
Facilitating Cluster Counting
in Multi-dimensional Feature Space

by Intermediate Information Grouping

Chloe Chun-wing Lo1, Jishnu Chowdhury2, Markus Hollander3,
Alexis-Walid Ahmed3, Suraj Sood4(&), Kristy Sproul3,

and Antoinette Hadgis3

1 Cherrypicks Limited, Hong Kong, China
2 Department of Computer Science, Kansas State University,

Manhattan, KS, USA
3 Sirius Project, Melbourne, USA

4 Department of Psychology, University of West Georgia, Carrollton, GA, USA
sirus19conf@gmail.com

Abstract. Previously, we showed that dividing 2D datasets into grid boxes
could give satisfactory estimation of cluster count by detecting local maxima in
data density relative to nearby grid boxes. The algorithm was robust for datasets
with clusters of different sizes and distributions deviating from Gaussian dis-
tribution to a certain degree.
Given the difficulty of estimating cluster count in higher dimensional datasets

by visualization, the goal was to improve the method for higher dimensions, as
well as the speed of the implementation.
The improved algorithm yielded satisfactory results by looking at data density

in a hypercube grid. This points towards possible approaches for addressing the
curse of dimensionality. Also, a six-fold boost in average run speed of the
implementation could be achieved by adopting a generalized version of quad-
ratic binary search.

Keywords: k-means clustering � Unsupervised clustering �
Multidimensional analysis

1 Background

Unsupervised clustering algorithms usually require the number of clusters as a
parameter to yield satisfactory results. The cluster count can be easily given if the
dataset is in lower dimensions where visualization can enable humans to estimate the
number of clusters reasonably well.

For datasets in higher dimensions, the common practice is to run the clustering
algorithm for different number of clusters, and select the number of clusters that gives
the least within-cluster sum of squares (abbreviated as WSS). This approach requires
human input of a range of cluster counts to test, which may not include the optimal
cluster count for the best results. It is also common for multiple cluster counts to give a

© Springer Nature Switzerland AG 2019
D. D. Schmorrow and C. M. Fidopiastis (Eds.): HCII 2019, LNAI 11580, pp. 284–298, 2019.
https://doi.org/10.1007/978-3-030-22419-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-22419-6_20

locally minimum WSS whose values are very close to each other. This ambiguity
makes the selection for the ideal cluster count very difficult even with human input.

It is of great interest to develop a method that estimates the cluster count without
human guess work or ambiguous results, especially for datasets in higher dimensions
where it is difficult to produce a meaningful representation of cluster structure by
visualization. Such a method could benefit many clustering algorithms that require an
accurate cluster count input.

In the previous work, the estimation of cluster count in 2D datasets is done by
dividing the 2D space of the data into grid boxes and counting the number of local
maxima of number of data points found in each grid box relative to neighboring grid
boxes [1]. The approach of dividing the data space into grid boxes proved to be
promising in 2D space. There were two major concerns regarding this approach of
estimating cluster counts: its ability to estimate cluster count accurately in higher
dimensional space, and any room for speeding up the algorithm.

1.1 Extension to Higher Dimension

Applying the algorithm to higher dimension is of great interest due to the nature of
human perception, which limits the ability to visualize datasets of higher dimensions
accurately. While 2D datasets have almost no problems in estimating cluster count by
eye from visualization, 3D data starts to suffer as the apparent number of clusters is
affected by the perspective from which the data is viewed in the 3D space, as more than
one clusters may appear to be one in certain angle of view if they overlap in the field of
vision. As a result, cluster count estimation or cluster validation by eye is very difficult
in higher dimensions, and may lead to suboptimal results in certain powerful unsu-
pervised clustering algorithm without an accurate initial input of cluster count.

Data visualization is not the only challenge linked to increased dimensionality in
machine learning. It is well known that space is dilated in higher dimensions, making
the measurement of distance between data points using Euclidean distance meaningless
as most data points are roughly at the same distance from each other [3]. This is termed
the “curse of dimensionality”. Many other definitions of distance have thus been put
forward [4].

