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Abstract. Unmanned aircraft system (UAS) sensor operators must maintain
performance while tasked with multiple operations and objectives, yet are often
subject to boredom and consequences of the prevalence-effect during area
scanning and target identification tasks. Adapting training scenarios to accu-
rately reflect real-world scenarios can help prepare sensor operators for their
duty. Furthermore, integration of objective measures of cognitive workload and
performance, through evaluation of functional near infrared spectroscopy
(fNIRS) as a non-invasive measurement tool for monitor of higher-level cog-
nitive functioning, can allow for quantitative assessment of human performance.
This study sought to advance previous work regarding the assessment of cog-
nitive and task performance in UAS sensor operators to evaluate expertise
development and responsive changes in mental workload.
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1 Introduction

Sensor operators are tasked with controlling unmanned aircraft systems (UAS) by
maintaining flight systems and controlling visualization equipment onboard, typically in
unpredictable and demanding environments regarding reconnaissance missions. Sensor
operators face two main issues in the completion of the two aforementioned tasks,
including: (1) high amounts of concurrent subtasks to complete, and (2) the nature ofUAS
ground control station (GCS) system operations removes operators from the physical
environment, impairing their ability to assess contextual cues. As a consequence, the
information-processing load and decision-making demands are increased for UAS
operators, which in turn, impacts mission effectiveness, increases human error and safety
concerns [1]. To ideally minimize human error among advancing levels of automation in
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UAS, development of operator-specific training protocols can aid in maximizing sensor
operators’ expertise development and enhance human performance [2].

Utilizing objective performance measures can support UAS operators by facilitat-
ing development and reinforcement of personalized training and real-time mental
workload monitoring; thus, decreasing error and improving operator performance, with
utility for training and in-field applications. UAS sensor operator roles can be arduous
yet are often subject to boredom. Previous studies have analyzed lack of focus during
detection tasks due to vigilance-related error and object prevalence, otherwise referred
to as the prevalence effect, highlighting proportionality among detection miss-rates and
target prevalence [3, 4]. However, such studies exhibit scope limited to assessments
using subjective measures. Further examination regarding prevalence impacts on
detection task performance have focused on subjective feature-dependent performance
capabilities, including reported correlation with working memory capacity [5, 6].

Working memory (WM) is a cognitive system that temporarily stores limited
information for processing availability with executive control domains; hence, WM is
imperative for reasoning, decision-making and attentional control [7–9]. Although
facets of theorized functional and mechanistic models of working memory are disputed,
attentional control and cognitive load—individuals’ capacity for targeting attention
while attenuating unnecessary information, and the proportion of time or effort asso-
ciated with task processing, respectively—are aspects involved in WM that are perti-
nent to learning [8]. Furthermore, adoption of appropriate cognitive resources taxed via
highly realistic practice scenarios can aid in training attentional focus [2], and neuro-
physiological measures provide methods for monitoring higher-level cognitive func-
tioning for assessing working memory and mental workload. To advance previous
studies, we are examining changes in mental workload through neurophysiological data
measures in response to the participants’ completion of scanning and target identifi-
cation tasks, using Simlat’s C-STAR GCS training simulator [10]. Evidenced from
prior studies, we hypothesized that increased level of task difficulty will result in mental
workload increases. Task difficulty has been manipulated by administering realistic
UAS flight operations under different daylight conditions and mental workload was
assessed by behavioral performance measures and functional near-infrared spec-
troscopy (fNIRS).

1.1 Functional Near Infrared Spectroscopy

Emerging wearable functional brain activity monitoring technologies can help evaluate
the cognitive status and capacities of sensor operators in GCS settings. Regarding brain
activity monitoring of WM and cognitive load, functional magnetic resonance imaging
(fMRI), electroencephalography (EEG) and fNIRS have been widely utilized. Various
studies have discussed benefits and challenges of different monitoring technologies
involved in measuring cognitive activity, particularly within the prefrontal cortex
(PFC) and other associated brain areas correlated with WM assessment efficacy [2, 9,
11–15]. fNIRS and fMRI are frequently subject of such assessments, but fNIRS bal-
ances portability with easy-to-engineer design while providing relatively higher
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temporal resolution compared to fMRI [11]. Additionally, fNIRS is easy to deploy and
its shorter calibration time makes it suitable for field settings.

