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Abstract. To support training for offensive and defensive cyber operations, we
focus on giving the trainee a realistic ecosystem to train in. This ecosystem
includes models of attackers, defenders, and users.
The high-level goals for adaptation in this ecosystem are of two types: realism

in behavior and tailoring of training. In terms of realism, real-world cyber
operations are highly adaptive. Attackers constantly innovate new attack tech-
niques and adapt existing techniques to take advantage of emerging vulnera-
bilities. Defenders must adapt to ever-changing attack tactics and vulnerabilities.
Users continuously adapt to rapidly changing technology. A realistic training
ecosystem requires those adaptations to be reflected in the models of the syn-
thetic actors. In terms of tailoring, training systems often require ecosystem
actors to step outside of what would “realistically” happen and instead create
artifices to focus the trainee’s experience on particular learning objectives.
In support of these high-level adaptation goals, the CyCog (CYber COGni-

tive) framework currently supports three types of adaptivity. These include
adaptation of tactics and techniques (for example, innovating a new attack or
defense), adaptation of level of sophistication (for example, to make an attacker
more or less aggressive, or to limit or expand a defender’s awareness to focus
training), and adaptation of personality parameters (for example, to tune the
preferences of various types of users in the ecosystem).
To maintain maximum training flexibility, we use a mixed-autonomy

approach that allows all forms of adaptation to be controlled on a spectrum
from automated tuning to manual manipulation by human instructors.

Keywords: Cyber operations � Training � Cognitive modeling �
Adaptive behavior � Adaptive instruction

1 Introduction

We have developed the CYber COGnitve (CyCog) framework to, among other reasons,
add realistic decision-making models to the “ecosystem” used in cyber-operations
training environments. The core of CyCog is a set of cognitive models that can play the
roles of cyber attackers, defenders, or users, to various levels of fidelity. In addition to
the cognitive models themselves, CyCog incorporates a generic framework for simu-
lating applications and networks, as well as for integrating with real applications and
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networks. Specialized components of CyCog focus on how best to represent the
common knowledge and situation understanding shared by cyber operators.

One of the goals of the CyCog project is to provide training systems with a rich
ecosystem of realistic actors, so defensive operators can train against threats as they
appear “in the wild”, rather than simply against individual tactics and techniques in a
classroom or lab setting. The use of cognitive models provides two primary
enhancements to the training experience. First, our cognitive models have goals, and
the tactics, techniques, and procedures (TTPs) they use are consistent with those goals.
This provides opportunities for diagnosis, attribution, prediction, and preemption that
would otherwise be absent from a training experience. Goals can be long term,
allowing CyCog to model Advanced Persistent Threats (APTs), as well as less per-
sistent types of threats, such as “script kiddies”. Second, our cognitive models include
knowledge, situation-understanding capabilities, and learning mechanisms that allow
them to adapt in their responses to defensive measures. Adaptive attackers provide the
opportunity for a much richer and more realistic experience in training than current
textbook and classroom activities provide, and they provide a more cost-effective
training option than exercises that employ human experts as role players. We have also
integrated the CyCog agents with a form of Dynamic Tailoring, which adapts agent
behaviors to support training goals. This paper describes the CyCog framework and its
application to training, with a focus on forms of adaptation that we are incorporating
into the cognitive models and training systems.

2 Cyber Operations Training

Cyber operations present a persistent and evolving threat to military and civilian
information systems. Both the Department of Defense [24] and the Office of the
Director of National Intelligence [25] have ranked cyber warfare as our top national
security concern. Department of Homeland Security Secretary Nielsen has stated that
“cyber threats collectively now exceed the danger of physical attacks” [22]. In addition
to threats to our military forces, cyber attacks pose domestic infrastructure and eco-
nomic threats [27]. Attackers continually evolve their tactics, techniques, and proce-
dures (TTPs) to exploit emerging vulnerabilities so they can exfiltrate, manipulate, or
deny information. Would-be cyber attackers are constantly changing their attack vec-
tors to take advantage of security lapses by human resources and the latest vulnera-
bilities in information technology. These activities are guided by cognitive behavior
that includes a variety of types of goals and expertise: script kiddies, ideological
activists, investigators, financial criminals, intelligence agents, or cyber warfighters
[15]. At the human, cognitive level, offense reacts and adapts to actions of defenders
[26] and users [1] that are also cognitively driven. To counter these adversarial actions,
cyber-security personnel must rapidly adapt to develop and refine their defensive skills.