One approach that is of particular interest is the IGrid Index, which is not unlike the
division of data into hypercubes [5]. It seems to suggest that the intermediate infor-
mation grouping approach may work well in higher dimensional space as well.

1.2 Speed Performance

In the previous work, the attempt to estimate the number of clusters before the datasets
can be passed for unsupervised clustering showed promise [1]. However, the speed of
the implementation was quite slow.

The algorithm divides the whole dataset into grid boxes for 2D datasets. The best
box length is the one that gives the number of boxes with single data point below a
given percentage of the total data points in the dataset. In the previous version, the best
box length is found by decreasing the number of portions to be divided along each axis
under a geometric progression with a common ratio smaller than 1. However, this

Facilitating Cluster Counting in Multi-dimensional Feature Space 285

method generates many unnecessary iterations that could be skipped by a more efficient
search algorithm. Moreover, since the value progresses along the geometric decrement,
it is possible that the most optimal solution is skipped, such that the final result is only
second best or worse. This is a common problem with iterative machine learning
solutions.

Heuristics can considerably speed up iterative approaches due to additional con-
textual information they utilize. It is possible to extract such contextual information
during the algorithm’s run to restrict the search space to a smaller range of problems
that is guaranteed to contain the optimal solution. Many search algorithms employ
similar approaches. For example, when an array is sorted, the order of the elements in
the array can serve as a heuristic, and binary search in particular proves to be a much
more efficient algorithm compared to simply searching linearly through the array.

Although the complexity of binary search is quite efficient with complexity OðlnNÞ
or more precisely Oðlog2NÞ. Quadratic binary search can further improve the time
complexity to O ln N

2

� �
[2].

Search algorithms like quadratic binary search often work on monotonically sorted
arrays. It is possible to apply this approach to a series of values that is almost
monotonic. In the previous version of the algorithm, the number of grid boxes with one
data point generally decreased as the box length increased, with small fluctuations that
did not significantly alter the overall almost monotonically decreasing trend. Quadratic
binary search thus had to be adapted before it could be used to speed up this part of the
algorithm.

2 Procedure

2.1 Assumptions and Definitions

We make several assumptions about the data distribution, some identical to the pre-
vious research, namely:

• Each cluster approximates a Gaussian distribution, which implies each cluster has a
center where the “density” of data points peaks.

• Clusters have a low degree of overlap.
• There are more than one cluster in each dataset.
• A cluster has at least 3 data points.

The following definitions were introduced with higher dimensionality in mind:

• Density of data is defined as the number of data points per hypervolume of each
hypercube.

• Hypervolume is calculated by the length of hypercube raised to the power of the
dimension of the dataset.

Since all hypercubes have the same hypervolume, the identification of local
maxima with highest data density can be achieved by directly identifying the hyper-
cube with the most data points.

286 C. C. Lo et al.

2.2 Algorithm

The main idea of the algorithm is to first determine the best cube length for dividing the
minimum bounding box of the dataset into hypercubes of equal size and to then scan
these hypercubes for local density maxima.

Optimization efforts focused on improving the search for the optimal hypercube
size. Generalization to higher dimension involved changes to both optimal hypercube
size selection and local maxima detection.

Different axes may have different data range, and this puts the method in danger of
underestimating cluster count if certain axes have a range too small relative to other
axes. Normalizing data before searching for optimal hypercube size addresses this
problem.

Normalized data have very small ranges and a specialized algorithm for deter-
mining initial hypercube size is required.

Normalization. Data of each axis is normalized by transforming all of them into the
standardized z-score. Since z-scores mostly range between −3 and 3, it is not sensible
to use 1 as the initial hypercube length as it may be well past the optimal solution for
the ideal hypercube size.

Initial Hypercube Size Determination. Let N be the total number of data points in
the d-dimensional data set. The goal is to find the hypercube size that divides the
minimum bounding box of the dataset into Md d-dimensional hypercubes at the
smallest possible resolution while keeping the number of empty hypercubes as small as
possible, where M is the number of hypercubes along each axis.

