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Abstract. This paper investigates the use of physio-behavioural detec-
tion of fun to model players’ preferences in real-time in the context of an
adaptive game. To do so, a Physiological and Behavioural Model of Fun
(PBMF), previously trained on 218 players, was used to model players’
preferences based n gameplay events. As a proof-of-concept, we leverged
the PBMF to generate a simple player’s preference profile tailored to
our test-bench game: Assassin’s Creed: Odyssey, an open-world, action-
adventure game. This model associated every player to one of 3 predeter-
mined stereotypical types of player, namely Fight, Stealth and Explore,
which are closely tied to mechanics of the Assassin’s Creed series. Using
the inferred preferences, we compared an adaptive vs a non-adaptive
version of the same game and tested whether the adaptive version was
perceived as more fun than the non-adaptive version by the 39 partic-
ipants of this study. The results point to the creation of an accurate
player’s preference profiles during a baseline mission, with profile match-
ing both a “ground truth” Fun Trace – a continuous, subjective rating
of a player’s fun – and a self-reported profile with an accuracy of 69%
and 72% respectively. This, however, did not translate into a measurable
difference in reported fun between the adaptive version of the game and
the non-adaptive version in neither Fun Trace ratings nor questionnaire
answers. Theses findings support that stereotypical preference modelling
can be achieved successfully through a physio-behavioural model of fun,
but that further investigation on adaptation strategies to those pref-
erences are needed in order to reach the adaptive game’s promise of
maximizing player’s enjoyment.

Keywords: Affective computing · Bio-feedback · Video game ·
Physiological signals

1 Introduction

Adaptive video game research aims at creating games that adapt to players in
order to create more enjoyable, engaging gaming experiences. In the line of affec-
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tive computing research, most studies so far have focused on using player’s emo-
tional state, physiologically-inferred using fuzzy or supervised learning models,
as the target of adaptation. Instead of using basic emotions [1] in the adaption
loop, this paper investigates the use of fun levels trough a combined Physio-
logical and Behavioural Model of Fun (PMBF) to model the player’s gameplay
preferences.

In the literature, Ravaja et al. [2] were the first to show that instanta-
neous video game events (e.g., gameplay or story elements) could elicit pha-
sic psychophysiological responses indexing emotional valence and arousal, thus
highlighting the potential of physiological measures for gaining insight into the
player’s experience. Therefore, most affective gaming researches have used phys-
iological data as a means of assessing emotional states of players in relation
to game content. For example, Gilleade and Dix [3] explored frustration in
adaptive games using physiological indicators of emotional arousal. The authors
argued that monitoring (and eventually manipulating) the player’s frustration
level could lead to the development of more complex emotional gaming experi-
ences. Interestingly, other authors later suggested that in-game frustration could
also increase player engagement, possibly resulting in an overall more satisfying
gaming experience [4]. Also, Mart́ınez et al. [5] studied the generality of physi-
ological features of heart rate and skin conductance as predictors of a player’s
affective state. They showed that heat rate (HR) and skin conductance (SC)
features could be used to predict affective states through different game genres
and game mechanics. Finally, Nogueira et al. [6] proposed a model to investigate
relationships between emotions (represented as valence and arousal) and game
events using the fuzzy physiological model of valence and arousal proposed by
Mandryk and Atkins [7].

While some authors have worked on integrating physiological data as direct
inputs to a game (i.e. biofeedback games, e.g. [8]), most research using physiolog-
ical signals have focused on ways of integrating emotions to game design. Those
researches have focused mainly on specific emotional states, such as anxiety or
fear, that could have more or less straightforward applications in adaptive games.
For instance, Liu et al. [9] and Rani et al. [10] used peripheral physiological sig-
nals (ECG, EDA, EMG, etc.) to model the player’s anxiety level. In accordance
with the concept of challenge-skill balance of the flow theory [11–13], they used
anxiety as a tool indicating when dynamic difficulty adjustments were required
in a game. Similar work has been carried out by Chanel et al. [14] who used both
central and peripheral physiological signals for the same purpose. Other authors
have employed physiological (ECG and EEG) and behavioural data in order to
monitor suspense level in an adaptive survival horror game [15].