A common way to support this adaptation by defensive personnel is through
training exercises within realistic environments. To be effective, these events require
intelligent, adaptive opposition forces (OPFOR), which currently requires the use of
human role players. Unfortunately, using human adversaries is not feasible to support
the scale and frequency of exercises needed to maintain a highly skilled defense,
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because these skilled OPFOR are scarce and expensive resources. In addition, a
maximally effective training paradigm adjusts the training experience in response to the
level of performance of the trainee. Using intelligent systems to provide role players
introduces consistency and cost-effective automation across the training experiences.

Building effective training systems for cyber operations presents a suite of unique
problems:

• Offensive and defensive activity is highly interactive and dynamic.
• Cyberspace environments are defined by both their structure and the activity of all

actors operating within them. To be realistic, training environments must provide an
ecosystem of users (whose behavior can is variable and unpredictable), as well as
attackers and defenders.

• User behavior (willingly or not) can either assist or hinder the efforts of both
attackers and defenders. For example, vigilant users can provide valuable intelli-
gence, while careless users often create vulnerabilities that can be exploited.

• Cyber attackers and defenders themselves are extremely adaptive and creative. In
order to meet their objectives, they will change tactics or tools based on opportu-
nities detected in a computer network or responses initiated by adversaries or users.

These problems underscore the fact that cyber operations are a domain in which rapid
adaptivity is the coin of the realm. Effective training systems and role players must
exemplify this variability in their basic structure and their delivery of training experi-
ences. We have developed a set of cognitive models for cyber-operations training,
together with a general framework in which they operate. The CyCog framework pro-
vides the shared infrastructure for building knowledge-based agents that can play various
roles within the cyber-operations ecosystem. Individual attacker, defender, and user
models instantiate CyCog with specific knowledge bases, modes of operation, and types
of adaptivity. This paper describes three particular forms of adaptivity that we have so far
emphasized in developing CyCog models that support cyber-operations training.

3 Intelligent Systems for Cyber Training

Our team began development of a cyber attacker model in 2013. Subsequently, we
pursued projects that demanded the development of additional models of cyber
defenders and network users. Combining the models and performing several major
redesigns and refactors eventually produced the generalized CyCog framework.
CyCog-A (the attacker instantiation of CyCog) and CyCog-D (the defender instanti-
ation) are implemented in the Soar cognitive architecture [17], with associated tools
implemented in Java for a high degree of portability. CyCog agents emulate human role
players by modeling their decision-making processes using cognitive-systems design
patterns we have developed over the course of more than two decades of applied
research and development (see, for example, [8, 9, 11, 29, 30, 32]). This allows CyCog
agents to provide not just static representations of cyber operations, but generative
behavioral models that execute and interact with a network in real time.

One advantage of using the Soar architecture over some other approaches to
cognitive modeling [14] is that it incorporates decades of experience in cognitive
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research into an architecture that is reusable across new cognitive models. Soar’s
models integrate varieties of knowledge, learning, and reasoning strategies, including
semantic, episodic, and procedural memory, reinforcement learning, spatial reasoning,
and activation dynamics, as well as cognitive models that depend on situation under-
standing and interaction with complex environments [18]. Soar provides a reusable
software architecture that instantiates a unified theory of cognition, which gives CyCog
firm practical and theoretical grounding.