This is accomplished by iteratively adjusting M, starting with M0 :¼
ffiffiffiffi
N

p
. In each

iteration i, let ki be the number of data points in the densest hypercube and compute
Mi ¼ Mi�1 �

ffiffiffiffi
ki

p
.

The square root is taken to avoid overshooting the optimal value too much. The
process stops when there is no hypercube left with more than 1 data point. The final Mi

is then used as a starting point in the next step.

Determination of Optimal Hypercube Size. In the previous version of the algorithm,
the optimal number of hypercubes along each axis, mopt, was determined by decre-
menting the initial M obtained in the prior step in geometric sequence and evaluating
the number of data points assigned to the resulting hypercubes. To speed up this
process while also avoiding to settle on a sub-optimal hypercube size, this version of
the algorithm employs a modified quadratic binary search instead of geometric
decrementation. Whereas quadratic binary search divides the range of potential values
by 4 in each iteration, the modified version divides the range into T candidates in each
iteration, whereby T is given as a parameter.

The fraction of data points alone in a hypercube, n, hereby serves as a heuristic for
approximately identifying mopt. This is a suitable heuristic since a grid with too small
hypercubes will end up accumulating many lone data points, while a grid with too big
hypercubes will overvalue noise and data points at the far edge of clusters. The
algorithm takes a parameter t describing a threshold for acceptable values of n as a
fraction of the volume of the dataset.

Facilitating Cluster Counting in Multi-dimensional Feature Space 287

The best hypercube size is computed as follows:

1. Divide the current value range such that T candidates m1; . . .;mT are obtained for
the determination of mopt. In the first iteration, the highest possible value of mopt is
the initial M obtained in the previous step and the lowest possible value is 2,
resulting in candidates m1 ¼ M; . . .;mi; . . .;mT ¼ 2.

2. All mi are rounded to integers, since the grid consists of equally sized hypercubes,
and duplicate mi are removed after rounding. If there is only one candidate, the
approximated mopt was found.

3. In descending order, the fraction of data points alone in a hypercube, n, is calculated
for each mi. The first mi for which n drops below the threshold t is the lower bound
for the next iteration of the search.

4. Based on the heuristic, mopt lies between that mi and the previous one, mi�1, if their
difference is larger than 1. In that case, steps 1 to 3 are repeated for the value range
mi�1 to mi � 1 until step 2 yields only one candidate for mopt.

Cluster Count Estimation. After the value of mopt is determined, the number of data
points in each hypercube is compared against the nearest 8 hypercubes. The nearest
hypercubes are found by selecting the hypercubes whose centre point gives the shortest
Euclidean distance to the hypercube to be compared. The hypercube containing the most
data points relative to its neighborhood is marked as a local maxima, and the total number
of local maxima detected is returned by the algorithm as the cluster count estimation.

2.3 Time Complexity

INITIAL M DETERMINATION
let N = number of data points # assignment, O(1)
let M = sqrt(N) # assignment, O(1)
let d = dimension of data # assignment, O(1)

DO:
/* DO-WHILE LOOP:

number of iterations for M to reach the point where
there are no hypercube containing more than 1 data point

*/
Map number of data points into a M^d array by dividing
along each side of the bounding box of the data into
M portions

let max = maximum number of data points in all hypercubes
going through each data point, O(N)

going through each hypercube, O(M^d)

if max > 1: # boolean checking, O(1)
M = M*sqrt(max) # assignment, O(1)

WHILE (max > 1) # boolean checking, O(1)

288 C. C. Lo et al.

In theory, the number of loops required for finding the initial M depends on the
maximum local density of the dataset. However, there is no way to make such a
measurement except running the algorithm. This poses difficulty in determining the
complexity of this part of the algorithm, especially in expressing the total number of
loops and the value of M in terms of measurable metrics. Fortunately, the number of
data points is finite, and this guarantees termination as the minimal distance among all
data points exists when we consider a finite number of points distributed in a Rd space.

In practice, the process of initial M determination terminated within 12 loops for all
test datasets. By plotting a scatter plot of the number of loops against the number of
data points N, it fits well over a logarithmic curve (Fig. 1).