Although some authors in the affective gaming community have proposed
frameworks to integrate emotions in the design of adaptive games, such as
Hudlicka [16,17] and Tijs et al. [18], more research is required to bring this tech-
nology to industry-ready levels. Indeed, little is known on how emotion-driven
adaptations should be carried out, since different players will most probably react
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in dissimilar ways to a same adaptation. Thus, emotion-driven adaptations also
require player modelling [19], which constitute an ongoing research topic.

Alternatively, recent studies have focused on developing physiological mod-
els of the player’s fun level. Using Assassin’s Creed video game series, it has
been demonstrated in previous phases of the FUNii project that fun variations
were detectable through players’ physiological signals and behavioural cues (i.e.
physio-behavioural measures). Using the continuous fun rating (Fun Trace) pro-
posed in [20], Clerico et al. [21] and Fortin-Cote et al. [22] have trained a super-
vised machine learning model that detects player’s fun changes throughout a
game session, making possible the continuous monitoring of the player’s fun. To
train this model, they used the FUNii Database, which contains the physiological
and behavioural data along with subjective Fun Traces of 218 players, totalling
over 400 game sessions.

Monitoring fun using physio-behavioural modalities rather than post-game
questionnaires provides continuous assessment of player experience in real-time,
without disturbing gameplay. Furthermore, modelling player enjoyment directly
from physiology, instead of modelling emotions from physiology, as in most works
in the literature, circumvents the problem of having to provide a model that
maps emotions to player enjoyment afterwards. Finally, monitoring the player’s
fun level gives insight into what game events likely yielded increases or decreases
of a player’s fun during a game session. This kind of information can then be
used to build, in real-time, a model of players’ preferences.

The FUNii project aims at developing an adaptive gaming system that uses
a physio-behavioural model of fun (heart rate, respiratory activity, skin con-
ductance, eye-tracking and head movements) to detect and maximize players’
enjoyment in real-time. The first phase of this project was conducted in [20–22]
and aimed at designing a PBMF and involved training supervised classification
models on over 200 video game players’ physio-behavioural data. This paper
presents the second and third phase of the FUNii project, which focus on inte-
grating and testing the effectiveness of the system inside an adaptive game.

This paper investigates the use of fun detection to model player’s preferences
in real-time using physio-behavioural modalities in the context of an adaptive
game. The goal of this paper is two-fold. First, we test the reliability of a Physio-
logical and Behavioural Model of Fun (PBMF), trained on 218 players in previous
works, to model player’s preferences using gameplay events and according to a
predetermined stereotypical model of players. Secondly, as a proof-of-concept we
use the inferred preferences to tailor the gaming experience and test which of
two versions of the same game (an adaptive and a non-adaptive one) is perceived
as more fun by the players.

2 Method

Participants were invited to play missions of Assassin’s Creed: Odyssey that
were custom-built by Ubisoft Québec. They first played a baseline mission fol-
lowed by two variants of a second mission, one predicted by the model to be
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the player’s preferred one and the other, the least preferred one among three
possibilities. Their level of fun was measured subjectively afterwards using both
questionnaires and the Fun Trace tool in order to determine whether the player’s
preferred variant of the mission could be correctly identified by the PBMF and
gameplay events.