fNIRS utilizes near-infrared light to monitor changes in hemodynamic responses,
i.e., oxygenated and de-oxygenated hemoglobin from the PFC area. Changes in blood
oxygenation are associated with neuronal activation, as neurons require oxygen to
metabolize glucose for activation—oxygen is carried to the site in the form of oxy-
hemoglobin (HbO) and converted to deoxyhemoglobin (HbR) once used. HbO and
HbR absorb photons at different wavelengths of light, the magnitude of which is
captured by source detectors at varying wavelengths within the optical window (i.e.,
700 nm to 900 nm) [1, 14]. Relative concentrations of HbO and HbR can be quantified
through the application of a modified Beer-Lambert law [1]. Previous studies have
analyzed the application of fNIRS as a non-invasive measurement tool to evaluate key
aspects of higher-level cognitive functioning, task performance, expertise development
and cognitive workload through monitoring hemodynamic response from the prefrontal
cortex (PFC) areas collated with behavioral measures [1, 2, 14–16].

2 Methods

2.1 Participants

To date, five participants between the ages of 18 and 42 participated in the IRB
approved protocol, including 3 males and 2 females. All participants consented and
compiled with inclusion criteria. Participants had no previous experience with flight
simulators and verified fulfillment of inclusion and exclusion criteria by completing an
Attention Deficiency questionnaire, Edinburgh Handedness survey (LQ > 0 acceptance
for right-hand dominance) and video gaming experience survey.

2.2 Experimental Protocol

High-fidelity task representation within sensor operator training can assist in the trai-
nee’s adoption of appropriate cognitive styles to perform their role effectively [2].
Simlat’s C-STAR GCS (Simlat Inc., Miamisburg, Ohio) simulator is a commercially
available training simulation system for UAS pilots and utilized in previous proof of
concept studies [1, 2, 16] (Figs. 1 and 2). Simlat’s system collects behavioral data
regarding the trainee’s behavioral task performance by calculating evaluation metrics
including scanned, not-scanned, and over-scan percent.

Participants with no previous UAS piloting experience completed three training
sessions and two probative sessions, during which, they were required to navigate the
UAS sensor over six sub-areas while engaged in route scanning and target identifi-
cation tasks. For all five sessions the dimensions of each sub-area increased by fifteen
percent consecutively along the flight path, and environmental variables for all tests
were established from system sunlight and weather data for Mallorca (Majorca), Spain,
on September 1, 2018 to administer different levels of task-load conditions. All sim-
ulated scenarios utilized a generic tactical unmanned vehicle (G-TAC UAV) system
that maintained a fixed route, following the same scan areas and UAV initial state
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(Altitude: 2000 ft; Speed: 60 kts; Heading: 70°.). Differences among training sessions
and probative sessions were established by manipulating the task load via simulated
start time; three consecutive training sessions were set for a simulated time lapse from
11:00 to 11:30, while probative sessions one and two were set for simulated time lapses
from 06:00 to 06:30 and 20:00 to 20:30, respectively.

Participants were instructed to complete two synchronous tasks: (1) operate the
UAS sensor camera to scan along the designated flight path for each consecutive
subarea, and (2) to identify and track at least one threat target within each scan area,
marked by a red civilian bus. Participants were informed that a zoom angle lower than
15° and three-second target lock were classified as successful scans and target iden-
tification, respectively. The duration of each testing scenario was 24.12 min, and
subjects were allotted breaks as requested.

Neurophysiological and behavioral performance data were simultaneously captured
for elapsed time of participant sessions using a 16-channel fNIRS device and C-STAR
integrated Performance Analysis & Evaluation Module (PANEL) logs, respectively.
Further analysis was completed to evaluate cognitive performance during task

Fig. 1. Simlat C-STAR instructor screen

Fig. 2. Simlat C-STAR trainee screen
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completion, and potential effects of task-load changes in environmental visibility, using
observed levels of oxygenated hemoglobin from participants’ PFC area. Behavioral
task performance was analyzed from system evaluations including scanned, not-
scanned, over-scanned percentage and target detected indicator.

