
Developing Authoring Tools for Simulation-
Based Intelligent Tutoring Systems: Lessons

Learned

James E. McCarthy1(&) , Justin Kennedy2 , Jonathan Grant2 ,
and Mike Bailey2

1 Sonalysts, Inc., Fairborn, OH 45324, USA
mccarthy@sonalysts.com

2 Sonalysts, Inc., Waterford, CT 06385, USA
{jkennedy,jgrant,mbailey}@sonalysts.com

Abstract. Intelligent tutoring systems have a long history of significantly
improving student performance. Unfortunately, they also have a long history of
being very expensive to develop while producing very short shelf lives. To
address these deficiencies, we developed and evaluated an authoring suite
known as the Rapid Adaptive Coaching Environment (RACE). While devel-
oping RACE, we frequently encountered tension between maximizing the
power of the intelligent tutoring system that authors would produce and mini-
mizing the level of effort associated with producing this tool. In this paper, we
will attempt to highlight this tension as we consider the five core design chal-
lenges that we addressed in the RACE prototype. We will review the formal and
informal evaluations conducted by the development team and discuss how those
evaluations led to the maturation of the design.

Keywords: Intelligent tutoring � Authoring systems �
User-centered development

1 Introduction

Over the past 30 years, the United States Department of Defense (DoD) has been a
leading developer of intelligent tutoring systems (ITSs, Fletcher 1988; McCarthy,
2008). Perhaps one of the most thoroughly researched intelligent tutoring systems in
the military domain is SHERLOCK, developed near the beginning of the 1990s (Katz
and Lesgold 1993; Lesgold et al. 1992). Like many other military ITSs, SHERLOCK
was developed to improve troubleshooting skills, this time in conjunction with the F-15
Avionics Test Station. The original SHERLOCK research demonstrated that about
25 h of practice in that environment had an impact on post-test performance equal to
about 4 years of on-the-job experience (Corbett et al. 1997). Gott et al. (1995) followed
up with a report that reviewed five separate evaluations of SHERLOCK. That review
showed a performance improvement of the 50th percentile students to the 85 percentile
(effect size of d = 1.05 standard deviations; an effect considered large and robust).

© Springer Nature Switzerland AG 2019
R. A. Sottilare and J. Schwarz (Eds.): HCII 2019, LNCS 11597, pp. 118–129, 2019.
https://doi.org/10.1007/978-3-030-22341-0_10

http://orcid.org/0000-0001-7389-4664
http://orcid.org/0000-0002-2933-7833
http://orcid.org/0000-0002-6590-2684
http://orcid.org/0000-0001-8772-2628
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22341-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22341-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22341-0_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22341-0_10


However, despite this long history and many demonstrable benefits, very few
intelligent tutoring systems are currently in use within the DoD. There are several
reasons for this, including the characteristics of the tutors that have been developed, the
level of effort associated with their development, and the difficulty and cost associated
with maintaining these systems over time. The current effort was designed to address
these limitations. Specifically, our team set out to develop an authoring system that
would make it easier, less expensive, and less time-consuming to develop and maintain
intelligent tutoring systems. Our charter mandated that we address problems and sys-
tems representative of those encountered throughout the military, and that we do so in a
way that was independent of a particular simulation environment or tutoring engine.

The observation that intelligent tutoring systems are very powerful but are ham-
pered by high development and maintenance costs is not a new one. Several “work-
arounds” have attempted to make intelligent tutoring systems more cost-effective.
While many of the approaches have real merit, they all exhibit deficiencies. For
example, machine learning approaches have been used to develop a multidimensional
representation of what a correct solution looks like within a complex problem space.
A student’s performance is compared to this standard and a proficiency assessment is
made. A critical deficiency of machine learning approaches is that they yield only
“black box” models of expertise. The student’s score indicates how much his/her
performance differs from what the tutor had been taught to expect, but not why the
performance is different. Real-time feedback is not possible.

An alternative to machine learning approaches is to use formal cognitive modeling
architectures and languages to developglass-box cognitivemodels of expert performance.
These architectures generally provide a programming language that allows users tomodel
human cognitive processes and behaviors. However, these languages almost always are
specified at a primitive level, similar to assembly code (Cohen et al. 2005; Ritter and
Koedinger 1995). This makes it very time consuming to develop the models and usually
the models are over-specified. That is, they include details that either cannot be supported
or that are irrelevant to the task at hand (Amant et al. 2005). To address these concerns,
several groups have worked to simplify this programming process. Across these efforts,
the strengths and weaknesses of the high-level language approach very nearly comple-
ment those of the machine learning approach. High-level languages can produce glass-
box representations of expertise and offer the opportunity to provide real-time perfor-
mance assessment and feedback. Unfortunately, they still are based on relatively con-
ventional task analyses and require manual model development involving a relatively
large team of domain experts, knowledge engineers, and software engineers. While this
development process is unquestionably easier, it still requires technical knowledge of both
the language itself and the underlying architecture(s). As a result, while high-level lan-
guages can reduce development andmaintenance costs, they do so incrementally. They do
not provide the order-of-magnitude cost savings we desire from this project.

