
Considerations for Human-Machine
Teaming in Cybersecurity

Steven R. Gomez, Vincent Mancuso, and Diane Staheli(B)

MIT Lincoln Laboratory, Lexington, MA 02421, USA
{steven.gomez,vincent.mancuso,diane.staheli}@ll.mit.edu

Abstract. Understanding cybersecurity in an environment is uniquely
challenging due to highly dynamic and potentially-adversarial activity.
At the same time, the stakes are high for performance during these
tasks: failures to reason about the environment and make decisions can
let attacks go unnoticed or worsen the effects of attacks. Opportunities
exist to address these challenges by more tightly integrating computer
agents with human operators. In this paper, we consider implications
for this integration during three stages that contribute to cyber ana-
lysts developing insights and conclusions about their environment: data
organization and interaction, toolsmithing and analytic interaction, and
human-centered assessment that leads to insights and conclusions. In
each area, we discuss current challenges and opportunities for improved
human-machine teaming. Finally, we present a roadmap of research goals
for advanced human-machine teaming in cybersecurity operations.

Keywords: Cybersecurity · Cyber · HCI · Teaming · Interaction ·
Sensemaking · Situational awareness · Artificial intelligence

1 Introduction

With ever-increasing reliance on networked information systems, cybersecurity
is a critical component of almost every military, government, and private-sector
organization. As organizations deploy new technologies for their respective mis-
sions, and adversarial capabilities advance, it is clear that the goal of cyberse-
curity must be to maintain a strong defensive posture and effectively resolve
incidents, rather than achieve some level of security and move onto the next
goal. In general, this maintenance process involves mitigating vulnerable sys-
tems (including tools, people, and workflows), as well as continually observing
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and analyzing the environment for activity that might enable—or be evidence
of—exploitation of both known and unknown vulnerabilities.

In the event of a security incident, analysts must determine a benign cause
or understand the extent of malicious activity, identifying any adversary and
their goals, their capabilities, and the intended target effects [4]. The addition
of an intangible, logical cyber environment creates new complexities for ana-
lysts compared to physical security domains. For example, traditional physical
domains have ecological and contextual anchors that play a role in decision-
making processes, helping with validation and verification of events and courses
of actions [24]; however, cyber environments lack easily observable anchors. Envi-
ronments can also change rapidly and signficantly over time with few physical
constraints, and change is typical even under normal conditions. To make mat-
ters worse, adversaries may take steps to hide evidence of their activities. As
a result, it is difficult to design and deploy any “canary in the coal mine” for
security analysts that is reliable, easy to observe and interpret, and suggests a
clear follow-up response.

In fact, analysts’ insights about a current security posture are primarily
guided through interactions with data and mediated by computer systems, mag-
nifying the importance of Human-Computer Interaction (HCI) challenges in this
domain. Security analysts often are responsible for tasks that are very cognitively
demanding: collecting, analyzing, and interpreting large, dynamic volumes of
data to confirm the presence of a threat [11], while at the same time unable
to prove an environment is safe with total certainty. Improved coordination
between humans and machines is a promising approach for addressing these
challenges but is not well understood in the cyber domain, where analyses are
highly exploratory and failure to arrive at clear, justifiable conclusions is costly
(e.g., failure to halt an ongoing attack).

In this paper, we explore ways to apply or enable Human-Machine Teaming
(HMT), where analysts work alongside machines responsible for some duties or
sub-tasks traditionally held by humans, for cyber defense. Specifically, we focus
on analysis and monitoring practices in cyber defense, rather than the secu-
rity of individual systems, which may highly specific to individual environments.
For simplicity, we consider machine teammates in the form of software agents, or
intelligent components within software applications, rather than physical devices
(e.g., robots). Our goal is to understand how current challenges that analysts
face could significantly benefit from using machines for Intelligence Augmen-
tation (IA) of analysts, or as Artificial Intelligence (AI) systems that interact
with analysts after performing tasks autonomously. We explore the following
questions:

– What human-centered challenges exist when performing tasks with existing
tools and analytics for cyber defense?

– What potential benefits can be gained from improved HMT and IA/AI during
these activities?