2.3 Behavioral Data Processing

The C-STAR PANEL module captured simulator performance metrics for each subject
trial and area-specific scan task, including number of scans, field of view
(FOV) polygons, region of interest (RoI) scanned percentage, RoI not-scanned, and
RoI over-scan percent. Regarding the target identification tasks, the PANEL module
captured trial and individual target identification task data, including trial start time,
elapsed time, FOV polygon zoom level, target within FOV polygon (TRUE, FALSE)
and confirmed target identification (Found = 1, Not Found = 0).

2.4 fNIRS Signal Processing

For the purpose of this study, we utilized a 16-channel fNIRS system with a sampling
frequency of 2 Hz., consistent with previous studies [1, 2, 16] (see Fig. 3). fNIRS signals
are susceptible to artifacts resulting from instrument noise, physiological noise and
motion artifacts. Several signal pre-processing techniques were applied for artifact
removal and to improve sensitivity and spatial specificity of brain activity measures [16].

Fig. 3. 16-Channel fNIRS system, node and quadrant location diagram of PFC areas (quadrant
1: 1, 2, 3, 4) (quadrant 2: 5, 6, 7, 8) (quadrant 3: 9, 10, 11, 12) (quadrant 4: 13, 14, 15, 16)
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Signal quality analysis and channel rejection were determined from saturation
effects and high noise levels. Pre-processing was completed through application of a
low pass filter with finite impulse response and cutoff frequency of 0.014 Hz for each
channel, to tease instrumental noise, cardiac output, and respiration. To mediate low
frequency drift, a linear detrending algorithm was applied. Additionally, due to DC
shifts in amplitude for some channels, a temporal derivative distribution repair (TDDR)
motion correction method was applied [17]. Following the completion of artifact
removal and extraction of processed optical density data, a modified Beer-Lambert Law
(MBLL) was applied for calculations of channel-specific changes in HbO and HbR.
HbO and HbR measures were utilized for further derivation of channel-specific oxy-
genation (Hb-diff) and total hemoglobin (Hb_Tot). Finally, sampled outliers were
categorized from real-time data as being greater than three standard deviations above
the expected values and removed from subsequent analyses.

3 Results

Behavioral performance changes were most clearly determined from measurements for
over-scan, rather than scanned, given that participants had no immediate indication of
the RoI on their map screen. As an example, Fig. 4 shows the standard PANEL scan
task evaluation: the RoI (blue) boundary indicates the region where the scanning task is
assigned, but not shown to the operator. The polygon (orange) within field-of-view
(FOV) shows a scan overstepping the RoI (blue) boundary, which is classified as over-
scan. The polygon (green) encapsulated by the RoI is classified as a proper scan. Scan
percentage is extrapolated as the intersection of the RoI area (blue) with the union of all
FOV polygons during the elapsed time of the scan task. Alternatively, over-scan
percentage was computed by subtracting the area of the RoI polygon from the union of
all FOV polygons (black outline).

Provided the protocol design, the initial three training sessions were purposed to
facilitate participants’ sufficient familiarity of using the system under stable conditions
regarding visibility. Upon fulfillment of these sessions, the goal was to study the effects
of varying the task difficulty on mental workload, with the assumption all participants
have no similar task familiarity and training time. Therefore, we focused on behavioral
performance and neurophysiological measurement results of probative sessions only.
Workload (i.e., probative) session one started under dark lighting conditions for scan-
task one, followed by increasingly improved lighting conditions up to scan-task six—
hence, we classified this session as decreasing in difficulty level with each consecutive
scanning and target identification task. Figure 5 shows changes in participants’ over-
scan measures for scan-tasks one and six according to workload, noted as hard to easy,
respectively. Figure 5 exhibits a general trend for subjects 1, 3, 6 and 11 of decreased
performance associated with increasing workload conditions.

According to the hypothesis, workload conditions are positively related to oxy-
genation levels, meaning that as task difficulty increases, oxygenation levels should
increase provided that the subjects stayed on task. fNIRS channels were grouped by
quadrants (i.e., Q1 = Channels 1 to 4; Q2 = Channels 3 to 8; Q3 = Channels 9 to 12;
Q4 = Channels 13 to 16) and Hb-diff levels were extracted and averaged per
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participant, workload condition and task. Figure 6 presents averages of oxygenation
levels for each subject, for Q1 (a) to Q4 (d). Figure 6(a, b) Q1 and Q2 data present
trends for subjects 1, 3, 6 and 11 consistent with our hypothesis of decreased oxy-
genation levels during the lower workload conditions; subject 10 did not present any
significant interaction with the workload changes. Figure 6(c) shows Q3 trends among
participants 1, 3, 10 and 11 consistent with our hypothesis, but subject 6 did not have
apparent trends; whereas, Fig. 6(d) demonstrates that Q4 had hypothesis-consistent
trends for subjects 6, 10 and 11, with no similar trend for 1 and higher oxygenation
levels for lower workload conditions in 3.