2.1 Experimental Design

The participants played a baseline mission during which they were exposed to a
mix of three different styles of gameplay, namely Fight, Exploration and Stealth
gameplay styles within the same game (Assassin’s Creed: Odyssey). Each style
respectively implied to: fight one or more enemies (Fight), explore the game
world to discover cues or just wander (Exploration), and sneak around enemies
while trying to remain unseen (Stealth). Those gameplay styles were detected
by the game itself and were based on ingame events such as entering combat,
moving crouched and the like. If the game character was not doing an action
associated to fight or stealth, it was classified within the exploration category.
While playing, fun increases were detected based on physiological signals in real
time using our PBMF previously trained on 218 participants during prior phases
of the project [21,22]. At the end of the baseline mission, the player’s preference
levels for each gameplay styles were compiled by a process further detailed in
Sect. 2.6. Those preferences levels allowed us to infer the most and the least
preferred gameplay style. Following the baseline mission, players were asked to
play two variants of a second mission in a counterbalanced order: one tailored
to their most preferred gameplay style and one tailored to their least preferred
one.

2.2 Participants

A group of 39 (5 women) participants aged between 20 and 28 years old (M:
23, SD: 2.5) were recruited through Université Laval’ student email list as well
as Ubisoft Québec player database. Selected participants reported having no
diagnosed mental illness, cognitive, neurological or nervous system disorder, nor
any uncorrected visual impairment. They also needed to have played the previous
instalment of the Assassin’s Creed series: Origin. This was required so that all
participants would be already familiar with the game controls and new mechanics
introduced in this opus, which are to a great extent the same as in Assassin’s
Creed: Odyssey, and would not have to learn them before the experiment.

2.3 Material

Participants played a custom-built version of the most recent opus of the series
Assassin’s Creed: Odyssey, which was not released to the public at the time of
the experiment. A total of 4 custom missions were developed by Ubisoft Québec
developers: a baseline mission and three variants of a second mission, namely



18 A. F. Côté et al.

Table 1. Missions tested in the experiment along with their descriptions. Each variant
was designed to fit one of the 3 stereotypical preference profiles, while Baseline mission
presented a balanced mix of fight, stealth and exploration game events.

Mission name Description

Baseline In this mission the player is tasked with stealing an object
from a camp somewhere in the game world. To this end,
the player has to explore the environment to find the
camp, sneak around (Stealth) and fight his/her way to the
object. It therefore contains all of the three types of
gameplay studied

Fight variant The player is tasked with finding a spy. Finding direction
to the spy is not difficult and the challenge resides in
defeating groups of enemies, as well a stronger enemy
(“Boss”) guarding the spy

Stealth variant The player is tasked with finding a spy, but his location is
unknown and the player has to sneak into a heavily
guarded fortress to find a map containing the location of
the spy. Fighting is required only if the player is detected

Exploration variant The player is tasked with finding a spy, but through a trail
of clues that leads to exploration of the player’s
surroundings. Little to no fighting is required

a fight tailored mission, a stealth tailored mission and an exploration tailored
mission. Summary of the mission’s objectives are presented in Table 1.

Physiological and behavioural measures were recorded during every mission
by a Biopac MP150 system at a sampling rate of 100 Hz and the Smart Eye
Pro eye-tracking system at a sampling rate of 60 Hz. Measurements details are
presented in Table 2. Also, a webcam was used to record video of the participant
and the OBS Studio screen capture software was used to record gameplay.

2.4 Fun Assessment

For this experiment, 3 methods allowed to assess subjective fun and gameplay
style preferences during each mission: Fun Trace, fun assessment questionnaire,
and gameplay preference questionnaire. First, Fun Trace, which is a continuous
rating (analogue scale from −100 to 100) of fun throughout the whole game
session, was recorded after a mission playthrough. The Fun Trace homemade
software, which is similar to GTrace [24], shows participants their gameplay
recordings while also presenting a scrolling analogue trace as a visual feedback
of their fun annotation. Participants controlled the Fun Trace through a physical
control knob: the PowerMate USB from Griffin technology. Figure 1 presents the
application as well as the control knob.