– What are high-impact research directions that could enable these benefits?
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While HMT has been studied in past systems—notably, where humans have
supervisory control over unmanned vehicles [5,25,28]—it has not been stud-
ied extensively in the cyber domain. One reason could be that past HMT
research assumes humans can act as supervisors who can verify and re-vector
their machine teammates as needed; however, unlike vehicle control or similar
applications, it is non-trivial for an analyst to supervise in a traditional sense—
primarily through observation of another’s activities—and verify the behavior of
an analytic or agent in the cyber domain. As such, we imagine that successful
HMT in cyber is as much about effective bilateral communication of complex
findings as it is about task delegation or instruction.

In order to understand how HMT can improve cyber defense, and how to get
there through novel HCI and security research, we contribute a set of top chal-
lenges that occur during different stages of a data-analysis pipeline for security;
we outline opportunities for HMT in each stage; and we discuss implications and
a research roadmap that will enable these HMT opportunities. We note that the
challenges and opportunities identified are not exhaustive, but reflect key areas
for improvement based on our observations of defensive cyber operations and
analysis activities.

2 Model of Activities for Cybersecurity Sensemaking

In order to understand the state of security analysis challenges and where team-
ing can help, we consider a simple model of stages of human-initiated activi-
ties that support cyber sensemaking. Cybersecurity operations happen within a
sociotechnical system, with strong interplay between humans, technology, and
data. Roughly speaking, raw data must be collected and organized, then trans-
formed by algorithms and user interfaces; then humans discover and synthesize
knowledge and possible narratives that explain the data.

Teams or individuals performing these analysis activities may develop unique
practices over time, but some models have been proposed to describe gener-
ally what steps are involved in cyber analysis. For example, D’Amico et al. [9]
describe these security analysis activities with respect to three stages:

1. threat detection, where analysts collect and analyze primary sources of data;
2. situation assessment, where analysts bring in more data sources, and convert

the analyses into actionable knowledge; and
3. threat assessment, where analysts look across incidents, correlating with intel-

ligence, making predictions, and proposing mitigation strategies.

We note that while threat detection may begin with an alert generated auto-
matically by an analytic in the environment, e.g., from an intrusion-detection
system (IDS) like Bro/Zeek [1], these tasks are primarily driven by people. In
some ways, these tasks mirror steps taken to operationalize data for a particu-
lar use case (here, cybersecurity): from raw data to information to knowledge,
sometimes using analysis products like visualizations as inputs to later analysis
stages [6].
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Fig. 1. Descriptive model of cyber sensemaking activities at three levels: data orga-
nization and interaction, toolsmithing and analytic interaction, and human-centered
assessment.

In the remainder of this paper, we consider a model of cyber sensemaking
based on the one by D’Amico et al., but generalized modestly to underscore the
types of resources, technologies, and interfaces needed in each stage. Analysts
sometimes must pivot across tasks and hypotheses, so have we separated out
goals (which can be nested and held in parallel) from information and HCI affor-
dances. In fact, threat detection and assessment activities are highly iterative,
so analysts doing threat assessment might discover capabilities of an adversary
that cause them to go back to the detection activity. As shown in Fig. 1, our
model includes:

1. data organization and interaction, where analysts organize cyber data feeds
and perform data-wrangling activities like filtering and cleaning;

2. toolsmithing and analytic interaction, where analysts use tools like visualiza-
tions to interpret information that has been transformed by algorithms or
analytics; and

3. human-centered assessment, where people work with this information to con-
struct and communicate high-level knowledge about threats or an environ-
ment.

At each stage of this model, there are critical human-centered activities that
make use of machine interfaces and agents, ranging from graphical user interfaces
to alerting tools that run without regular human guidance. We believe many
activities can be improved beyond the current state of the art using machines
that further augment analysts’ performance, enable new analyses, or lighten
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analysts’ workloads. In the following sections, we describe existing challenges
and new opportunities in each of these stages.

3 Considerations for Data Organization and Interaction

Data organization is an early stage in the analysis pipeline that is critical for
downstream activities, like analysts assessing normal or abnormal conditions in
the cyber environment and responding. By “organization”, we refer to analysts’
ability to gather and structure data in a manner that is suitable for further
analysis. This process might also include interaction with data in order to clean,
filter, and otherwise prepare them for analysis. While some tools may be used to
interact with raw data at this stage, we distinguish those from tools developed
for analysts with the goal of extracting actionable information from the data,
which is discussed in Sect. 4.