Instead of adopting either of these approaches, our team focused on demonstration-
based authoring of intelligent tutoring systems (cf., Koedinger et al. 2003). We felt that,
like machine learning approaches, demonstration-based authoring would allow experts
to do what they do best – perform – while also producing glass-box representations like
those offered by expert models defined with high-level languages. Such a technique
would reduce the cost and level of effort associated with expert model development
dramatically.

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 119



Academic research has indicated that demonstration-based tutors have the potential
to increase the efficiency of tutor production by an order-of-magnitude (Koedinger
et al. 2003; Aleven et al. 2009). Further, they produce glass-box tutors that can provide
real-time feedback and hints. In doing so, they avoid the cost of complex task analyses
and replace programmers and instructional designers with subject-matter experts
(SMEs). However, this approach is not without problems of its own. These tutors
generally have been developed for relatively simple domains such as introductory
mathematics. These simple, static domains simplify the problem considerably along a
number of dimensions.

One characteristic of the demonstration-based tutors developed for simple domains
is that their user interface requirements are easily met. Few user controls are needed
and those that are needed are common. As a result, toolboxes of reusable and instru-
mented widgets are easier to create. Across military domains (aircraft operations,
tactical system employment, etc.) interfaces are likely to be much more complex, thus
building an interface from a toolbox is less practical. Similarly, the simple domains
associated with demonstration-based tutors developed so far have been static. Once a
problem is presented, it remains the same except for the actions of the operator. This is
not true of many military domains; dynamically shifting situations and priorities require
the system to constantly reassess which actions are most appropriate. Moreover, the
content associated with these domains rarely changes in any significant way over the
course of years. Across military domains, change is relatively constant.

Within this project, we set to address these challenges within a prototype authoring
tool known as the Rapid Adaptive Coaching Environment (RACE). While developing
RACE, we frequently needed to balance our efforts to maximize the power of the
intelligent tutoring system that authors would produce while minimizing the level of
effort associated with producing the tool. In the discussion that follows, we will attempt
to highlight this tension as we consider the five core design challenges that we
addressed in the RACE prototype:

1. Assessment of Evolving Situations
2. Capturing State and Action Information from Arbitrary Simulations
3. Exporting Assessment Models for Arbitrary Intelligent Tutors
4. Specifying Evaluation Standards, and
5. Providing Instructive Hints and Feedback.

2 Baseline Approach

Our initial approach to developing RACE focused on the development of a learning
objective hierarchy and the association of each LO with a scenario event that would
serve as a practice opportunity. The following subsections provide an overview of this
process.

120 J. E. McCarthy et al.



2.1 Outlining

The grand vision for RACE included the ability to develop both simulation-based
intelligent tutoring that would allow students to independently practice skills and
media-based adaptive interactive multimedia instruction (IMI) that would allow stu-
dents to master the fundamentals of a given domain. As such, it was very important to
the development team to establish a solid foundation for this work through the
development of a well-structured hierarchy of learning objectives (LOs).

However, we were also aware that the likely users of RACE were not instructional
designers per se. Rather, they were likely to be SMEs who were, perhaps, serving as
instructors. Therefore, we felt that it was important to scaffold their performance. To do
this, we started by asking authors to identify the thing that was probably most familiar
to them – the tasks that they wanted their students to be able to perform when they were
done with training. The development team felt (and later evaluations confirmed) that
the SMEs/authors would have clear expectations about this.

Next, we asked the authors to take one small step away from tasks and think about
what the students would have to do to complete each task. That is, what skills are
required for successful task performance? Scaffolds, in the form of general directions,
more detailed explanation, and access to a very detailed “how-to” guide supported
authors in this process.

Just as we asked the authors to identify the skills that were needed to perform the
task, we also asked the authors to identify the knowledge that was required to perform
each skill. That is, what facts, concepts, principles, etc. must be mastered before the
student can successfully perform the skill?

The last step in this outlining process guided the authors through defining learning
objectives for each of the skill and knowledge elements that they had defined. Within
this process, the authors selected (1) an LO Type (Fact, Procedure, etc.) that was
consistent with the current element type (knowledge vs. skill), (2) an LO Level that
indicated the depth of mastery that was required (Remember, Use, etc.), and (3) a verb
that was appropriate for that Type and Level (State, Configure, etc.). RACE then asked
the author to specify an object for the verb (e.g., “the primary components of the radar
receiver” or “the radar receiver for in-port operations”). Together, these elements
allowed RACE to define LOs with known outcome types. The final LO took the form
“The student will be able to VERB OBJECT” (e.g.,“The student will be able to state
the primary components of the radar receiver.”).

2.2 Developing Practice Scenarios

Next, the author was asked to develop practice scenarios. This was a two-step process.
First, RACE guided the author through the process of associating each skill-based LO
with one or more scenario events that could provide an opportunity to practice the
associated skill (or check for mastery of that skill).