Fig. 4. Simlat PANEL FOV polygon classification (Color figure online)

Fig. 5. Probative session 1: clustered means comparison of over-scan percentage sorted from
easy workload conditions (blue) to hard (red) (Color figure online)
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Consequently, for probative session two, participants’ over-scan performance was
expected to decrease from scan-task one to six, classified from easy to hard, respec-
tively; over-scan performance trends identified in Fig. 7 are consistent with this pre-
diction for subjects 1 and 6. However, improved scan performance was observed for
subjects 3, 10 and 11. Figure 8(a–d) demonstrate Q1–Q4 consistency with our
hypothesis of oxygenation level dynamics for subject 3. Figure 8(a) presents Q1 trends
opposing our hypothesis, with lower levels of oxygenation for higher workload con-
ditions in participants 1, 6, 10 and 11. Figure 8(b, c) show Q2 and Q3 consistency
regarding opposing trends in 1, 10 and 11, while (b) presents no trend for 6 and
(c) demonstrates an oxygenation level increase for 6. Fig. 8(d) demonstrates Q4
hypothesis consistent trends for subjects 6 and 10, yet opposing trends were observed
in subjects 1 and 11.

To further examine the relationship of oxygenation level dynamics with workload
conditions, the most difficult scan-task workload condition was compared to the least-
difficult workload condition, taken as probative session two scan-task six and probative
session one scan-task six, respectively. Difficulty level determinations were obtained
from comparisons of visibility levels for probative scan-tasks to that of the training
sessions, with the least difficult condition being similar to conditions of training tasks,
and the most difficult being the task with the lowest lighting condition. Figure 9
demonstrates the comparison between over-scan measurements from the aforemen-
tioned easiest and hardest tasks. Fig. 9 indicates decreases in scan performance during
the higher workload condition for subjects 1 and 6, and increases for 3, 10 and 11.
Figure 10(a–c) present Q1–Q3 oxygenation level movements in line with our

Fig. 6. Probative session 1 fNIRS quadrant Hb-diff Levels comparison between easy (blue)
workload conditions and hard (red) for: (a) quadrant 1 (Ch 1, 2, 3, 4), (b) quadrant 2 (Ch 5, 6, 7,
8), (c) quadrant 3 (Ch 9, 10, 11, 12) and (d) quadrant 4 (Ch 13, 14, 15, 16) (Color figure online)
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hypothesis for participants 3 and 6, with large disparity in Hb-diff levels between the
hardest (red) and easiest(blue) workload conditions in 6, but conflicting Hb-diff level
movements for subjects 1, 10 and 11—with significant difference between workload
conditions in (b) and (c) for subject 1. Figure 10(d) demonstrates Hb-diff level
movement in agreement with our hypothesis for subjects 6 and 10, no similar trend
observed for 1, and opposing Hb-diff movement in 3 and 11.

Fig. 7. Probative session 2: clustered means comparison of over-scan percentage sorted from
easy workload conditions (blue) to hard (red) (Color figure online)

Fig. 8. Probative session 2 fNIRS quadrant Hb-diff Levels comparison between easy (blue)
workload conditions and hard (red) for: (a) quadrant 1 (Ch 1, 2, 3, 4), (b) quadrant 2 (Ch 5, 6, 7,
8), (c) quadrant 3 (Ch 9, 10, 11, 12) and (d) quadrant 4 (Ch 13, 14, 15, 16) (Color figure online)
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4 Discussion

Sensor operators have a crucial role in the completion of mission objectives for UAS
flight crew, particularly within the realm of reconnaissance missions. Increased
information-processing load and decision-making demands require vast cognitive
resource utility; however, such increases in attentional control and cognitive load have
been associated with increases in human error, and thus escalating safety concerns.

