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Abstract. The assistance dilemma asks how learning environments should
“balance information or assistance giving and withholding” (Koedinger and
Aleven 2007, p. 239). Minimal guidance (MG) methods posit that students learn
best when exploring problems freely, while direct instruction (DI) methods
provide canonical solutions early on to streamline students’ efforts (problems
later). Each method type provides unique benefits, but both are important
(Schwartz and Martin 2004) and not easily delivered together. A relatively new
MG-based method called “productive failure” (PF) is hypothesized to capture
both sets of benefits by requiring students to struggle through problems early on
and revealing canonical solutions afterward (Kapur 2008). Students using PF are
hypothesized to more effectively transfer and retain information because bal-
ancing heuristics and formal knowledge produces diverse solution attempts
(diSessa and Sherin 2000) and struggling during exploration pushes students to
fill knowledge gaps (Kulhavy and Stock 1989). In the present studies, partici-
pants learned to perform tasks in two domains, cryptarithmetic (more traditional)
and Rubik’s Cube (psychomotor, less traditional) while using either PF or DI.
Analyses revealed that (A) PF participants did not outperform DI participants on
either immediate post-tests or retention tests, although they did report being
more exploration-oriented and trying more unique strategies, (B) subgoal labels
increased learning, but only for the relatively novel Rubik’s Cube domain (and
they sometimes increased workload in cryptarithmetic, surprisingly), and
(C) effects of subgoal labels did not change with instruction type. Future
research should determine how PF methods can be scaffolded to foster explo-
ration mindsets and diverse solutions.
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1 Introduction

For many years, education researchers have debated a seemingly simple question called
“the assistance dilemma,” which can be summarized as: “How should learning envi-
ronments balance information or assistance giving and withholding to achieve optimal
student learning?” (Koedinger and Aleven 2007, p. 239). The answer to this question
has the potential to shape future instructional design in fundamental ways, but no
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consensus has been reached thus far. For now, two categories of instructional methods
dominate the debate. Traditional methods that provide canonical instruction early on
and utilize problem-solving as application practice are called “direct instruction” (DI),
while “minimal guidance” (MG) methods require learners to discover information
through guided exploration and problem-solving, instead of receiving canonical
instruction.

Although MG and DI methods are pedagogically different, they are similar in that
they both strive to help students avoid struggle and failure (i.e., being unsuccessful in
producing canonical solutions) while learning; both types of methods provide various
levels of scaffolding to reduce learner struggle and failure, ostensibly because struggle
and failure ultimately do more harm than good. However, a relatively new method
called “productive failure” (PF; e.g., Kapur 2008) is hypothesized to leverage struggle
and failure for unique learning benefits. In PF, learners attempt problems first before
receiving canonical instruction and it is hypothesized that as a result, they will
potentially be abler to (A) solve transfer problems, (B) retain knowledge past imme-
diate comprehension tests, (C) know why a given solution is correct, as opposed to just
knowing that it is correct, and (D) identify their own gaps in knowledge, among other
benefits. Furthermore, given that PF is an exploration-based method with canonical
instruction implemented, learners using PF are hypothesized to reap benefits usually
associated with either minimal guidance (e.g., self-generated concepts) and direct
instruction (e.g., streamlining of attention and resource allocation). The experiments
described here tested the “productive failure” hypothesis and aim to provide new
perspective to existing learner assistance approaches as well.

1.1 “Minimal Guidance” Model

Productive failure methods are based, in part, on a variety of existing minimal guidance
methods, but PF is hypothesized to improve on each of those methods in some fashion.

• Discovery learning. An early instantiation of minimal guidance was “discovery
learning,” in which students freely explore domains and material for themselves to
create governing insights about the world (Anthony 1973), often without concrete
goals in mind.

• Constructivism. Learners in constructivist environments are hypothesized to build
“conceptually functional representations of the external world” that are not neces-
sarily unique to themselves (Jonassen 1991, p. 61). Therefore, while the basic
pedagogical premise of constructivism is similar to that of discovery learning (i.e.,
active construction of meaning), a conceptual difference is that in discovery
learning, students are hypothesized to instead construct their own unique repre-
sentations of the world.