One thing to note is that when participants turned the knob to a value
below 0, the scale turns red, while it is green otherwise, making a clear demarca-
tion between positive and negative values. Also, the concept of “fun” itself was
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Table 2. Physiological measures recorded during experiment. ECG, RSP and EDA
were recorded using a Biopac MP150 (with sampling rate of 100Hz), while a Smart
Eye Pro system (60 Hz) was used for ET and HM.

Physiological signal Details

Cardiac activity (ECG) Recorded using an electrocardiogram in lead
II configuration

Respiratory activity (RSP) Recorded using a respiration belt transducer
placed around the participant’s chest

Electrodermal activity (EDA) Recorded on the left thenar and hypothenar
eminences of the left hand using exosomatic
recording with direct current [23]

Eye-tracking (ET) Measurements include pupil size, blinks and
fixations durations and saccades counts
along with onscreen gaze intersections

Head movements (HM) Recorded in six degrees-of-freedom

deliberately left undefined (to gain insight into participants’ own conceptions of
“fun”). During Fun Trace recording, the playback speed of the video is set to
1.5× in order to minimize task boredom, which could affect validity of the Fun
Trace ratings.

Fig. 1. The fun trace application

The second subjective fun assessment was through questionnaires using a six-
point Likert scale. The first fun related question was asked after each mission:

Question 1. How pleasant was this mission?

The second question was asked at the end of the two mission variants:

Question 2. What version of the mission did I prefer?
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The responses ranged from 1 to 6, 1 signifying that the first mission was strongly
preferred and 6 signifying that the second mission was strongly preferred. The
use of a six-point Likert scale forced participants to make a categorical choice
between the two variants.

Finally, to get a self-reported measure of the gameplay style preferences
(fight, stealth and exploration) of the participants, they were asked, at the end
of the study, the following three questions to answer on a six-point Likert scale:

Question 3. I prefer the fighting gameplay style, meaning that I prefer direct
confrontations with the enemy.

Question 4. I prefer the stealthy gameplay style, meaning that I prefer moving
stealthily while avoiding direct confrontations.

Question 5. I prefer the exploration gameplay style, meaning that I prefer to
explore the world around to find the best path and hidden treasure.

2.5 Experiment Protocol

The total duration of the experiment ranged between 2 h and 30 min to 3 h
and there was a 20$ compensation for participating in the study. Participants
were first welcomed and invited to sign the required agreements. Electrodes for
the Biopac MP150 system were placed before participants sat at the computer.
They were asked to fill out a profile questionnaire which included questions about
their gaming habits, self-reported skill level and favourite types of game. The
calibration phase of the Smart Eye Pro software was then performed. Afterwards,
baseline physio-behavioural signals were recorded for 30 s and participants were
asked to remain still while looking at a fixation cross. Participants were then
presented with a tutorial that served only as a quick refresher since they were
already familiar with the last instalment of the Assassin’s Creed series, where
controls were very similar. Participants were then presented with a training
mission, where they had to fulfill a set of goals that insure that they possessed the
minimal abilities to succeed in the following missions. A schematic representation
of the following phases of the experiment is shown in Fig. 2 to help visualize
the process. Following this mission, participants played the baseline mission,
where they experienced the three types of gameplay. Subsequently, they used
the Fun Trace app to generate a Fun Trace for the baseline mission, which
was used as a “ground truth” to assess the validity of the inference afterwards.
They then played a first variant of the second mission –the variant they prefer
(counterbalanced)–, responded to Question 1 and used the Fun Trace app. They
then played the second variant of the second mission, responded to Question 1
again and used the Fun Trace app for the last time. Finally, they were asked
to fill the gameplay style preferences questionnaire including Questions 2–5.
Participants were then debriefed and given monetary compensation.
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Fig. 2. A schematic representation of the experimental procedure.