The following analysis therefore works under the assumption that the number of
loops is generally in OðlnNÞ. As the algorithm calculates the number of data points in
each hypercube, it goes through Md hypercubes in total. M can be at most the length of
the minimum bounding box of the dataset divided by the smallest distance of the data
points in one dimension, which is used as an upper bound for M in the subsequent
analysis.

The big O can thus be expressed as:

O lnNð1þ 1þN þMd þ 1þ 1þ 1Þ� �
¼ O lnNðMd þNÞ� � ð1Þ

Fig. 1. The plot of number of loops against data set size (dots) is best fit by y ¼ 2:10158748 �
logðxÞ � 9:72704674 (line).

Facilitating Cluster Counting in Multi-dimensional Feature Space 289

FINDING OPTIMAL LENGTH OF HYPERCUBES
let t = tolerance level, a fraction # assignment, O(1)
let T = number of candidate values # assignment, O(1)
let m_max = M # assignment, O(1)
let m_min = 2 # assignment, O(1)

DO: # number of iterations for m to reach 1, O(log(2M/T))
let r = pow(m_max/m_min, 1/(T-1)) # assignment, O(1)
let m_candidates = [] # assignment, O(1)
FOR i in 1 … T: # going through i from 1 to T, O(T)

m_candidates.add(round(m_max/r^i)) # assignment, O(1)
m_candidates.remove_duplicate()

go through the list, O(T)
let idx = 1 # assignment, O(1)

DO: # worse case going through all T candidates, O(T)
let m = m_candidates[idx] # assignment, O(1)

Map number of data points into an m^d array by
dividing each dimension of the dataset into m portions

going through each data point, O(N)
Find the number of data points in each hypercube

let s = number of hypercubes with one data point
going through each hypercube, O(m^d)

going through each hypercube, O(m^d)
if s <= N*t: # boolean checking, O(1)

if idx == 1: # boolean checking, O(1)
let m_min = m_candidates[1] # assignment, O(1)
let m_max = m_candidates[1] # assignment, O(1)

else:
let m_min = m_candidates[idx] # assignment, O(1)
let m_max = m_candidates[idx-1]-1 # assignment, O(1)

else if idx == T: # boolean checking, O(1)
let m_min = m_candidates[T] # assignment, O(1)
let m_max = m_candidates[T] # assignment, O(1)

idx = idx+1 # assignment, O(1)

WHILE s > N*t or idx <= T # boolean checking, O(1)
WHILE m_candidates.size > 1 # boolean checking, O(1)

let M = m_candidates[0] # assignment, O(1)

For an array of different m values ranging from M to 2, the quadratic binary search
will give a complexity of O ln M

2

� �
. The division of M by 2 is a result of the division of

290 C. C. Lo et al.

data into up to 4 portions in each iteration by quadratic binary search, which is a double
of 2 portions in binary search. Similarly, this algorithm divides the data in up to T
portions which is T

2 times of 2, and the complexity of that particular loop can be said to

be O ln M
T
2

� �
¼ O ln 2M

T

� �
. It becomes O ln M

T

� �
after dropping constants. Therefore, the

complexity of this part of the algorithm becomes:

O 4þð2þ T þ T þ 1þ Tð1þNþMd þMd þ 6Þþ 1ÞlnM
T

þ 1
� �

¼ O 4þð2þ 2T þ 1þ Tð1þNþ 2Md þ 6Þþ 1ÞlnM
T

þ 1
� �

¼ O 5þð4þ 2T þ TðNþ 2Md þ 7ÞÞlnM
T

� �

¼ O ð2T þ TðN þ 2MdÞÞlnM
T

� �

¼ O ð2T þ TN þ 2TMdÞlnM
T

� �

¼ O ðT þ TNþ TMdÞlnM
T

� �

¼ O T � lnM
T
ð1þNþMdÞ

� �

¼ O T � lnM
T
ðMd þNþ 1Þ

� �

¼ O T � lnM
T
ðMd þNÞ

� �

ð2Þ

FINDING LOCAL DENSITY MAXIMA
let maxima_centroids = [] # assignment, O(1)
Calculate the number of data points in each hypercube
 # going through each hypercube, O(M^d)
For each hypercube: # going through each hypercube, O(M^d)

calculate the distance of all other hypercubes to the current
hypercube # going through each hypercube, O(M^d)

 sort the hypercubes by distances to the current hypercube in
ascending order, then by number of data points in
descending order for the same distance