• Impasse-driven learning. Impasse-driven learning is one of the first methods to
implement struggle and failure to a large extent; impasses are defined by VanLehn
et al. (2003, p. 220) as situations in which a student is stuck, “detects an error, or does
an action correctly but expresses uncertainty about it.” The governing principle of
impasse-driven learning is that impasses are effective in helping learners adopt
learning-oriented mindsets, which cause them to be more likely to search their
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memories, examine the environment, or ask nearby people, etc. in attempts to dis-
cover what they do not understand (VanLehn et al. 2003). After students reach
impasses, tutors are to provide explanations soon after when students are not able to.

No matter the specific instantiation, MG methods are hypothesized to mitigate
working memory constraints by encouraging learners to connect new information with
prior long-term knowledge (Kapur and Bielaczyc 2011) during unstructured problem-
solving periods. These connections increase the chances that new information is
understood at a deeper level than if it was learned via DI, where the new information is
often stored in working memory and available in external memory.

1.2 “Direct Instruction” Model

Opposite minimal guidance in the learner assistance debate are direct instruction
methods, which generally guide students strongly and limit exploration. The worked
example is considered “the epitome of strongly guided instruction” and “provides some
of the strongest evidence for the superiority of directly guided instruction over minimal
guidance” (Kirschner et al. 2006, p. 80). Worked examples are hypothesized to
streamline attention to the most important parts of problems, reducing problem-solving
search and thus lower working memory loads (Kirschner et al. 2006). For most
learners, and novices in particular, this streamlining is key because they do not possess
the relevant schemas with which to integrate new information and prior knowledge,
and therefore cannot construct new schemas that are durable (Rourke and Sweller
2009). When unguided, many novices often resort to methods such as trial-and-error
which are burdensome on working memory, causing it to be unavailable for con-
tributing to long-term memory (Kirschner et al. 2006). If working memory is occupied
with tasks such as trial-and-error or problem-solving search, unguided students will not
be able to use working memory to learn, and they could therefore potentially search
problem spaces for long periods without adding to long-term memory (Sweller et al.
1982). Learners can also sometimes lean too much on pre-existing knowledge to
explore a domain (as opposed to devising learning goals), which can then lead to
flawed conclusions (Wineburg and Fournier 1994). Direct instruction can be instanti-
ated in many ways: Lectures, models, videos, presentations, demonstrations, as well as
the aforementioned worked examples (Clark et al. 2012).

1.3 Solving the Assistance Dilemma Through “Productive Failure”

A growing body of literature posits that the productive failure methodology can help
students learn in ways that achieve the objectives of both minimal guidance and direct
instruction (e.g., Kapur 2011); that is, the “MG vs. DI” debate might be a false choice.

On a high level, productive failure requires students to invent solutions to presented
problems first (in the “generation period”) before receiving canonical instruction
(“consolidation period”), thereby reversing the traditional order of these two teaching
elements in DI. This order leads to struggle (and ultimately, failure) early on in the
learning process, but there often exists “a latent productivity in what initially seemed to
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be failure” (Kapur 2008, p. 379). The generation effect, “which refers to the long-term
benefit of generating an answer, solution, or procedure versus being presented that
answer, solution, or procedure” (Bjork and Bjork 2011), could explain this latent
productivity, in part. The ensuing canonical instruction then serves to combat the
“negative transfer” (Bransford and Schwartz 1999) that often plagues minimal-
guidance methods. It should be noted, however, that PF students do receive some basic
domain information before entering the generation period, which lessens the proba-
bility of unproductive failures in which students attempt solutions that are too irrelevant
to yield any valuable information.

Most MG methods employ scaffolding so that learners can avoid failure, ostensibly
because it will hinder learning; however, failure is embraced and explicitly designed
into the PF process through the use of problem-solving early on (generation period),
and difficult ill-structured problems in particular are frequently used. In practice,
scaffolding is withheld and “solution features” are deliberately made inconspicuous in
PF so learners will be unlikely to guess canonical solutions, instead being encouraged
to lean on heuristics and prior knowledge to generate solutions (Loibl and Rummel
2014a).

After initial problem-solving, canonical instruction follows for learners to fill in the
rest of their understanding and remedy any mistakes they made. Sometimes, an initial
assessment is implemented first immediately after the initial problems to ensure more
concrete failure. Each of the following sections summarizes a key component of the
productive failure hypothesis.