In the CyCog-A model (Fig. 1), knowledge is structured as composable hierar-
chical modules representing TTPs that can combine in multiple ways to support dif-
ferent situations. Combining goals and subgoals for a particular attack generates a
flexible, situation-dependent attack tree structure. As the agent attempts to achieve the
goals of its mission, it communicates its intent to an abstraction layer, which is
responsible for translating intent into real-world actions. This enables the agent to
reason over task-level goals, such as “list open ports on 192.168.1.5”, without requiring
the agent to possess system-level knowledge of how to do so. To accomplish this, the
abstraction layer determines which of its available resources are appropriate and
translates the agent’s intent into commands for those resources. The abstraction layer
supports interaction between CyCog-A and custom-built or commercial off-the-shelf
(COTS) tools to perform specific offensive actions, such as port scanning, password
cracking, or phishing. The modular nature of the toolkit facilitates the addition and
removal of tools as needed, and also provides a robust framework for configurability
and portability. Finally, a human supervisor can command and control the agent via a
CyCog Command and Control (C4) Server, which uses an abstract communication
model that currently implements HTTP and IRC support.

Fig. 1. CyCog-A framework
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CyCog agents use a key combination of situational understanding [14] and least-
commitment reasoning [33] to generate human-realistic, situation-responsive behav-
iors. Once a scenario has been configured, CyCog agents use situation-understanding
knowledge to engage with the network and begin building and maintaining a model of
the environment. This model drives the agents in the pursuit of their scenario goals and
the employment of tactics to achieve those goals. This, in turn, allows them to adapt
robustly in response to changes in the environment, including actions and responses by
other role players in the cyber ecosystem. Least-commitment reasoning (LCR) is a
process for “generating partially ordered, partially specified sequences of actions whose
execution will achieve an agent’s goal” [33]. CyCog also implements the situation-
understanding model in an external and sharable knowledge representation, which
allows multiple CyCog agents to work together. This shared knowledge representation
is stored in an Asset Database, which is currently implemented in a software database
we call the Cyber Data Repository (CyDaR). This datastore enables storing, correlat-
ing, and retrieving data from all three layers of cyberspace: physical, logical and
persona [6]. As other actors and role players take actions that change elements of the
ecosystem, CyCog agents may update their shared situation-understanding model and
revise their goals and tactics in response to the changes.

4 Adaptivity in Cyber Training

As described above, to support training for offensive and defensive cyber operations,
we focus on giving the trainee a realistic ecosystem in which to train. This ecosystem
includes models of attackers, defenders, and users. We have also stressed the adaptive
nature of cyber operations in general, as well as the need for adaptivity in effective
training.

The high-level goals for adaptation in the training ecosystem include realism in
behavior and tailoring of training. In terms of realism, real-world cyber operations are
highly adaptive. Attackers constantly innovate new attack techniques, while defenders
must adapt to ever-changing attacker TTPs, and users continuously adapt to rapidly
changing technology. A realistic training ecosystem requires those adaptations to be
reflected in the models of all of the synthetic actors. Simultaneously, we must balance
realism and trainee proficiency in order to challenge learners without overwhelming
them. Thus, any effective training environment must be tailorable in order to adapt to
an individual’s (or team’s) proficiencies, as well as to other pedagogical goals (such as
targeted lesson plans).

In support of these high-level adaptation goals, the CyCog framework currently
supports three types of adaptation. These include adaptation of tactics and techniques
(for example, innovating a new attack or defense), adaptation of level of sophistication
(for example, to make an attacker more or less aggressive, or to limit or expand a
defender’s awareness to focus training), and adaptation of personality parameters (for
example, to tune the preferences of various types of users in the ecosystem).
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To maintain maximum training flexibility, we use a mixed-autonomy approach that
allows all forms of adaptation to be controlled on a spectrum from automated tuning to
manual manipulation by human instructors

4.1 Adaptivity of Tactics and Techniques

One of the key characteristics of cyber attackers (aswell as effective defenders) is that they
are adaptive: they perceive and react to changes in their environment and they learn to
exploit the tendencies of their adversaries. While there are varying degrees of adaptivity,
any viable autonomous agentmust execute a four-phased loop: (1) sense the environment,
(2) learn what is different and/or interesting, (3) decide how to best achieve its next set of
goals, and (4) act on the environment in pursuit of those goals [20].