Fig. 9. Probative sessions over-scan comparison according to workload conditions: easiest
(blue; probative session 1, scan-task 6), hardest (red; probative session 2, scan-task 6) (Color
figure online)

Fig. 10. Probative sessions fNIRS Hb-diff levels comparison between easiest (blue; probative
session 1, scan-task 6) workload conditions, and hardest (red; probative session 2, scan-task 6)
for: (a) quadrant 1 (Ch 1, 2, 3, 4), (b) quadrant 2 (Ch 5, 6, 7, 8), (c) quadrant 3 (Ch 9, 10, 11, 12)
and (d) quadrant 4 (Ch 13, 14, 15, 16) (Color figure online)

UAS Operator Workload Assessment During Search and Surveillance Tasks 403



Proper neurophysiological assessment with realistic training scenarios can facilitate
personalized and adaptive training necessary to cope and prepare for such mental strain.
Current evaluation criteria for UAS operator training is limited to subjective behavioral
and performance evaluations, which may lack in-depth understanding of what factors
may contribute to scanning and target-identification task performance. Use of neuro-
physiological measures for extraction of mental workload-associated parameters can
provide objective performance measurements and contextual clues for evaluators to
help sensor operators perform tasks more efficiently and effectively.

Since this is an ongoing project and due to limited number of participants, the scope
of this manuscript includes only within-subject analysis. Evaluation of results from all
subjects require understanding of engagement and training effect. There are four
possible trends mainly observed between behavioral and fNIRS measurements in this
preliminary study: (1) decreased scan performance from easy to hard workload con-
ditions, with decreased fNIRS Hb-diff measurements; (2) decreased scan performance
from easy to hard workload conditions, with increased Hb-diff levels; (3) increased
scan performance from easy to hard workload conditions, with an associated decrease
in Hb-diff; and (4) increased scan performance from easy to hard workload conditions,
with concurrent increases in Hb-diff measures.

Each of these trends can be interpreted with respect to task engagement and training
effect. For instance, when a subject follows trend (1) it may indicate lack of engage-
ment for both easy and hard workload conditions. This phenomenon may be under-
stood and validated contextually by the case with requisite movement of sensor camera
to complete each scan task successfully, wherein the number of recorded scans
increases, there by increasing over-scan percentage. However, if sensor camera
movement is limited or absent, over-scan percentage is expected to decrease. fNIRS
along with this behavioral measure can introduce a capability potential to detect the
engagement, or lack thereof, through quantification of cognitive effort. Subject 1 is a
suitable example for lack of engagement (i.e. disengagement) during the experiment,
demonstrated by their fNIRS Hb-diff results from probative session two and compar-
ison between easiest and hardest workload conditions (see Figs. 8 and 10, respec-
tively). Subsequently, trend (2) is descriptive of our primary hypothesis, for which
subject 6 data effectively demonstrates. That is, increased workload conditions lead to a
rise in oxygenation changes acquired from the PFC region. This trend may suggest that
if a subject is sufficiently trained on the task—which was achieved through completion
of the three initial sessions with optimal visibility—they would likely have the ability
to complete such tasks successfully with minimal cognitive effort. If the same trained
participant continued active engagement, then administration of more difficult tasks
would cause relative increases in cognitive load, revealing that user was able to stay on
task and able to keep up with the challenge introduced. Subject data following trend
(3) appears akin to trend (2) regarding easier workload conditions; however,
improvement in behavioral over-scan percentage concurrent with decrease in brain
activity assessed by Hb-diff measures. This preliminary finding suggests that the
hardest workload conditions were too high for a given subject, during which (s)he was
overloaded and failed to keep up with the task objectives, i.e., camera movement for
route scanning and target identification. Finally, subjects outlining trend (4) exhibited
proficient task engagement under high-workload conditions. Behavior of trend
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(4) subjects are comparable to trend (3) under the easier workload conditions, yet their
cognitive effort and behavioral performance rose with increased workload conditions.

The study reported here has ongoing recruitment and testing efforts; more data are
being collected for further examination of correlations, trend classification and asso-
ciated statistical significance. Data collection and analyses of the relationship between
task engagement, task performance and correlational analysis with localized oxy-
genation changes in PFC shall be carried out across subjects in the following study.
Although the sample population is limited, this study reported mainly within-subjects
results with promising indication of trends and similar results reported in [1, 2, 14, 16].
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