 # quicksort,
O(M^2d)

get the closest 8 hypercubes # retrieval, O(8)
let n_max = maximum number of data points in closest 8

hypercubes # going through all boxes, O(8)
let n_current = data points in current hypercube

Facilitating Cluster Counting in Multi-dimensional Feature Space 291

assignment,
O(1)

if n_current >= n_max: # boolean checking, O(1)
let (x_1, …, x_d) = center coordinate of current hypercube

assignment,
O(1)

maxima_centroids.add((x_1, …, x_d)) # assignment, O(1)
return maxima_centroids # termination of algorithm

The complexity of this part of the algorithm is:

Oð1þMd þMdðMd þM2d þ 8þ 8þ 4ÞÞ
¼ Oð1þMd þMdðMd þM2d þ 20ÞÞ
¼ OðMd þMdðM2dÞÞ
¼ OðMd þM3dÞ
¼ OðM3dÞ

ð3Þ

So the overall complexity after combining Eqs. (1), (2) and (3) is:

O lnNðMd þNÞþ T � lnM
T
ðM2 þN þ 1ÞþM6

� �
ð4Þ

Substituting d ¼ 2 into (5) gives:

O lnNðM2 þNÞþ T � lnM
T
ðM2 þNÞþM6

� �
ð5Þ

However, we used the previous algorithm for local maxima estimation for 2D
datasets for faster speed. The time complexity for local maxima estimation was M2, so
the time complexity of this version on 2D datasets should be:

O lnNðM2 þNÞþ T � lnM
T
ðM2 þNÞþM2

� �
ð6Þ

The time complexity of the previous version of the algorithm for 2D datasets was:

O
lnM
�lnr

½N þM2 þ 2� þ 12M2 þ 4Nþ 9
� �

¼ O
lnM
�lnr

½NþM2� þM2 þN

� � ð7Þ

292 C. C. Lo et al.

The parameter T and parameter r are not shared by both expressions of the time
complexity for the two versions of the algorithm. It is difficult to directly compare their
performance. However, since they are parameters that are unlikely to be changed
radically from dataset to dataset, we may treat them as constants. The expressions for
the new version of the algorithm can be simplified to:

O lnNðM2 þNÞþ lnMðM2 þNÞþM2� � ð8Þ

And the one for the previous version of the algorithm can be simplified to:

O lnM½M2 þN� þM2 þN
� � ð9Þ

The time complexity indicates that the new version may perform slower than the
old version, but actual run time may tell a different story as the parameter T and r
interacts with the algorithm in ways that is difficult to compare their effect on both
versions of the algorithm.

2.4 Parameters

We for comparison, the tolerance level t, describing the acceptable fraction of data
points alone in a hypercube, was set to 0.004 and the number of candidate values T to
20 for all datasets.

2.5 Test Data

We tested our algorithm on data sets from the University of Eastern Finland [6] and
Kaggle [7, 8].

2.6 Hardware and Software

The algorithm was run on a MacBook Pro (Retina, 13-inch, late 2013), 2.4 GHz Intel
Core Duo i5, 8 GB 1600 MHz DDR3 RAM, macOS Mojave version 10.14 using
Python3 v3.6.3 with Seaborn v0.8.1, Pandas v0.23.4 and NumPy v1.13.3.

3 Results

3.1 Optimization

In practice, the new implementation of the algorithm got a boost in speed with minimal
impact on cluster counting accuracy compared with the previous methods (Tables 1
and 2).

Facilitating Cluster Counting in Multi-dimensional Feature Space 293

On average, the run time is cut down to one-sixth of the original.
The average difference of cluster count does not suffer any visible impact from the

change of the implementation.