Typical examples of raw data include event feeds from Security Information
and Event Management (SIEM) tools and databases; records of network flows;
hardware and software inventories on endhosts; and directory services for users,
among others. In order to support effective sensemaking about the security of the
environment, the data must capture the most relevant information about poten-
tial threats, and the data feeds themselves must be protected from compromise
that could poison downstream analysis.

Understanding what data must be collected and ensuring that feeds them-
selves are operational (sometimes using simple analytics or monitoring tools)
are important ongoing security tasks for cyber defenders. Due to the sensitive
nature of data collected, another consideration is that necessary data must be
available to downstream analytics and analysts, and that proper data hygiene,
like archiving and protecting confidentiality, is maintained.

3.1 Challenges

Collecting High-Integrity Data. Planning for effective collection and maintain-
ing data feeds is cognitively intensive. Along with structured information, peo-
ple form mental models of operations in the environment, as well as the needs
or mission of the environment, in order to plan for and understand sensors.
But this model might be incomplete or become inconsistent with changes over
time. Unnecessary or incorrectly-configured sensors can result in an overwhelm-
ing amount of data that is costly to manage or impacts operations—for example,
by disrupting users or reducing the performance of systems like networks or end-
hosts. At the same time, blind spots in the network might also form and result
in incomplete analyses or, worse, lead to misguided conclusions (i.e., incorrectly
“clearing” a potential attack vector that remains vulnerable or exploited).

Maintaining high awareness of operations in order to address sensor issues
cannot easily be solved with off-the-shelf solutions. Resources to acquire (or
develop) and deploy sensors that blanket the environment—and to manage the
potential deluge of data from them—can be prohibitively expensive or result in
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low signal-to-noise for later analysis. Stakeholders for an environment must make
choices about what to observe and when, using previous knowledge and intuition.
This kind of task is important enough that it was featured in the 2016 VAST
Challenge [32] and included determining which one of several data streams to
enable mid-way through the exercise, given observations about the environment
in the time leading up to the choice. It is not obvious how to construct automatic
decision systems for these cyber choices.

Organizing Information. Cleaning and organizing raw data into useful informa-
tion schemas is a critical part of the early stages of data analysis, and is both
time consuming and demands advanced expertise. In some cases, this “data
wrangling” can account for 80% or more of analysts’ time [19] and cannot easily
be outsourced, as it requires both domain knowledge and technical proficiency
akin to programming [16]. Even aligning different time-series data, which might
appear to be an easy task, can be challenging due to how different cyber data
types are reported. For example, vulnerability reports are snapshots at a set
point in time, and streaming data sources operate in real-time. Other activi-
ties require understanding the meaning and utility of data later in its lifecycle;
for example, data might be removed due to resource requirements or hygiene
practices, and one must decide what is safe to purge without impacting ongoing
or future analyses of security incidents. Stakeholders for these data usually rely
on automated approaches using simple heuristics (e.g., log rotation) due to the
volume and rate at which new data are collected, even if there is some chance an
old record might be needed at a later time. Furthermore, conventional ways of
indexing records by time make it difficult to understand potential relationships
of interest between aged-out data and preserved records.

Managing Access. Protecting confidentiality of data is challenging. Providing
too much access to data can threaten security broadly, while providing too little
access can prevent human defenders or analytics from observing and address-
ing potential security issues elsewhere in the environment. Even methods that
aggregate data from multiple source might reveal sensitive information or allow
it to be inferred. Current solutions to these problems usually involve both peo-
ple, policy, and automated systems, where usability at the interface is a critical
concern.

Ensuring that data is available only to those who are authorized and need
it typically involves using access-control mechanisms that rely on curated rules
that map user roles or attributes to needed resources. Methods for authoring
rules that are usable by human operators have been studied in prior work [3,20],
but less understood is how best to inform rule curators about access needs in the
network as they evolve over time. Users requesting additional access may not
understand the access-control system well enough to clearly state their needs.
Others who no longer need access to resources may never proactively request
removing this access if keeping it does not hinder their new objectives. Finally,
in cases where access control is not enforced but sensors can assess risk or detect
violations of confidentiality (e.g., identifying ongoing or completed exfiltration
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from data stores), presenting actionable and timely information can be difficult:
alerts can overwhelm analysts or provide too little precision to be useful.