Heuristics Plus Formal Knowledge. In minimal-guidance environments, learners are
led to utilize prior knowledge and heuristics during problem-solving, thereby miti-
gating some working memory constraints (Kapur and Bielaczyc 2011) on the whole,
even if searching problem spaces also increases learners’ working memory burdens
somewhat (Sweller 1988). In the event that some learners do encounter higher cog-
nitive demands in PF, they also often report feeling more engaged because of the
autonomy they are afforded during initial problem-solving (diSessa et al. 1991). This
prior knowledge activation is crucial for helping learners connect new material with
long-term knowledge, which enables better encoding and assembling of schemas
(Hiebert and Grouws 2007) as well as better transferability and durability of learning
(Kapur 2008).

The blending of heuristics, prior knowledge, and formalized canonical instruction
allows PF methods to provide benefits that MG and DI alone cannot. For example, PF
students are more likely to generate relatively large amounts of diverse solutions for
novel problems (diSessa and Sherin 2000), a hallmark of how experts attempt problems
(Clement 1991). Through these diverse solution attempts, students are expected to
develop the ability to extrapolate new information to other contexts (procedural flex-
ibility; Gorman et al. 2010). Another hypothesized benefit is the priming of students to
solve transfer problems later using the relative wealth of available information (prior
knowledge, heuristics, canonical instruction), even if the information is not germane to
any given initial problem (Bransford and Schwartz 1999).

A fair question regarding the above information might be whether DI methods can
also achieve results similar to PF, given that many of them also implement canonical
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instruction and problem-solving. The key difference is that in productive failure, stu-
dents use problem-solving to “assemble or structure key ideas and concepts while
attempting to represent and solve the ill-structured problems” (Kapur et al. 2010,
p. 1722). However, in direct instruction, problems are used “not as vehicles for making
discoveries, but as a means of practicing recently-learned content and skills” (Clark
et al. 2012, p. 6). As a result, students in DI are less likely to blend heuristics and
formal knowledge, and more likely to receive formal knowledge and merely re-activate
it when solving problems, leading to transferability that is not as robust. In contrast, PF
students are led to use heuristics and prior knowledge during initial problem-solving
(before receiving canonical instruction to remedy gaps in understanding), which
ensures that both knowledge types are activated while learning. The order of material
presentation is the key difference.

Failure-Related Cognition. “Expectation failure” is the idea that learning is most
successful when the outcome expected by a student from the domain does not, in fact,
occur (Schank 1997). Key principles of expectation failure include:

• Learners are less likely to develop creative solution attempts if environment is too
controlled and failures are therefore not possible

• Learners are predisposed to explaining occurrences in the domain and adjusting
their mental models to avoid being surprised by similar events

• For expectation failures to be most effective, they must occur during initial/practice
problem-solving (more likely to be activated in future problems)

The key function of expectation failures is exposing learners to gaps in their
understanding and eliciting learners’ natural misunderstanding-induced curiosity in the
material. In these situations, learners are more driven to fill knowledge gaps on their
own (e.g., studying feedback), particularly when discrepancies between solution
attempts and canonical solutions are wide (Kulhavy and Stock 1989). Due to the
“problem-solving prior” instructional order, PF methods are particularly conducive to
learners producing initial solution attempts that are discrepant from canonical solutions.
Expectation failures also disrupt learners’ stability bias, the overconfident belief that
currently-accessible information will remain just as accessible in the future (Kornell
and Bjork 2009). Chi’s (2000) theory of the imperfect mental model also accords with
the notion that failure can be effective and essential for learning; in short, the theory
states that learning is done through updates to one’s own mental models and that self-
explaining, in particular, is an efficient way for learners to update their own models
according to their own needs.

Furthermore, when experiencing failures and ensuing canonical instruction,
learners will also tend to identify reasons that a solution is plausible and why non-
canonical solutions do not always work, which improves their capacity for transfer to
novel situations (Kapur and Lee 2009). Comparing invented solutions and canonical
solutions aids in the encoding of critical conceptual features and selecting relevant
problem-solving procedures, even when performing transfer tasks (Siegler 2002). For
example, when students were allowed to observe the consequences of entering
incorrect spreadsheet formulas, as opposed to being corrected immediately upon
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entering an incorrect formula, they achieved higher scores on transfer tasks than
immediately-corrected students (Mathan and Koedinger 2003).