CyCog attacker models incorporate TTP-level adaptivity by combining a robustly
updated representation of situational understanding (stored in the CyDaR database)
with least-commitment reasoning over a modular, generative set of goals and subgoals
that fluidly implement a variety of TTPs for a spectrum of cyber-operational goals.
CyDaR represents situational understanding by integrating an ontology of cyber-
operational concepts with an application programming interface (API) for database
queries and updates. When multiple agents are coordinating, they can use the shared
database to drive adaptivity in their situation understanding and employment of tactics.
For example, one agent may remember on which hosts it implanted remote access
toolkits (RAT), while another agent notices when they stop responding to commands,
reasoning that the defender may have detected and contained the compromise.

Situation understanding is only the first half of the story for the adaptivity of tactics
and techniques. Least-commitment reasoning (LCR) is an approach to intelligent
systems that allows the system to “satisfice”, or “make the best decision in a reasonable
amount of time”. Least-commitment strategies differ from more traditional AI planning
and rule-based systems along a number of dimensions:

• Traditional AI relies on “weak methods” (logical formalism with little knowledge),
while LCR relies on significant amounts of domain-specific knowledge.

• Traditional AI downplays the role of dynamic situational understanding, while
dynamic consideration of the environment is a key part of LCR.

• Traditional AI relies on computationally expensive search techniques to generate
optimal plans and to precompute contingencies, while LCR trades off optimality for
“reasonability” and reconsiders contingencies in rapid fashion at run time.

• Traditional AI expends significant time and effort identifying a “best course of
action”, making it very expensive to change course, while LCR continuously makes
inexpensive decisions about whether to adjust or switch the current course of action.

• Traditional AI has difficulty anticipating actions that cannot be predicted ahead of
time, while LCR reduces the need for anticipatory planning.
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An LCR system implements intelligent decision making by engaging in a contin-
uously running “decision loop”. This loop must run many times per second, possibly
hundreds or thousands, depending on the application, in order to deliver responsive
behavior. Traditionally, when mapped onto human cognition, it is assumed that this
cycle should run about 20 times per second [21]. In each 50 ms time slice, the LCR
system must make incremental changes to its internal state, based on the most recent
sensed information from the environment. The LCR’s internal state consists of several
functional elements including situational understanding (represented by beliefs), goal
management (consisting of desires, which are things the agent would like to be true,
and goals, which are things the agent has decided to commit resources to achieving),
and action management (consisting of plans, which are short-term courses of action,
and individuals actions that are consistent with the current plans). Figure 2 provides an
abstract illustration of this cycle [12].

Because each individual decision is rapid and incremental, the LCR decision cycle
composes individual decisions into a course of goal-driven actions that can adapt in
small or large ways, depending on changes to the situation. The key to making rapid, but
good quality, decisions is to replace the resource-intensive search process of traditional
AI with an efficient, knowledge-intensive pattern-matching process. Cognitive systems
that support LCR provide fast methods for accessing large knowledge bases and
bringing the knowledge to bear on the decision-making process in rapid fashion [13].

The Soar Cognitive Architecture
The Soar cognitive architecture provides the implementation substrate for CyCog
Attacker and Defender agents, as it is one such mature engine for developing LCR
cognitive systems. Soar includes an extremely efficient pattern-matching engine for

Fig. 2. Abstract representation of the least-commitment decision cycle for a system that
integrates situation understanding, reasoning, planning, and action.
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accessing knowledge, and it has been demonstrated to execute the LCR decision cycle
orders of magnitude faster than human-scale decision times [7, 16, 19]. Every software
architecture that supports LCR implements some variation of the LCR decision cycle
[12]. Figure 3 illustrates Soar’s implementation of this cycle.