3.2 Generalization to Higher Dimension

The algorithm performed considerably worse for higher dimension (Table 3).

The values of m in higher dimension ranges from 2 to 3, which is way smaller than
that found in 2D data (Table 4).

Table 1. Comparison of run time of two different algorithms.

Data
normalization

Method Run time (sec)
Minimum Mean Maximum Standard

deviation

No m
sampling

0.039614 4.872610 15.976803 4.918828

No Geometric
decrement

0.045037 31.377525 131.773615 38.138111

Yes m
sampling

0.041973 5.316945 21.418652 6.011148

Yes Geometric
decrement

0.040350 30.805692 126.715257 36.140838

Table 2. Comparison of difference from ground truth of two different algorithms.

Data
normalization

Method Absolute difference with ground truth
Minimum Mean Maximum Standard

deviation

No m sampling 0 0.588235 7 1.219450
No Geometric

decrement
0 0.568627 7 1.220736

Yes m sampling 0 0.823529 7 1.306995
Yes Geometric

decrement
0 0.784314 7 1.285515

Table 3. Comparison of performance between data in 2-dimensions and higher dimensions.

Dimension Absolute difference with ground truth
Minimum Mean Maximum Standard deviation

2 0 0.494186 5 0.888504
More than 2 0 1.750000 7 2.140244

294 C. C. Lo et al.

It is tempting to explain the inaccuracy by the curse of dimensionality. However,
upon further inspection of the datasets, datasets in higher dimensions also happen to
have fewer data points compared to 2D datasets (Table 5).

4 Discussion

4.1 Strength

Speed without Sacrificing Accuracy. With all other conditions under control, the
implementation of the new algorithm is six times faster without suffering much with
regard to accuracy. The final decrement step to find the optimal m value also guarantees
that the ideal solution is not skipped over by the approach.

Minimal Impact on 2-D Dataset. The performance is on par with previous genera-
tions on 2-D datasets.

4.2 Limitations

Sensitive to Local Density Variation within Cluster. Since this algorithm does not
fundamentally changes the way it estimates cluster count, it retains a problem that is
present in the previous version. It is sensitive to local density which leads to over
estimating cluster count in some cases, especially for 2D data.

Inconsistency Between Normalized and Unnormalized Data. In an attempt to unify
the behavior of the algorithm across datasets with different ranges, normalization (i.e.
conversion to standardized z-score) is applied to all datasets before cluster count
estimation. Interestingly, the resulting cluster count estimation differs between nor-
malized and unnormalized data.

Table 4. Comparison of final m value between data in 2-dimension and higher dimensions.

Dimension Final m
Minimum Mean Maximum Standard deviation

2 5 44.616279 130 36.853168
More than 2 2 2.062500 3 0.245935

Table 5. Comparison of data count between data in 2-dimension and higher dimensions.

Dimension Data count
Minimum Mean Maximum Standard deviation

2 1481 3425.333333 7500 1856.009912
More than 2 147 810.750000 1024 366.817941

Facilitating Cluster Counting in Multi-dimensional Feature Space 295

Inspection of the detailed logs recording different variables in all loops revealed that
the algorithm terminates at different m value for normalised and unnormalised data.
Consequently, the estimation of cluster count can differ by as much as 3.

It is possible that local maxima detection is very sensitive to local fluctuations in
data density, amplified by normalization. Another possible explanation may be due to
the change in data range that affects how the data are divided up and that leads to
discrepancy in how the hypercubes are generated in these two versions of the dataset.
More work is required to unify the performance between normalized and unnormalized
data.

Degeneration of m Value in Datasets with Low Data Amount. We also observe that
the final ideal m value almost always degenerates to 2 or 3 for data in higher dimension.
This looks like a problem due to dilation of space in higher dimensional space.
However, the same issue occurs in datasets at dimension as low as 3. Upon inspection,
those datasets share a common characteristic of having a low data count (in the range of
hundreds).