Immediate Performance vs. Enduring Learning. “Desirable difficulties” (Bjork and
Bjork 2011), even if not severe enough to consistently induce failure, can still induce
decreased immediate performance and PF-related learning benefits in the long term.
Examples of these difficulties include environmental factors (e.g., interface clutter;
Fiore et al. 2006), training variation (e.g., practicing tasks that are adjacent to the target
task; Kerr and Booth 1978), practice scheduling (e.g., interleaved schedule produces
better retention than blocked schedule; Shea and Morgan 1979), and secondary tasks
(adding relevant concurrent secondary task improves test performance; Young et al.
2011).

The goal of any instructional method should be learning, which can be defined as
“permanent changes in comprehension, understanding, and skills of the types that will
support long-term retention and transfer” (Soderstrom and Bjork 2015, p. 176).
Learning is a separate observed variable from immediate performance, which is a
possibly temporary measure that can be an unreliable indicator of learning (Soderstrom
and Bjork 2015). Many instructional methods focus on producing immediate perfor-
mance improvements, but some evidence indicates that immediate performance is not
indicative of long-term retention and/or transfer, which is perhaps more important (e.g.,
Schmidt and Bjork 1992).

When learners demonstrate strong immediate performance, they could be merely
exhibiting retrieval strength, which is recall activated in particular contexts; however,
durable learning is a function of storage strength, which comprises the depths to which
the material is associated with prior knowledge (Bjork and Bjork 2011). Increasing
storage strength is most efficiently done through information retrieval (as opposed to
information review) because the creation of “new routes” to information inherently
activates previous knowledge as well (Carrier and Pashler 1992). The observation that
enduring learning and immediate outward performance improvement can be uncorre-
lated is seen in research ranging from maze rats (rats’ abilities to finish mazes improve
after ostensibly random wandering; Blodgett 1929) to statistics classes (students who
invented solutions and received canonical instruction later outperformed DI students;
Schwartz and Martin 2004). Furthermore, methods that aim to improve immediate
performance can actually undermine enduring learning: For example, frequent and/or
specific feedback, a common DI component, often helps students complete test prob-
lems that are similar to the ones they practiced, especially if tested soon after
instruction. However, learners that receive the crutch of immediate and frequent
feedback are shielded from creating generalizable problem-solving strategies, an
important skill that is developed in those that are forced to struggle without immediate
feedback (Cope and Simmons 1994).

1.4 Examining Subgoal Scaffolding in Productive Failure

Many of the PF studies to this point have required learners to complete initial problem-
solving (the “generation period”) without scaffolding of any sort, perhaps because this
arrangement increases the chances of failure and the learner reaping the benefits

Productive Failure and Subgoal Scaffolding in Novel Domains 287



associated with failure. When no scaffolding structure is present, one potential concern
is that learners might not fail in constructive ways, which could then lead to difficulty
during canonical instruction because learners will have strayed “off course” to varying
extents. Therefore, it is possible that PF methods could be even more optimal for
learning with the implementation of some scaffolding, especially those scaffolding
mechanisms that provide just enough guidance to ensure that failures are indeed pro-
ductive (i.e., help students unearth fundamental truths about the domain).

A few PF studies have implemented scaffolding during the generation period, but
there are many more scaffolding mechanisms to be examined with regards to inter-
actions with PF, some of which might produce better learning than non-scaffolded PF
methods. The scaffolding mechanism chosen for manipulation in the current study is
“subgoals,” which are labels for functional groupings of steps that can help learners
recognize fundamental components of a problem (Catrambone 1998). Subgoals are a
promising scaffolding mechanism for PF because they can potentially alleviate one of
the major weaknesses in PF methods, which is the possibility that learners might fail
unproductively by misunderstanding the deep structure of a given problem space.