2.6 Profiles Generation

Participants’ profiles were generated through detection of their fun increases
during the baseline mission using the PBMF. This mission gave players the
opportunity to experiment with each of the three gameplay styles. Figure 3 dis-
plays a summary of the relative amount of time participants experienced each
style. One thing to note is that time spent under the fight style was lower than
exploration and stealth and that is a consequence of the game architecture: fight
sequences are inherently shorter than the two other gameplay style sequences.
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By contrasting the rate of fun increases (amount of fun increases divided by
time in gameplay style) for each gameplay style, the preferred style could be
predicted. The rate of fun increases was used instead of an average of the fun
level because of the inference algorithm, which is better at detecting discrete
increases over absolute level of fun reported with the Fun Trace.
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Fig. 3. Distribution of the ratio of time played under each different gameplay style in
the baseline mission.

The supervised machine learning model used in this study for inferring these
fun increases has been trained to detect Fun Trace increases on 218 previous par-
ticipants who played Assassin’s Creed: Unity (2014) or Assassin’s Creed: Syndi-
cate (2015). The labelling and feature extraction are illustrated in Fig. 4.

For a single mission of the game, the 20 largest increases of Fun Trace were
identified. Two main reasons justified this method. First, using largest increases
alleviates concerns about border effects, which arise when participants hit one of
the two boundaries of Fun Trace (i.e. −100 or 100). Indeed, when this happened,
participants were forced to increase or decrease Fun Trace, which introduced
noise. Second, using increases of Fun Trace instead of the value itself is explained
by the fact that human preferences are arguably more ordinal in nature than
cardinal [25], meaning that relative levels of Fun Trace in a game session (e.g.,
going from low to high Fun Trace value) is more likely to capture relevant infor-
mation about a player’s experience than absolute Fun Trace value. With those
increases identified, a 20 s temporal window of the physio-behavioural signals
was extracted around the increases to capture its physio-behavioural signature.
Examples of constant (no changes) Fun Trace and decrease in the Fun Trace
were extracted in a similar fashion. We ended up with 7623 labelled samples,
2496 of which corresponds to Fun Trace increases, while the remaining one were
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examples of constant (2706) or decrease (2421) in the Fun Trace. Temporal and
spectral statistics were extracted from each of the physio-behavioural signal as
to compile a vector of 201 features from each sample. Using inter-participant,
meaning no samples from a single participant was used in the training of the
model used to make prediction on his/her subset of data, K-Fold cross valida-
tion was used to train the model, tune the hyper parameters and select the most
accurate model with the Scikit-learn library [26]. In this case, the most accurate
model, with an F1 score of 65% was an extreme gradient boosting classifiers
(XGBoost implementation [27]) compared to an F1 score of 56% for a Stratified
Dummy Classifier.
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Fig. 4. Examples of the fun trace labelling and corresponding physio-behavioural sig-
nals. A total of 7 significant increases in the Fun Trace are represented by a vertical
dotted line. The 20 s windows extracted around fun increases are represented by shaded
regions in each of the plot. The sample of physio-behavioural signals shown is electro-
dermal activity (EDA), heart rate (HR) and pupil dilatation (PUP).

3 Results

3.1 Validation of the Generated Profile on the Baseline Mission

In order to validate the generated profile, the profile computed by the real-time
algorithm was compared to the one computed using the actual Fun Trace of
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the baseline mission. Using the amount of fun increases in the “ground-truth”
Fun Trace for the preferred and the least preferred variants, as determined by
the model, the observed agreement was 69% (p = 0.03) between the two. This
means that the actual Fun Trace correctly showed more fun increases in the
preferred profile 69% of the time. This is statistically significant under the one-
side binomial test (α = 0.05), where the null hypothesis is that the detected
profile is random (probability of success 0.5). To further consolidate that the
detected profile was a valid one, it was possible to compare it to the self-reported
gameplay style preferences provided by the participant on a six-point Likert scale
at the end of the experiment (Questions 3–5). Results revealed that 76% of the
time, participants rated higher the preferred gameplay style detected by the
model than the least preferred one (p = 0.004) of the time, which was again
statistically significant under the one-side binomial test (α = 0.05).