Given a very small tolerance, the number of boxes with single data point that
terminated the loop for finding the ideal m value will become 0, and therefore pushes
the m value to a meaninglessly small value. For example, for a dataset with only 100
observations, the tolerance level of 0.004 means that the algorithm will terminate when
the number of single data hypercube drops below 100� 0:004 ¼ 0:4. Since the lowest
possible value of m is set to be 2, this guarantees the algorithm to ends with m ¼ 2 and
therefore unable to accurately estimate the cluster count.

Setting the tolerance at a higher value enables a more accurate cluster count esti-
mation for datasets with low data points, but leads to gross overestimation for those
with large data volume. It seems that a dynamic tolerance level or an entirely new
termination condition is required for this algorithm to perform uniformly well across
datasets with different volume.

4.3 Curse of Dimensionality

In 2D, neighboring grid boxes can be easily identified by the index coordinates of the
grid box. However, the same definition of “neighbors” cannot be applied in higher
dimension as the number of neighbors increases with the dimension. It does not only
pose performance issues for the algorithm, it also makes every hypercube a neighbor to
all other hypercubes.

For now, a limit is posed on the number of nearest neighbor in the determination of
local density maxima. The limit is arbitrary but well justified as a maximum among the
closest few already fulfils the definition of a local maxima. Hypercubes of greater
“distance” can be omitted.

With a higher tolerance level (t value), datasets with low data volume at higher
dimension produces reasonable results. This suggests that this approach may be able to
work around the curse of dimensionality that stumps many researches. It is possible
that the division of higher dimensional space into hypercubes by our method ensures
that the well-ordered nature of our conventional notion of distance (i.e. Euclidean

296 C. C. Lo et al.

distance) is preserved as the division is done uniformly and is sensitive to relative
distance among data points in each cluster (Table 6).

4.4 Further Research

More research effort is needed to find out the relationship between local data density,
hypercube size and total data points to understand the interaction of these factors and
their impact on the original algorithm. This is especially important for understanding
the impact of data volume to the performance of the algorithm. As suggested by our
results, it is best to have a dynamic termination condition than a static one. The
algorithm is not at all useful if the termination condition depends on a parameter input
by the user as it throws back the problem of cluster count estimation to humans. It
seems to be possible to nail down that moving target if we probe deeper into the
relationships among different metrics of the dataset.

Smoothing algorithm may alleviate the problem of overestimation due to local
density fluctuation. However, most smoothing algorithms are applied into in 1D or 2D
data. Extra attention must be paid in searching for one that can be applied in high
dimensional space.

It is also valuable to compare the results from this algorithm with human evalua-
tion. Although we rely on machines to perform routine and computational tasks in a
more efficient manner, it is questionable whether machine learning algorithms can
always generate results “superior” to human judgement, or align with human under-
standing on how information should be organized.

This problem stems from the fact that even among human, there may be dis-
agreement on what constitutes a cluster. The difficulty in devising a simple way to
count clusters may suggest that the potential problem lies in the lack of a clear defi-
nition of a “cluster”. After all, entities as large as galaxies can form a “cluster” and
clusters a supercluster, which may look like a single bright dot on the sky if the
observer is far enough. One possible solution to this is to search for clusters in all

Table 6. Examples demonstrating the influence of tolerance level on the final m value and the
resultant cluster estimation count. Configurations that produce the correct result are bolded.

Dataset Data
count

Dimension Data
normalization

Tolerance Final
m

Cluster count
estimation

Iris
species

1481 4 Yes 0.025 2 1
0.05 4 2
0.125 6 3
0.15 7 3
0.225 9 8

Seed
dataset

210 7 Yes 0.125 2 2
0.15 3 5
0.3 4 3
0.35 5 5
0.45 6 9

Facilitating Cluster Counting in Multi-dimensional Feature Space 297

different levels. This is, however, an entirely different search topic with extreme dif-
ficulty that requires intense research effort.

5 Conclusion

Adapting and tweaking quadratic binary search offers a six-fold boost in cluster esti-
mation speed on average. The interaction between data count and tolerance level to
terminate the algorithm poses difficulties in giving meaningful results when the data
has low data volume, and results suggest that an adaptive tolerance level may yield
good results in higher dimensions and may potentially provide a way out of the curse of
dimensionality. Deeper relationship between dimensions, local data density variation,
data volume and any other alternative termination conditions is needed for the
development of the algorithm to move forward.