1.5 General Overview of Current Study and Hypotheses

The experiments in the present study compared the effectiveness of productive failure
and direct instruction in two domains that have not been examined before in this PF
context. In Experiment 1, participants learned about cryptarithmetic, a domain that
functions like the traditional academic domain of algebra and is somewhat similar to
physics and math domains that have been used in past PF studies, but is more likely to
be unfamiliar to participants (example problem: OOOH + FOOD = FIGHT). The tasks
inherent in this domain (deducing variable values, logical reasoning, etc.) allow for
reasonable comparison of the results to those from existing PF studies, which have
centered mostly on STEM domains. In Experiment 2 (which was procedurally identical
to Experiment 1), participants learned about solving the first layer of the Rubik’s Cube,
a spatially-oriented task that requires some psychomotor coordination. The generaliz-
ability of PF methods to non-traditional domains were tested in this experiment.
Experiment 2 provided an opportunity to examine whether Experiment 1 findings
replicated or whether the effects of the manipulations might depend on how academic
in nature the domain is. The specific methodological details used in these experiments
can be found in the next section.

2 Method – Experiment 1 (Cryptarithmetic)

2.1 Participants

A meta-analysis of productive failure studies (Chen 2016) found that PF methods have
produced, on average, a performance improvement of about 0.66 SD in deep con-
ceptual knowledge when compared to direct instruction methods, and because PF was
hypothesized to improve this kind of generalizable knowledge (as opposed to perfor-
mance on procedurally-similar tasks), this effect size drove the power analysis used to
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determine the sample size in this study. To achieve 80% power and 5% Type I error
rate when searching for an effect of this size, 64 participants were used. These par-
ticipants were recruited through the online SONA research participation system at the
Georgia Institute of Technology and compensated with class credits for their time. All
students at the Institute qualified for the experiment except for those who had prior
experience in systematically solving cryptarithmetic problems.

2.2 Experimental Design

Experiment 1 was a laboratory experiment in which all participants were required to
learn how to solve basic cryptarithmetic addition problems involving two numbers. The
two manipulated independent variables that will be covered in this paper are:

• Instruction type (between subjects): productive failure or direct instruction
• Subgoal labels (between subjects): subgoal labels were provided or withheld

All variables were fully crossed to form a factorial design for the experiment.
Observed dependent measures included immediate task performance (near transfer,
medium transfer, far transfer), retention task performance after a one-week break (near
transfer, medium transfer, far transfer), and several secondary assessments that could
predict task performance (e.g., workload, number of solution methods generated).

2.3 Procedures

Table 1 summarizes, in order, the procedures that participants completed during the
experiment and some associated details.

3 Method – Experiment 2 (Rubik’s Cube)

Procedures for Experiment 2 were identical to those in Experiment 1 except for the
domain (see Table 2); participants in Experiment 2 learned how to solve the first layer
of the Rubik’s Cube.

4 Results and Discussion

4.1 Instruction Type Main Effects (Immediate Post-test)

A general linear model (GLM) was created to analyze how the manipulated inde-
pendent variables affected immediate post-test scores in both domains. For each
individual problem type as well as overall test score, the data indicated that there was
generally no significant difference between productive failure and direct instruction,
except for one instance that is likely a random outlier given the pattern of the other
results. Table 3 outlines these results (maximum possible test score is 100%).

In the realm of near-transfer test problems, it was not expected that productive
failure would produce significantly better task performance than direct instruction,
especially when the problems were administered immediately after learning has

Productive Failure and Subgoal Scaffolding in Novel Domains 289



occurred. This expectation was realized in the above results. Many of the hypothesized
advantages of PF methods were expected to instead become manifest during medium-
and far-transfer problems, as well as retention problems, while DI methods’ usage of
isomorphic problems as practice (Clark et al. 2012) are conducive to performance on
test problems that are similar to the practiced ones. The “regurgitative” nature of
completing procedurally-similar problems immediately after learning increases the
importance of streamlined problem-solving search processes often emphasized in DI
while rendering the potentially deeper structural learning in PF relatively less useful.

However, a reason that DI was not hypothesized to actually overtake PF in
immediate near-transfer task performance is that PF participants tend to report greater
curiosity during canonical instruction than DI participants do (Loibl and Rummel
2014b), a phenomenon that was indirectly observed in this study when participants
were surveyed about the purpose of the problem-solving learning period. In the
cryptarithmetic domain, PF participants (M = 95%) were significantly more likely than
DI participants (M = 24%) to say that the problem-solving period was to be used for

Table 1. Summary of Experiment 1 procedures (cryptarithmetic)
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exploration (as opposed to practice and application), F(1, 43) = 43.711, MSE = 0.128,
p = 0.000, partial η2 = 0.504 (mean difference = 71%); a similar pattern of results for
PF (M = 100%) and DI (M = 30.8%) held in the cube domain, F(1, 49) = 54.044,
MSE = 0.113, p = 0.000, partial η2 = 0.524 (mean difference = 69.1%). This question
served to illuminate the mindsets of participants in the two instructional conditions and
indeed revealed the exploratory approaches that PF participants tended to take.