Soar implements a state-based approach to LCR, but this is not to be confused with
the way the term “state” is used for finite-state machines (FSMs). In FSMs, each state
must contain a small number of situational variables, and the number of states in an
FSM explodes combinatorially with the complexity of the problem domain. A Soar
“state” instead contains some arbitrary number of features (possibly thousands) that
describe the system’s current situational awareness and current goals. These features
serve as input to the pattern-matching engine, which retrieves knowledge to create new
beliefs, create new goals, or suggest new actions to take in pursuit of existing goals.
During each instance of the decision cycle, a Soar agent retrieves knowledge to
compute inferences (entailments and associations) from the current state, to retrieve
candidates for the next “action decision” (which may be an action to create a new
belief, to create a new goal, or to send output to the environment), to select a single
next action, and then to execute that action.

In addition to providing efficient native support for LCR, Soar contains a number of
subsystems to support psychological relevance of implemented cognitive systems.
Primary among these are learning and memory subsystems that support reinforcement
learning, semantic memory and learning, and episodic memory and learning. For
CyCog, episodic memory can assist in discovering unknown side effects of individual

Fig. 3. Instantiation of the least-commitment decision cycle in Soar.
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decisions. Semantic memory can help in generalizing side effects into abstract patterns.
Reinforcement learning can assist in making probabilistic evaluations of likely out-
comes of competing combinations of offensive or defensive decisions. Each of these
three mechanisms support some form of adaptivity or learning. Some have already
been exploited within CyCog, and others will lead to extended forms of adaptivity and
learning in the future.

Cognitive Adaptivity and Learning
Our initial CyCog agents incorporate fairly simple logic for choosing offensive and
defensive actions, and include a basic understanding of how to compromise or defend
computer systems. The initial agents provide a conceptual structure in which to
organize this knowledge, based on a cognitive analysis of deception, sensemaking, and
relevant features of uncertainty and complexity. The initial agents also implement an
extensible, first-principles knowledge representation. We are building from this base
representation and additional analyses to implement agent extensions that naturally
synthesize complex offensive and defensive strategies.

Our work on the generalized CyCog framework has also focused in part on building
a relatively thorough (albeit scaled-down) body of cyber-relevant knowledge, and
developing a grammatical model of cyber operations to facilitate the continual updating
of agent knowledge with new goals, subgoals, and TTPs. Our companion analysis of
cyber operations and associated workflows suggests that we can capture much of the
structure of cyber strategy as a formal model. The key focus is to develop an onto-
logical model that relates abstractions about tactical approaches and constraints that
govern how they may be combined, to types and permissible sequences of specific
tactics. One key to this approach is the modularization of knowledge units that can then
be recombined at run-time to generate novel attacks from first principles, reasoning as
appropriate about possible moves at multiple levels of abstraction.

This approach also forms the foundation for long-term tactical adaptivity through
learning mechanisms that minimize the need for model engineers to update the agents
manually through time. Although most work on CyCog to date has emphasized expert
models (as opposed to learning models), we have also performed initial investigations
into four types of learning within the cyber-operations domain:

• Inferential learning is the result of Soar’s goal-driven reasoning process, and occurs
when this process derives a new high-level insight from previously known low-
level steps. In the Soar architecture, this capability is called “chunking.” It is
analogous to the learning that a trainee experiences on working through a proof: the
trainee “knows” all the pieces, but inferential learning leads her to recognize their
implications. In our initial agents, inferential learning takes place when the agents
dynamically compile multiple steps (possibly modules taken from multiple TTPs) to
generate a single, coherent attack.

• Observational learning results from agent interaction with the external world. For
example, our attacker agent can deploy a distributed denial of service attack for the
goal of disrupting a service source, and it may learn from experience that the same
action can also accomplish the goal of disrupting a service channel when the
defensive response includes blocking traffic from the attack addresses.
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Architecturally, Soar supports this kind of reasoning through a combination of its
semantic and episodic memories.