3.2 Opportunities for HMT

Automatic Assessment of the Data Platform. Machines are particularly well-
suited for workloads that involve monitoring changes in data volume or velocity,
so there may be opportunities to use machines to identify where additional sens-
ing might be desired based on statistical patterns—even if understanding the
nature or intent of these changes must be determined by human teammates.
There is a need for visual analytics that present well-justified recommendations
for data handling and provide what-if analysis capabilities for these recommenda-
tions. Implementing changes to sensors is another area where HMT is important,
because the autonomy of a machine for deploying sensors could be limited by
its physical interface. For example, installing new sensing applications into a
network controller for a software-defined network is currently feasible by a soft-
ware agent, but installing physical proximity card readers would require human
assistance or robotics.

Regular testing of sensors and the data platform in the environment, which
might otherwise be tedious or difficult to repeat without human error, could
be performed routinely by a machine teammate. An example might be reg-
ularly initiating events in the sensed environment, like network flows, that are
expected to be detected and recorded in data storage, then verifying these records
as expected. The machine could escalate alerts about unexpected behaviors to
stakeholders quickly, or maintain a digest of normal test outcomes in order to
avoid alerting human teams without any required action. This process parallels
current approaches for automated testing and building of software tools, among
others; however, determining that an outcome is normal in the environment is
likely to be more involved than running unit or integration tests in controlled
test environments.

Shared Representations of Mental Models and Goals. Research toward devel-
oping comprehensive sets of structured data types, tasks, and goals for cyber
analysis could facilitate closer interaction between machines and humans, for
whom externalizing mentals models is typically very difficult. Heer notes that
shared representations let both parties “contribute to, and adaptively learn from,
solutions to shared problems” [16]. Enabling the analyst to more easily ver-
ify the representations a machine is working with also builds trust. We believe
these representations could also help provide domain-specific ways in which data
feeds might be organized—for example, to more automatically associate incom-
ing observations or removed data with ongoing analysis cases.

Smart Data-Access Monitoring and Control. Another opportunity exists to
leverage machines for fine-grained access-control maintenance. Regularly revis-
iting and verifying resource needs for users or agents (e.g., through interactive
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confirmation) in an environment can be tedious or error-prone for human oper-
ators if permissions are more fine-grained and change periodically, but machines
could perform this ably. Furthermore, machine teammates could integrate ana-
lytics that enable these interactions to be more targeted, like cross-referencing
a user’s current access authorizations against their actual use based on obser-
vations in the environment. This use of HMT might free operators in charge
of access control from performing maintenance tasks (e.g., or enable this prac-
tice) and providing more time for complex access-control strategies, like policy
development or network management and segmentation.

4 Considerations for Toolsmithing and Analytic
Interaction

The next level in our sensemaking pipeline involves people using interactive,
analytic applications like visualizations to analyze the cyber data, as well as the
developers who produce these tools. For some types of analysis, and for analysts
with programming or scripting proficiency, the same person may assume both
roles. In other cases, developers must understand enough about the available
data and how analysts might use it to design effective tools.

Machines play a role here primarily as tools that transform and present
data to human analysts. These tools act more as “teammates” in HMT as they
perform tasks that go beyond what is precisely directed by their user. Some
machines may initiate interactions with humans independently, for example by
identifying patterns that would be difficult for an analyst to notice and escalating
alerts for people to explore and verify. Other machines may be purely reactive,
running analytic routines on data after analyst-driven interactions (e.g., visual
analytics). In both cases, machines must be trusted by their teammates and
communicate or display information effectively; otherwise, the added work or
liability—if findings are not reliable—of using these machines threaten their
long-term adoption by analysts.

4.1 Challenges

Trusting Integrity of Analytic Tools. Tools that operate with integrity in this
stage transform and present information to the analyst in a way that does not
cause a misleading interpretation about what is happening in the environment.
Buggy implementations of tools threaten integrity, as do poor interface designs
or visual encodings of data. Information displays must be legible so analysts can
decode the information, interpret it, and integrate it into a larger narrative.

The ability to trust that a tool has integrity is critical, but it is often impos-
sible or impractical to verify a tool’s correctness based on its source code. Spot-
checking that an analytic produces the expected output is difficult in practice
(outside of testing) where ground truth is expensive to learn and might require
additional tools that must be trusted themselves. As a result, analysts use tools
mindful of the fact that they could be misleading. In fact, visualizations can
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be misleading, unintentionally or even deliberately, by using encoding methods
that subvert an analyst’s ability to draw conclusions from the data [29]. In cases
where the encoded data has high volume or velocity, as in streaming analytics,
an analyst can also be misled if the tool minimizes or hides relevant information
before it is decoded by the analyst.