According to Loibl and Rummel (2014b), initial unguided problem-solving periods
in PF help learners to identify knowledge gaps that they are then more curious about
resolving later when canonical instructions are presented; DI learners are not given
intrinsic reason to pay as much attention to the canonical instructions. The benefits of
the extra attention paid by PF participants to canonical instructions should be partic-
ularly evident during near-transfer test problems, given that the instructions focus on
those types of problems. Moreover, not only were PF learners expected to be more
curious and engaged, they were also expected to be more able to appreciate critical
features of the presented canonical solutions due to comparisons of the strengths and

Table 2. Summary of Experiment 2 procedures (Rubik’s Cube)
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weaknesses of their invented solutions and the canonical ones (Moore and Schwartz
1998). Therefore, the advantages for each method were expected to “cancel out” to
some extent, and the non-significant differences between PF and DI in both domains
fulfilled those expectations.

Productive failure was hypothesized to produce significantly better performance in
medium- and far-transfer problems, but that largely turned out not to be the case. The
hypothesis was based on the notion that PF methods, just through the order of
instruction, would require learners to combine heuristics and formal knowledge in ways
that the “canonical instruction, then application practice” order in DI does not (Kapur
and Bielaczyc 2011). This combining of various knowledge bases in PF was expected
to provide learners with the resources to generate relatively wide ranges of solution
methods (diSessa and Sherin 2000) due in part to the exploratory information gleaned
from the initial problem-solving periods, and these different solution methods should
have enabled better attempts at transfer problems that cannot be solved solely using
canonical instructions. Participants in PF conditions (M = 0.594 unique solution
strategies, SD = 0.837) did indeed attempt unique solution strategies more often than
DI participants (M = 0.219, SD = 0.420) in cryptarithmetic, F(1, 62) = 5.131,
MSE = 0.439, p = 0.027, partial η2 = 0.076 (mean difference = 0.375), and the
Rubik’s Cube domain revealed similar differences between PF (M = 0.781, SD =
0.552) and DI (M = 0.375, SD = 0.492), F(1, 62) = 9.648, MSE = 0.274, p = 0.003,
partial η2 = 0.135 (mean difference = 0.406).

However, the use of unique strategies (those that were not explicitly explained in
instructional material) apparently did not aid participants on tasks of medium and far
transfer. While it still might be the case that those tasks do require novel and creative

Table 3. Post-test score differences between instruction types
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solution methods, perhaps the participants’ invented methods were either not particu-
larly relevant or did not enable the participants to learn deep structural information
about the domain. Furthermore, deciphering the parts of a solution attempt that are
generalizable, and those that are context-specific and ungeneralizable, is often difficult
for novices due to a lack of experience (Patel et al. 1993), an issue that is likely
magnified in PF when participants initially are relying more on their own heuristics to
make assumptions about the domain.

4.2 Instruction Type Main Effects (Retention Assessments)

To analyze the retention test performance dependent measure, pre-existing ability
(covariate), immediate post-test score (covariate), and the independent variables were
used as predictors in a GLM. No significant retention score differences were found
between PF (M = 45.94%, SD = 21.62%) and DI (M = 48.62%, SD = 20.10%) in
cryptarithmetic, F(1, 18) = 0.114, MSE = 376.147, p = 0.739, partial η2 = 0.006
(mean difference = 2.68%), and no significant retention score differences were found
between PF (M = 63.72%, SD = 26.6%) and DI (M = 66.35%, SD = 26.6%), in
Rubik’s Cube, F(1, 16) = 0.219, MSE = 171.214, p = 0.646, partial η2 = 0.014 (mean
difference = 2.63%).