The participants’ preference level for each played variants were assessed using
Questions 1 and 2. According to the answers to Question 1, participants’ most
pleasant mission variant agreed with the preferred mission as selected by the
PBMF model only 52% of the time. Similar results were observed in answers to
Question 2, which matched the preferred profile identified by the PBMF model
only 48% of the time. Therefore, both metrics did not significantly differ from
a random choice between the mission by the participants. One interesting thing
to note is that participants were not always consistent in their answers. Indeed,
preferred variant (has determined from Question 2) matched the most pleasant
variant (Question 1) only 69% of the time.

4 Discussion

A discrepancy was observed between profile metrics stemming from the base-
line mission and the profiles generated from subjective appreciation question-
naires following both variants of the second mission. There is an indication that
the detected profile stemming from the baseline mission was valid because of a
concordance with self-reported gameplay style preferences. The validity of the
generated preferences profile is also supported by the Fun Trace of the base-
line mission. This suggests valid inference of player’s preference profile from the
baseline mission, and therefore supports that our PBMF can be used to model
players’ preferences in the context of a predetermined stereotypical preferences
model. The discordance with the fun reports of second mission variants could
stem from the adaptation strategy or the measure of the response to the adapta-
tion, similar to those raised by Fuchs [28]. The adaptation strategy could be at
fault in that the categorisation of the variant of each type might be too coarse.
Indeed, while each variant was designed to favour its corresponding style, the
game did not enforce a particular way to play. For example, in the stealth vari-
ant of the second mission a participant might still tried to fight its way through
the level, which is difficult (if not impossible) and prompted the experimenter
to redirect the participant to the more streamlined path.

A failure in the measure of the response to the game’s adaptation could
also be at fault. Fun Traces are subjective, their temporal resolution is higher
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than questionnaires’, and therefore allow for a much more precise inspection of
differences in game experience between each gameplay style, something that was
not reflected by answers to the questionnaire.

Furthermore, the overall improvement of game experience caused by tailoring
a single mission to inferred preferences might not be important enough to be
measurable with a six-point Likert scale, especially considering that participants
rated the mission between 3 or 5 in most cases (85% of the time). Another
possibility is that the 3-class preferences model that we used in this paper, even
though being strongly tied to our test-bench game mechanics, is too simplistic
to properly orient the adaptation process. Indeed, it is not straightforward that
a player’s preferences are fixed throughout the game [29], and it is even less
straightforward that they unfold only in one gameplay dimension (e.g. a player
that enjoys Fight might as well enjoy Stealth, even if it is to a lesser extent).
Thus, a adaptive game using the same PBMF would most likely benefit from
using a game-agnostic model of player types [30].

Finally, there is also the possibility that a single adaptive mission is not
long enough to measure fun increases, but that a sequence of multiple missions
tailored to the evolving player profile might generate an adaptive game that is
perceived as more fun overall. This would necessitate further study, including
multiple, longer, play sessions with the same players as they progress through
several tailored missions.

5 Conclusion

This research is a step towards integrating real-time player modelling, using
objective measurements of players experience through physio-behavioural data,
to the design of an adaptive video game. Using real-time prediction of the fun
level of player can help steer the game towards the player preferences and even
adapt to changing preferences during gameplay. While the real-time generated
profile seems accurate under two different metrics (the “ground truth” Fun Trace
as well as self-reported profile), the adaptation strategy did not provide measur-
able improvements in enjoyment of the subsequent mission. Further work might
include investigation into which types of adaptation strategies might show a mea-
surable improvement in enjoyment. A simpler game that allows easier adaptation
to different styles might provide opportunities to test more real-time adaptation
and leverage further benefits from real-time profile generation. For example,
becoming tired of a particular gameplay style could be detected by the use of a
rolling average of the profiles allowing for varying preferences inside a mission
and more fluid adaptations.
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