Anticipating Effective Tool Designs for Humans. Tool developers must under-
stand enough about human capabilities to build tools that are legible and inter-
pretable. This means designing tools that work effectively in consideration of
perceptual and cognitive factors that could affect an analyst’s ability to decode
information from the interface, which could be text-based, a visualization, or use
another output modality like sound.

Some design techniques have been developing as a work-around for percep-
tual limitations. For example, in many use cases of visual analytics, the number
of events in a dataset exceeds the number of pixels available to encode the data.
(In cybersecurity, sensors may collect data over months or years that could
be relevant to a single incident, such as a sophisticated network intrusion.)
Existing visualization approaches for handling this volume on-screen include
Focus+Context techniques [7,21], which combine an overview containing broad
context with user-directed exploration for fine-grained information, and inter-
active views that support Shneiderman’s mantra of “overview first, zoom and
filter, then details-on-demand” [30]. In cases where a subset of data is presented,
it is also important that a tool is clear about what data are excluded.

Model-driven visualization design—by modeling tasks, humans, and data,
and making decisions based on simulations of user performance—is a compelling
idea to account for human factors during toolsmithing. However, there are few
time-tested human performance models that are mature enough to guide design
decisions. Principles like Fitts’ Law [22] and design-evaluation tools that utilize
cognitive modeling (e.g., CogTool [18]) can guide simple UI design decisions (e.g.,
optimizing mark size or position), but generally modeling visualization effec-
tiveness is notoriously difficult, especially for exploratory data analysis (EDA)
tasks [13]. As a result, design practices often rely on gaining intuition about the
application area (i.e., cybersecurity) and iterating with expert users to refine
tools, which can be time consuming if done with proper rigor.

Designing for Partial Analysis and Knowledge Transfer. During security opera-
tions, analysts often must hand off findings to another person (e.g., during shift
changes) for continued exploration and as context for future events. One obstacle
is the difficulty of communicating one’s mental model of a situation or environ-
ment. Tools are needed that go beyond exploratory data analysis (EDA) and help
analysts compose narratives that include hypotheses and findings, estimates of
uncertainty, and an accounting of what data was analyzed or not. Maintaining
rich histories of these analysis records could pose technical challenges. Partial
analysis products may need to be compressed or updated when later information
is available.
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4.2 Opportunities for HMT

Provenance Tracking in Visual Analytics. We believe an important step for
HMT is designing mechanisms for analytic provenance in order to support trust
in machine teammates and their products. Analytic provenance is tradition-
ally about understanding through interactions with analysis tools how humans
arrive at insights [26]. This is very important in order for analysts to establish
trust in others findings. Machine teammates must also endeavor to provide evi-
dence that their analyses have been executed in correct and justified ways, in
order to get buy-in from human teammates or supervisors about conclusions
or recommendations. Ways of building provenance tracking into tools and algo-
rithms to use representations of provenance (i.e., usually large graphs) are rich
areas to explore, especially since complex analytics might involve machine learn-
ing or other approaches that are difficult to explain on a step-by-step basis.
Make machine learning “explainable” to the analysts who depend on them in
HMT—not just model developers and toolsmiths, as recent work has focused
on (e.g., [35])—is an important future goal. Part of communicating provenance
also includes effectively describing uncertainty in the analysis [36], which is an
ongoing research area in information visualization.

Living Notebook and Narrative Visualization. Building on provenance, there is
an opportunity to use visual analytics that capture both human inputs and
findings by machine analytics into a narrative that can adapt over time. This
would support ongoing analyses and knowledge transfer between teammates with
less context about previous events. New tools like “living notebooks” [8] that
evolve over time are for potential method handling streaming data, which must
be quickly integrated into existing cases or analyses. Annotations and feedback
provided by humans could be used to refine the narrative, while machines could
learn from this feedback to better handle future data.

User-Performance Modeling for Cyber Tool Design. Modeling how well a visu-
alization or other tool might support an analyst’s cyber task could supplement
existing ways for designing effective tools in this domain, which include design
studies (see [23] for examples) that are valuable but expensive to perform. As we
mentioned earlier, modeling tools can be used to get fast, quantitative predic-
tions on performance indicators like task speed. However, effectively modeling
cyber tasks requires more research because they tend to encompass both rou-
tine interactions (like pulling up and searching logs) that are straight-forward to
model, as well as exploratory or less-structured brainstorming tasks. Reusable
modules that instrument user interfaces, both for downstream model fitting and
other performance monitoring, would be useful for visual analytics and other
HMT interfaces.