It was hypothesized that the inherently frequent activation of prior and long-term
knowledge during initial PF problem-solving would require learners to connect new
material with relatively stable information that they already knew (Kapur 2008) and
furthermore lead to deeper encoding and assembling of schemas (Hiebert and Grouws
2007). As a result, the learning that ensued was expected to be more enduring and less
fleeting, a difference that would be most apparent on retention problems. However,
when surveyed on a Likert scale (1–7, 7 = most), participants in PF (M = 4.25,
SD = 2.11) did not report using significantly more prior knowledge than DI (M = 4.03,
SD = 1.56) in cryptarithmetic, F(1, 62) = 0.223, MSE = 3.435, p = 0.639, partial
η2 = 0.004 (mean difference = 0.22) and the differences between PF (M = 3.31,
SD = 1.79) and DI (M = 3.13, SD = 1.66) were also not statistically significant in
Rubik’s Cube, F(1, 62) = 0.189, MSE = 2.974, p = 0.665, partial η2 = 0.003 (mean
difference = 0.188). For now, these data can inform some discussion and conclusions,
but more-detailed analyses are likely needed in the future to examine, more generally,
the differences in how PF and DI participants used problem-solving periods. Question
prompts during problem-solving, for example, could enable researchers to more deeply
study why a participant invented a particular solution strategy and whether that strategy
contributed any generalizable domain knowledge through its use, or how a participant
could be encouraged to activate more relevant prior and long-term knowledge.

In the current experiments, given that PF methods did not prove superior to DI in
terms of encouraging participants to lean more on their prior knowledge, it is then
unsurprising that retention performance was about equal between the two conditions.
This pattern of findings on retention performance contradicts what “desirable diffi-
culties” research would predict (i.e., slow performance improvements early on due to
difficulty designed into the instruction, but better performance later; e.g., Bjork and
Bjork 2011). It was expected that PF participants surpass their DI counterparts on
assessments like the retention test, which was administered one week after the material
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was learned. Participants’ struggles during the PF generation period would require
deeper and more durable processing to navigate (i.e., connected to prior knowledge
and/or self-generated heuristics), while DI participants would be more likely to fall into
a false sense of competency because the learning process is relatively easier and
performance on immediate tasks improves relatively quickly (Marsh and Butler 2013).
However, survey measures such as workload (via NASA TLX) revealed that PF was
not an appreciably more difficult experience than DI, and in some instances was
actually reported to be an easier experience. Furthermore, not all participants in PF
actually failed after the initial “struggle” period, which likely means that the given tasks
were not difficult enough to yield productive failures and the associated benefits: 8 of
32 cryptarithmetic participants scored 100% on the mid-point check, while 6 of 32
Rubik’s Cube participants performed likewise. Therefore, PF did not create enough
desirable difficulty for participants.

4.3 Subgoal Label Main Effects (Immediate Post-test and Retention
Assessments)

Upon examining the subgoal predictor of the GLMs for immediate test and retention
test performance, a pattern emerged regarding scores across domains. Table 4 sum-
marizes the scores of participants who received subgoals (SUB) and those who
received non-labeled (NL) instructions (maximum possible test score is 100%):

In the cryptarithmetic domain, subgoal labels appeared to make very little differ-
ence in test scores. Previous research has demonstrated that subgoal labels outline high-
level information that can help learners organize domain content in meaningful ways
(Atkinson et al. 2000), which theoretically should improve performance. However, it is
probable that the college-educated participants did not require subgoal labels to help
them organize content in a domain that is similar to algebra.

According to the data, Rubik’s Cube participants were aided greatly by subgoal
labels. Sweller (2010) notes that subgoals enable learners to focus just on fundamental
structures of problems and not incidental features. In a domain like the Rubik’s Cube in

Table 4. Test performance with subgoal- (SUB) and non-labeled (NL) instructions
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which participants likely do not possess much relevant experience, this generalizable
information from subgoal labels is crucial so that participants do not extrapolate from
concepts that might have been specific only to a given example.

4.4 Subgoal Label Main Effects (Workload)

Some evidence suggests that the subgoal labels in cryptarithmetic, if anything, served
only to increase participant workload, possibly because of extra effort needed to
interact with them. Tables 5 and 6 outline the workload data for both domains
(maximum possible reported workload is 100%).