• Abductive learning is reasoning from observations to the best explanation. This
mechanism may allow the agents to infer causal explanations to observed adversary
responses, and then use these causal models to innovate new attacks or defenses.
The inference of causal models is an essential example of adaptivity among human
cyber operators, and it serves as an essential part of the “dance” between attackers
and defenders.

• The development of a formal knowledge representation also opens the door to
instructional learning, in which a human supervisor can coach individual instances
of the agents. We are investigating this form of learning in the context of prior work
on taskability and interactive task learning [4, 31].

In all four types of learning, as an agent instance learns, it can share its knowledge with
other agent instances, either on the same problem or across multiple scenarios, so that
the agent knowledge bases increase in capability over time with minimal need for
support by model builders.

4.2 Adaptivity of Synthetic Role-Player Sophistication

As we have suggested, the most effective training environment would serve an entire
cyber ecosystem containing a spectrum of actors and role players. For training pur-
poses, a key dimension along which to vary agent behavior is in the level of sophis-
tication of the agents populating the ecosystem. Trainees should receive training
experiences containing a variety of levels of competence in terms of attackers, network
users, and possibly also collaborative defenders. In addition to simply providing a rich
ecosystem, levels of sophistication can be dynamically adapted to suit the level of
competence of the trainee or to focus lessons on particular pedagogical goals.

Training dynamics involves two issues:

1. Estimating the proficiency of the trainee
2. Managing the flow of training.

Conventional methods for estimating proficiency focus on explicit testing, which
interrupts the flow of the training experience. Conventional methods for managing the
flow of training are built around pre-defined lesson modules, which do not readily
adapt as the trainee learns. Our colleagues have pursued two capabilities developed in
other projects [5], which we have adapted for training in cyber operations: assessing
proficiency by observing the trainee’s actions without explicit tests, and dynamic tai-
loring of the exercise as it evolves. The Dynamic Tailoring System is another type of
agent that interacts with the ecosystem agents (attackers, defenders, and users) to
modulate their behavior (e.g., the range of attack tools available to the attacker; the
complexity of the attack, the sophistication of the attack goals or techniques) as a
function of the trainee’s observed proficiency.

During our development of prototype training systems for cyber operations, we
focused particularly on the adaptivity facilitated by Dynamic Tailoring (DT). Dynamic
Tailoring is the process of adapting training content and gameplay dynamically based
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on the observed needs of the individual trainees in the training environment. For
example, in a social training simulation the system may automatically demonstrate
content to a novice trainee who has demonstrated difficulty.

Research shows that immediate feedback on errors is a more effective training
technique than delayed feedback [28]. Many training and simulation-based environ-
ments provide feedback at the conclusion of an exercise – reducing the potential
learning effect. Dynamic Tailoring is capable of providing timely feedback, which can
lead to a more effective training experience.

The Dynamic Tailoring component is responsible for capturing the state of the
trainee, including the trainee’s assessed proficiencies. The DT accomplishes this by
building a memory model of the trainee’s most recent actions, assessment of those
actions, training strategy, and scenario goals. Based on this information the DT is able
to assess trainee performance in real time. As illustrated in Fig. 4, the Dynamic
Tailoring component monitors multiple inputs and outputs of the system. These
external inputs include information on individual CyCog agents representing the
attackers, defenders, and users. The DT monitors and modifies the behavior of these
agents as required to fulfill the overall scenario objectives. The system collects trainee
data encompassing current and past actions, as well as an expert/novice classification.
This data is used to tailor the experience based on trainee skill and performance.
Scenario Data includes a scenario description, training strategies, and inputs for the
external instructor interface. This information defines the scenario and the approach the

External Components (System terminals, virtual network)

DEFENDER USERATTACKER

SCR2AM

Soar Agent Data
Intrinsic Feedback

Dynamic Alteration to
Scenario Content

Extrinsic Feedback
Explicit User Prompts
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Expert Model

Past Experience

Instructor Interface 
Overrides
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Fig. 4. Dynamic tailoring components and system input and outputs.
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DT uses to complete it. Finally, a feedback mechanism provides the DT with the ability
to influence external components. These outputs are used to change the simulation or
provide prompting to the trainee.