5 Considerations for Human-Centered Assessment

While advanced technologies may be responsible for collecting, reducing, and
processing data during initial analyses, human analysts are the primary drivers
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of cybersecurity understanding and sensemaking today. They interact with ana-
lytics and other analysts to produce information and knowledge for the purpose
of situational awareness and decision making in the organization. To be effec-
tive at this stage, analysts must be able to create linkages between information
about the network, the world, and their team [14]. This information must be
correlated with external information on emergent threats and threat actors, as
well as known attack signatures. Finally, analysts must also be able to fuse and
share this information with their local and broad organizational teams to create
a holistic picture of security across the organization [31].

5.1 Challenges

Multi-source Information Fusion. At the individual level, analysts must corre-
late information between multiple sources to produce knowledge, and communi-
cate this knowledge to their superiors. As information and knowledge are passed
up through the organizational hierarchy, findings from multiple analysts must
be translated from discoveries to insights, and eventually into a broader pic-
ture. This process of information fusion lets analysts achieve improved accuracy
and understanding, compared to looking at an individual source of information.
The fusion occurs over five levels: data assessment, object assessment, situation
assessment, impact assessment, and process refinement [34]. At the analyst level,
this is often discussed as “hard” information fusion, in which the focus of data is
from hard sensors collecting objective information. As information is moved up
the organization, the fusion moves to “hard/soft” where the hard information is
fused with subjective information, which might be more uncertain, inaccurate,
or subjective [15]. At all levels, information fusion is a cognitively-demanding
task that requires memory, merging and conflict resolution, and de-confliction
to ensure that final conclusions are accurate and actionable.

Information Sharing Across Organizational Structure. As analysts process infor-
mation and reveal incidents or other status indicators, they are responsible for
communicating this information up the chain for the purpose of awareness and
decision making. Before doing so, the analyst must make a judgement call of
whether or not a piece of information should be shared. If the analyst shares too
much, she may cause information overload to her superiors; on the other hand,
if she does not share enough, this degrades the situational awareness of the orga-
nization. The decision can be stressful or cognitively taxing. Research has shown
that humans are more likely to share commonly-known information, while high-
value, unique information they possess is not communicated [17,33]. At each
level of the organizational hierarchy, information and knowledge is further dis-
tilled, fused with other information, and summarized. Where an analyst may be
responsible for assessing an individual security event, his supervisor will have to
understand the interdependencies across multiple events, look for patterns, and
understand how to allocate resources.
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Performance Measurement. Individual and organizational behavior requires
monitoring and self-regulation of their actions, in order to adjust for emergent
threats or to improve their overall performance. Regulation of behavior based
on performance is a meta-cognitive task, in which an analyst must monitor
her own cognitive behavior for task-specific knowledge, her understanding of
that knowledge, and her affective responses to the activity [10]. Understanding
one’s performance and competencies in a particular area is a critical element
in enabling trust and team dynamics [2], and is useful in assessing performance
of individuals and teams. Additionally, without such information, supervisors
cannot correctly allocate resources or balance the workload across their teams,
which could help increase team performance [12].

5.2 Opportunities for HMT

Intelligent Information and Context Fusion. Information fusion requires pulling
and aggregating findings from multiple sources, both hard (e.g., data) and soft
(e.g., analyst reports) to form a summative understanding of the broader organi-
zational picture. With tools that help create linkages between the information an
analyst receives, the sources of the data and their trustworthiness and constraints,
analysts can build more context around the information they are provided. Cur-
rent workflows for building context like this can be ad hoc and use many tools. Uni-
fied interfaces that help synthesize and share knowledge and hypotheses between
team members could lead to more systematic or streamlined analyses.

We previously discussed the difficulty in sharing information across analysts
and the organizational hierarchy. Without context (like threat or analysis pri-
orities that are communicated top-down by decision makers), it is difficult to
know what information to share upwards; but without more information, it can
be difficult to refine or understand some contexts. Natural language process-
ing could help this issue by helping making it easier for analysts to construct
context. As mentioned earlier, tracking sources of data and analytic provenance
can help a person receiving synthesized information to learn how it was gener-
ated. This could help reduce potential data overload, allowing analysts to better
understand and communicate their needs, and ensuring that information that
needs to be communicated and shared.