Acknowledgements. I must restate my deep gratitude towards Mr. Monte Hancock for
recruiting me into the Sirius project and how the project turned my life around.

Inexpressible thanks go to each of my team members: Jishnu for efficient coding and good
mistake spotters, Markus for meticulous eyes on overall structure and wording of the paper,
Alexis for rigorous critique and proofreading, and Suraj for saving the paper when I most needed
help on formatting and putting the pieces together into a complete piece. Many thanks to other
workers on the Sirius team working on bits and pieces of this paper. This paper will not be
complete without all of your help. Big thumbs up for Lesley the EPM (Executive/Epic Project
Manager) for amazing coordination.

References

1. Lo, C.C.-W., et al.: Intermediate information grouping in cluster recognition. In: Schmorrow,
D.D., Fidopiastis, C.M. (eds.) AC 2018. LNCS (LNAI), vol. 10915, pp. 287–298. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91470-1_24

2. Kumar, P.: Quadratic Search: A new and fast searching algorithm (An extension of classical
Binary search strategy). https://pdfs.semanticscholar.org/3d91/97ecfcc1a16254c8667b0cbd35
c93e7f9437.pdf. Accessed 1 Feb 2019

3. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in
high dimensional space. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7409&
rep=rep1&type=pdf. Accessed 1 Feb 2019

4. Pele, O.: Distance functions: Theory, algorithms and applications. https://pdfs.semanticscholar.
org/c656/f090d5710a524ac26ef1b22310e772fa465c.pdf. Accessed 15 Feb 2019

5. Aggarwal, C.C., Yu, P.S.: The IGrid Index: Reversing the dimensionality curse for similarity
indexing in high dimensional space. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
0EBCEB48BA3DE80411807AA7DF3C3A60?doi=10.1.1.129.746&rep=rep1&type=pdf.
Accessed 1 Feb 2019

6. Clustering basic benchmark. https://cs.joensuu.fi/sipu/datasets/. Accessed 1 Feb 2019
7. Iris Species. https://www.kaggle.com/uciml/iris. Accessed 1 Feb 2019
8. Seeds dataset. https://www.kaggle.com/rwzhang/seeds-dataset. Accessed 1 Feb 2019

298 C. C. Lo et al.

http://dx.doi.org/10.1007/978-3-319-91470-1_24
https://pdfs.semanticscholar.org/3d91/97ecfcc1a16254c8667b0cbd35c93e7f9437.pdf
https://pdfs.semanticscholar.org/3d91/97ecfcc1a16254c8667b0cbd35c93e7f9437.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7409&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7409&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/c656/f090d5710a524ac26ef1b22310e772fa465c.pdf
https://pdfs.semanticscholar.org/c656/f090d5710a524ac26ef1b22310e772fa465c.pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3bjsessionid%3d0EBCEB48BA3DE80411807AA7DF3C3A60%3fdoi%3d10.1.1.129.746%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3bjsessionid%3d0EBCEB48BA3DE80411807AA7DF3C3A60%3fdoi%3d10.1.1.129.746%26rep%3drep1%26type%3dpdf
https://cs.joensuu.fi/sipu/datasets/
https://www.kaggle.com/uciml/iris
https://www.kaggle.com/rwzhang/seeds-dataset

	Facilitating Cluster Counting in Multi-dimensional Feature Space by Intermediate Information Grouping
	Abstract
	1 Background
	1.1 Extension to Higher Dimension
	1.2 Speed Performance

	2 Procedure
	2.1 Assumptions and Definitions
	2.2 Algorithm
	2.3 Time Complexity
	2.4 Parameters
	2.5 Test Data
	2.6 Hardware and Software

	3 Results
	3.1 Optimization
	3.2 Generalization to Higher Dimension

	4 Discussion
	4.1 Strength
	4.2 Limitations
	4.3 Curse of Dimensionality
	4.4 Further Research

	5 Conclusion
	Acknowledgements
	References