Internally, the Dynamic Tailoring component has three core components for
managing the exercise and monitoring the trainee. A Scenario manager monitors the
overall scenario status, controlling the declaration of success and failure. A Cognitive
monitor observes the cognitive status of the trainee and CyCog agents working within
the ecosystem. The third component is a trainee model that houses information on
individual trainee performance. This component evaluates individual trainee actions
and assesses their effectiveness. Based on these evaluations, DT can adjust the diffi-
culty level of a scenario. Such adjustments can include altering the number of cyber
attackers, changing the network topology, spawning/closing system vulnerabilities, and
configuring the level of sophistication of attacks and counter attacks.

The primary method for adapting attack sophistication is to adjust the complexity,
aggressiveness, or other features of the goals and TTPs that are assigned to CyCog
attacker agents. To foster this type of adaptivity, we have pursued a formal mapping of
TTPs (informal descriptions of tactics used largely by military personnel) to the formal
knowledge representation language we invented for CyCog and other Soar-based
intelligent agents.

The term TTP is pervasive in the cybersecurity literature. Despite this ubiquity,
there are no clear definitions allowing the community to differentiate tactics, tech-
niques, and procedures. While ambiguity and imprecision when referring to TTPs is
usually not problematic among security professionals, it is a significant impediment to
using these concepts in autonomous systems. This problem manifested itself while
developing actionable behavioral models of offensive cyberspace operations in the
CyCog attacker agent. Our goal has been to ground TTPs in a semantic representation
that enables adversarial behavior modeling and autonomous decision-making, rea-
soning, and learning. This representation will also allow translation of varieties of
(informal) TTPs into formal attacker goals and methods, at varying levels of com-
plexity, which DT can then adjust to foster effective training.

4.3 Adaptivity of Synthetic Role-Player Personality

Even the most adaptive and capable automated agents are of limited use if training
exercise planners cannot configure and task them according to the exercise objectives.
However, it is not reasonable to expect cyber training experts to also be engineering
experts. Thus, it is necessary to develop an engine to translate training adaptations into
ecosystem and agent parameter settings. CyCog agents are driven in part by their
knowledge base of goals and TTPs, and in part by a fairly large number of “person-
ality” parameters that govern decision making. These parameters can include prefer-
ences for which types of attacks to use, which attacker tools to use, how stealthy or
deceptive to be, and many others. The result is a large and complex amount of formal
information that may need to be specified to configure each agent in the ecosystem.
Instructors must be able to avoid such fine-grained configuration, instead expressing
high-level configuration preferences that can be automatically refined into individual
parameter settings. To support these types of training adaptations, we are exploring AI
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techniques and tools for collaborative planning and decision support to reduce the
complexity of configuring and tasking the CyCog agents (see examples in Fig. 5).

Cyber operations are complex, and any approach to adapting the personalities of
agents in the ecosystem cannot hope to ignore that complexity. It is important that we
create tools that assist exercise planners in configuring, deploying, and tasking the
agents, without hiding or obscuring access to key functionality. However, we recognize
that instructors do run large-scale, complex training scenarios without having to specify
every minute interaction and configuration option. Our approach is to analyze the
existing workflow of instructors running exercises with human role players, and
adapting that workflow to the synthetic CyCog agents.