Performance Monitoring Capabilities. Current research in neuroergonomics and
physio-behavioral monitoring is making significant advances in developing met-
rics of fatigue, stress, and other state-based metrics that are linked to human
interaction and performance while using technology [27]. Machines can use this
information to augment a supervisor’s intelligence and assist, or automate, tasks
like load scheduling, resource allocation, and workload balancing across the team.
Additionally, performance-measurement outcomes may be used to communicate
information about analysts objectively up the chain; this can aid a supervisor
in composing teams and allocating training. Similarly, there is potential to use
HMT in situations where machines passively observe individual differences and
strengths, and provide suggestions to leadership for how best to deploy teams.
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Table 1. Research roadmap for improved HMT in cybersecurity

When Research goal D T HCA

Near Methods for guiding data collection; curation assistance for
those with little or no developer experience

� � �

Task modeling and representation for cyber defense
operations

� � �

Organizational Knowledge Management capabilities for
intelligent information sharing

� � �

Explainable machine learning (ML) for analytic developers � � �
Mid Improved visualization and analytics that provide distilled

narratives of multi-dimensional change over time
� � �

Accurate models for human performance in cyber defense � � �
Human cognitive and affective state detection � � �
Tools for tracking and communicating analytic provenance � � �
Natural language understanding for precise analysis tasks
and wrangling data

� � �

Support for externalizing and sharing mental models of an
environment and analysis goals

� � �

Far Explainable ML available for analysts using ML-based
analytics

� � �

Human cognitive augmentation for performance
improvement

� � �

Tools for operations that adapt to individual needs and
team composition

� � �

6 Roadmap

The purpose of this paper was to present observations about the current state
of cyber sensemaking activities, their associated challenges, and suggest oppor-
tunities for HMT in this domain. We believe the security and HCI communities
can advance toward these opportunities by pursuing a research agenda at that
intersection. In Table 1, we summarize some objectives in line with this agenda.
This table is not meant to be complete or the product of a rigorous research-
space analysis; rather, it describes some milestones related to the challenges
in this paper that we think are achievable within the near (2–5 years), mid
(5–10 years), and far (10–20 years) time frames. Each direction corresponds to
one or more of the sensemaking stages discussed earlier: data organization and
interaction (D), toolsmithing and analytic interaction (T), and human-centered
assessment (HCA).

Future work in this area should not simply focus on the development of novel
tools and technologies; instead we urge researchers to take a problem-based app-
roach to addressing challenges in cyber sensemaking and analysis. Our intuition
is that this will involve more closely-integrated HMT, so we can allow humans to
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focus on tasks that leverage their strengths and improve their decision making.
New capabilities can help support provenance, correlation, and communication
across the different layers of sensemaking—enabling effective and rapid pivoting
from each phase and supporting the analysis missions for which security analysts
are responsible: threat detection, situation assessment and threat assessment. As
more of this roadmap is achieved, it is critical for researchers to maintain aware-
ness of existing and emerging challenges, ensuring that we leverage technologies
like AI/IA and HMT in an effective and strategic manner.

7 Conclusion

In this paper, we considered current challenges involved in human-centered
aspects of cybersecurity operations, focusing primarily on difficulties in ana-
lyzing and communicating findings about complex cyber environments. Many of
these challenges result from information management and sensemaking of highly
dynamic, multi-dimensional data. These activities traditionally have been driven
by humans in the cybersecurity domain, where verifiably-complete understand-
ing of an environment or incident is difficult or impossible to achieve; as such, it
is critical to have clear and justifiable partial findings, which is beyond existing
capabilities of autonomous intelligent agents. Other challenges related to human
factors arise due to the fast-changing and cognitively-demanding work of security
analysts.

To address the challenges, we identified opportunities for improved interac-
tions and teaming between security analysts and machines. These opportunities
exist in each of three stages of a cybersecurity-analysis pipeline model, includ-
ing: (1) data organization and interaction, (2) toolsmithing and analytic inter-
action and (3) human-centered assessment at the level of individuals up through
groups and higher-level stakeholders in an organization. Many of these opportu-
nities must be enabled by new research directions in the security and HCI fields.
Based on this, we outlined several priorities for researchers.
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