tran, N.: Sim: a utility for detecting similarity in computer programs.
In: ACM SIGCSE Bulletin, vol. 31, pp. 266–270. ACM (1999)

15. GitHub. Inc. A web-based hosting service for version control using Git. https://
github.com

16. Göde, N., Koschke, R.: Incremental clone detection. In: 13th European Confer-
ence on Software Maintenance and Reengineering, CSMR 2009, pp. 219–228. IEEE
(2009)

17. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Workshop
on Advanced Developments in Software and Systems Security (2003)

18. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S.:
Moving Target Defense II: Application of Game Theory and Adversarial Modeling.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-5416-8

19. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, 1st edn. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

20. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

21. Johnson, J.H.: Substring matching for clone detection and change tracking. In:
ICSM, vol. 94, pp. 120–126 (1994)

22. Kamiya, T.: Tutorial of CLI tool ccfx (2008). http://www.ccfinder.net/doc/10.2/
en/tutorial-ccfx.html

23. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7), 654–670 (2002)

https://cve.mitre.org/
https://cve.mitre.org/
https://github.com
https://github.com
https://doi.org/10.1007/978-1-4614-5416-8
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4614-0977-9
http://www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html
http://www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html

CASFinder: Detecting Common Attack Surface 357

24. Kantola, D., Chin, E., He, W., Wagner, D.: Reducing attack surfaces for intra-
application communication in Android. In: Proceedings of the Second ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices, pp. 69–80. ACM
(2012)

25. Karp, R.M.: Combinatorics, complexity, and randomness. Commun. ACM 29(2),
97–109 (1986)

26. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

27. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 3

28. Kontogiannis, K., Galler, M., DeMori, R.: Detecting code similarity using patterns.
In: Working Notes of 3rd Workshop on AI and Software Engineering, vol. 6 (1995)

29. Kontogiannis, K.A., DeMori, R., Merlo, E., Galler, M., Bernstein, M.: Pattern
matching for clone and concept detection. Autom. Softw. Eng. 3(1–2), 77–108
(1996)

30. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 13th Working Conference on Reverse Engineering, WCRE 2006, pp. 253–
262. IEEE (2006)

31. Kurmus, A., et al.: Attack surface metrics and automated compile-time OS kernel
tailoring. In: NDSS (2013)

32. Li, Z., Shan, L., Myagmar, S., Zhou, Y.: CP-miner: finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

33. Manadhata, P., Wing, J.: An attack surface metric. Technical report CMU-CS-05-
155 (2005)

34. Manadhata, P., Wing, J.: An attack surface metric. IEEE Trans. Softw. Eng. 37(3),
371–386 (2011)

35. Manadhata, P., Wing, J.: Measuring a system’s attack surface. Technical report
CMU-CS-04-102 (2004)

36. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

37. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: ICSM, vol. 96, p. 244 (1996)

38. Petersenna. Ccfinder core. https://github.com/petersenna/ccfinderx-core
39. Raza, A., Vogel, G., Plödereder, E.: Bauhaus – a tool suite for program analysis

and reverse engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe
2006. LNCS, vol. 4006, pp. 71–82. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767077 6

40. Rothwell, T.: The GNU C reference manual (2006). https://www.gnu.org/
software/gnu-c-manual/

41. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

42. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
Sch. Comput. TR 541(115), 64–68 (2007)

43. Syropoulos, A.: Mathematics of multisets. In: Calude, C.S., PĂun, G., Rozenberg,
G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 347–358. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45523-X 17

44. Theisen, C., Herzig, K., Morrison, P., Murphy, B., Williams, L.: Approximating
attack surfaces with stack traces. In: Proceedings of the 37th International Con-
ference on Software Engineering, vol. 2, pp. 199–208. IEEE Press (2015)

https://doi.org/10.1007/3-540-47764-0_3
https://github.com/petersenna/ccfinderx-core
https://doi.org/10.1007/11767077_6
https://doi.org/10.1007/11767077_6
https://www.gnu.org/software/gnu-c-manual/
https://www.gnu.org/software/gnu-c-manual/
https://doi.org/10.1007/3-540-45523-X_17

358 M. Zhang et al.

45. Younis, A.A., Malaiya, Y.K.: Relationship between attack surface and vulnerability
density: a case study on apache HTTP server. In: Proceedings on the International
Conference on Internet Computing (ICOMP), p. 1. The Steering Committee of
the World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp) (2012)

46. Younis, A.A., Malaiya, Y.K., Ray, I.: Using attack surface entry points and reach-
ability analysis to assess the risk of software vulnerability exploitability. In: 2014
IEEE 15th International Symposium on High-Assurance Systems Engineering
(HASE), pp. 1–8. IEEE (2014)

47. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a
security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Trans. Inf. Forensics Secur. 11(5), 1071–1086 (2016)

	CASFinder: Detecting Common Attack Surface
	1 Introduction
	2 Preliminaries
	2.1 Motivating Example
	2.2 Background

	3 The Model of Common Attack Surface
	3.1 Conditional Common Attack Surface (CCAS) Metric
	3.2 Probabilistic Common Attack Surface Metric

	4 Design and Implementation
	5 Experiments
	5.1 Dataset
	5.2 Cross-Category Common Attack Surface
	5.3 Common Attack Surface in the Same Category

	6 Related Work
	7 Conclusion
	References