According to Table 5, subgoals increased workload significantly in the
cryptarithmetic domain. Furthermore, subgoal labels did not improve performance in
cryptarithmetic, suggesting that the increased load might have been extraneous. As was
stated before, it is perhaps the case that subgoal labels were not necessary in the
cryptarithmetic domain due to participants’ familiarity with algebra, which could
explain why participants reported subgoals as relatively taxing to interact with.

Subgoals did not increase workload in the Rubik’s Cube domain, as demonstrated
in Table 6. The participants likely found the Rubik’s Cube subgoal labels to be
essential information and therefore did not perceive them as difficult to engage. After
all, the subgoal labels improved Rubik’s Cube performance substantially.

Given the relatively robust findings in previous research regarding how subgoals
reduce cognitive load in learners (e.g., Morrison et al. 2015), the findings in the current
experiments are surprising. In future experiments, methods of implementing subgoal

Table 5. Cryptarithmetic: Workload differences between SUB and NL instructions
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labels (e.g., frequency of labeling, type of content conveyed, learner role in generation
of labels) could be manipulated to examine whether workload and performance results
depend on the method of labeling.

4.5 Interaction Between Instruction Type and Presence of Subgoal
Labels

Before the experiments started, subgoal labels presented during the PF generation
period were expected to mitigate the chances that learners aimlessly pursued irrelevant
objectives and formed structural misconceptions, risks inherent in any minimally-
guided method (Brown and Campione 1994). While subgoal labels are generally
important in DI materials as well, they were expected to be relatively less so because DI
participants received instruction at the start of the learning process that was at least
somewhat organized whether subgoals were labeled or not, and the participants were
merely applying learned knowledge during the problem-solving phase, likely using the
subgoal labels just as reminders. The data suggested that no such interaction between
instruction type and subgoal labeling occurred, regardless of domain or timing of test
(see Table 7).

Instead, a plausible explanation is that the positive effects of subgoals are robust
across various methods of instruction, but not necessarily across all domains (per
previous findings). After all, the key purpose of subgoal labels is helping learners
recognize fundamental components of a domain (Catrambone 1998), a useful aid
regardless of whether a learner is using productive failure or direct instruction. How-
ever, the extent to which that aid increases performance might depend on domain

Table 6. Rubik’s Cube: Workload differences between SUB and NL instructions
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familiarity and how easily learners can discern fundamental components on their own
in that given domain.

In summary, subgoal labels improved performance in the Rubik’s Cube domain,
regardless of instruction type, but failed to improve performance in the cryptarithmetic
domain (also regardless of instruction type). A potential future research direction could
involve manipulating the scaffolding mechanism used in PF instruction to examine
whether other scaffolding mechanisms are more reliable across domains (e.g., self-
explanation prompts, social discourse). Preventing learners from failing unproductively
and veering too far off track is a scaffolding mechanism that has been shown to be
effective in general (e.g., training wheels; Carroll and Carrithers 1984), but other
methods could prove superior in particular learning contexts. A systematic examination
of domains is also necessary to study how these various scaffolding mechanisms
interact with domains of particular characteristics; for example, the motivational
aspects of group discourse (Lin et al. 1999) could improve learning relatively sub-
stantially in inherently uninteresting domains, but not spur much improvement in
domains that are inherently more interesting.

5 Conclusions

In general, PF methods in the present studies produced some ostensibly positive
ancillary developments for learners (exploratory mindsets, diverse solution attempts,
and occasionally lower workload). However, those ancillary developments did not lead
to the ultimate goal of increasing post-test and retention test performance. This phe-
nomenon suggests questions for further study such as whether the relevance and quality
of learners’ solution attempts should be regulated somehow (perhaps through the use of
scaffolding methods other than subgoals), or whether lower workload is inherently
beneficial.

Research in productive failure is still in its early stages and therefore much work
remains to be done in improving the method itself. Potential improvements include
explicit elicitation of prior domain knowledge, more meaningful subgoal labels, and
group learning implementation. Replicating findings in various domains will also be an
important task, given that people have access to learning wider varieties of information
than ever but most learning research still centers on just science- and mathematics-
related domains. Some patterns of results from the current experiments changed

Table 7. Interaction between instruction type and subgoal labeling (test scores)
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depending on domain, but systematic selection of domains would enable researchers to
find more precisely the dimensions and characteristics of domains that drive changes in
results.
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