We are using cognitive task and workflow analysis techniques to model how
exercise planners currently brief human role players and relay mission objectives, tasks,
and constraints. Based on the model we are developing for planner/role-player inter-
action, we plan in the near future to implement a proof of concept approach to con-
figuring CyCog agents. Matching the interaction between instructors and human role
players, we are adopting a mixed-autonomy approach. For portions of the training
exercise that the instructor wishes to “micromanage”, they will be allowed to specify
configuration options to any desired level of detail. For the more usual case, where role
players must appropriately interpret the “instructor’s intent”, the CyCog agents will
similarly make appropriate inferences about reasonable configuration options that meet
the requirement of the instructor’s high-level intentions. In general, we envision sce-
nario configuration as a collaborative, iterative process in which the exercise planner
specifies tasks and constraints, and the support system recommends changes based on
conflicts, errors, and omissions. However, there are other interaction models that may
prove to be more appropriate, such as the mission planner specifying generalized
requirements and allowing the agents to derive specific parameters based on those
general guidelines.

Fig. 5. Guided configuration of CyCog agents
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In additional to providing tools to map instructor’s intent to individual parameter
values, we must thoroughly and formally define the configuration parameters of the
agents in the first place. Throughout our design of CyCog, we have seized every
opportunity for data-driven configurability through the application of two techniques:
externalization [23] and parameterization [2]. Externalization is the process of making
explicit those aspects of the knowledge base (such as data structures and parameters)
that can be usefully shared outside the core system. CyCog already externalizes a
number of parameters that allow data-driven specification of goals and decision-making
preferences, and CyDaR is another example of such an externalization. By external-
izing information, it becomes much easier to create tools that can support configuration
without having to make changes to the underlying software. This in turn fosters
mechanisms from improving the adaptivity of training.

Parameterization is the process of moving from special-purpose to general-purpose
implementations that can be configured to behave differently by supplying different
parameters. It is the nature of complex intelligent systems that there are many different
types of knowledge that cannot easily be generalized into parameter-driven patterns.
However, there are also large portions of knowledge than can be generalized and
parameterized, and we aggressively pursue every opportunity to do so when engi-
neering the CyCog agent knowledge bases. It tuns out that such parameterization
efforts serve three important goals: they make knowledge bases easier to extend, they
make it easier to develop agents that intelligent adapt their own parameters, and they
make it easier to develop training-oriented adaptations. Thus, parameterization is
already widely used throughout the CyCog framework, and our efforts at this point are
to extend the use of the parameters to foster further types of adaptation.

5 Discussion and Conclusions

The ability to adapt is a key property of most behaviors that we would be willing to call
“intelligent”. Adaptivity is also a key component of training, because learning is
fundamentally change, and effective training must adjust to the level of competence of
a trainee. For the domain of cyber operations, in particular, adaptivity plays an even
more prominent role, because the domain tasks themselves deal with constantly
changing technology and tactics, as well as responding to (or preempting) constantly
changing actions that others are changing to achieve they operational goals.

We have developed cognitive models of the major players involved in cyber
operations (attackers, defenders, and users). We have also developed a number of
approaches to adaptivity in training for interactive domains. We are in the midst of
research efforts to combine the two, extending our cognitive modeling and training
systems to support effective training in cyber operations. We have enumerated a variety
of types of adaptivity that play a role in these research efforts, including adaptation of
tactics and techniques, sophistication of scenario actors and role players, and person-
ality parameters (broadly construed) of scenario actors and role players. The goal of all
of these forms of adaptivity are to realistically represent the dynamic nature of cyber
operations, while simultaneously providing an effective training framework that tailors
trainee experience to specific pedagogical goals associated with each trainee.
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Our current and future research plans aim to overcome a number of challenges to
building a cost-effective but realistic cyber-operations ecosystem that supports domain-
level and training-level adaptivity. We are particularly focused on methods of
expanding the depth and breadth of knowledge for the role-player models, This
includes efforts to develop knowledge representations that ease the acquisition of
subject-matter expertise, as well as the engineering of that knowledge into composable
goal hierarchies and formal definitions of TTPs. We are also pursuing research on
learning and abductive inference methods to build robust models of self-adaptation,
based on the ability to explain unexpected outcomes and novel experiences. Farther in
the future, we hope to incorporate formal models of deception, which are a key
component of advanced cyber operations, and open up an additional category of
behavioral adaptivity [3].
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