The second step in the process was to actually develop a scenario that included that
event. RACE was designed to work with any conformant simulation system. As a
result, it did not include scenario development support; the development team felt that
it was more appropriate to leave that on the simulation “side of the fence.”

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 121



2.3 Demonstrating Solutions

To demonstrate a solution, the author would select a skill-based learning objective and
launch an associated scenario within the simulation environment. For our prototype, we
used various applications developed within the Standard Space Trainer (SST) frame-
work (Nullmeyer and Bennett 2008). Both RACE and the simulation connected to a
piece of middleware. Using a well-defined interface, the middleware component cap-
tured data from the simulation, reformatted it, and passed it to RACE for processing.

To demonstrate the correct procedure for the event (and, by extension, the LO), the
author had to do two things. First, the author had to use a RACE interface to define a
situation assessment rule that the system would use to recognize that the preconditions
for the LO have been satisfied and the student should begin the associated procedure.
Second, the author had to demonstrate the appropriate procedure. As the author con-
ducted the demonstration, the simulation passed the recorded actions to the middleware
component and on to RACE where it appeared on a display that the author could
review (see Fig. 1).

Using this interface, authors could delete or re-order steps to correct minor errors
made during the demonstration process. In addition, they were encouraged to organize
steps in the process according to the goals that were being pursued. These organization
labels were used in the feedback development process.

Fig. 1. RACE review captured action screen. Authors use this screen to review, edit, and
organize procedures demonstrated within the associated simulation system.

122 J. E. McCarthy et al.



2.4 Setting Evaluation Standards

After reviewing and refining their demonstrations, authors were asked to define eval-
uation standards that would specify how precisely they expected students to mirror
their demonstrated procedures. Authors used the RACE interface to specify standards
for accuracy and pacing. Accuracy standards included things like using the right
control or entering the correct value. Pacing standards included the order in which users
performed tasks and how much time elapsed between actions.

Different types of actions had different standards associated with them and the
authors could choose to enable/disable standards or to adjust the values against which
student performance would be judged (including adjusting the “margin of error” that is
acceptable.

2.5 Validating Coaching Statements

RACE automatically generated hints and feedback that the intelligent tutoring system
could deliver to students to enhance their performance. RACE applies a grammar to
captured actions to create the feedback. Each action is associated with three levels of
progressively more directive hints. Similarly, RACE associated each correct action
with three levels of progressively more detailed feedback. RACE also associated each
action with an arbitrary number of coaching statements that the intelligent tutor could
deliver when the student made an error. The specific evaluation standards that the
author selected were associated with specific types of errors. Each type of error was
associated with up to five levels of progressively more detailed feedback. The authors’
task was to review this automatically generated feedback and make any adjustments
that they felt improved its quality.

2.6 Supporting Multiple Tutoring Environments

Just as RACE was designed to be independent of a given simulation environment, it
was also designed to be independent of a given tutoring engine. To pursue this goal, the
development team adopted an industry standard for the specification of task models:
The W3C XML Task Model (2014). The W3C XML task model includes a meta-
model expressed in Unified Modeling Language (UML) and an eXtensible Markup
Language (XML) Schema. While the task model has been targeted as the basis for
interchange of task models between different user interface development tools, it is
general enough to express most of the concepts involved in the RACE assessment
model, and can be extended to cover the rest. A key attribute of the W3C Task Model is
that it already includes a number of operators to describe relations between tasks. Those
operators include interleaving, order independence, synchronization, parallelism,
choice, disabling, suspend-resume, enabling, iteration and optional.

For our prototyping effort, middleware was developed that allows Sonalysts’
intelligent tutoring system, ExpertTrain (McCarthy 2008), to ingest the W3C Task
model and convert the data that it contained into the data structures needed by
ExpertTrain to support automated performance assessment and coaching.

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 123



3 Evaluations and Revisions

Throughout the development process, the RACE team conducted a series of evalua-
tions of the emerging prototype. Two of these were formal evaluations with potential
users of the simulation and others were less formal review and feedback sessions
conducted in concert with our Agile development approach (cf. Schwaber and Beedle
2002).

3.1 Formal Evaluations

Formal evaluations of RACE were conducted in 2016 and 2017. In these evaluations,
U.S. Air Force instructors were asked to use the RACE software to complete authoring
(2016/17) or coaching (2017) tasks. Their performance was monitored to identify
aspects of the process that could be improved. Further insights were gathered via
participant surveys and debrief discussions. Indicative results are shown in Table 1.
Generally, the participants felt strongly about the need for the type of independent
practice offered by RACE, and they were relatively happy with the ease of the
authoring process.

3.2 Informal Evaluation

Despite the overall favorable results of the evaluations, the development team was left
with the impression that improvement was possible. One source of this impression was
the debrief comments made by participants at the conclusion of the formal evaluations.
A more powerful source was the less formal comments that we received at the end of

Table 1. Representative results from RACE evaluations

2016 2017

Author-
ing Ease

Coaching 
Value

124 J. E. McCarthy et al.



each development sprint. In this section, we review some of those findings and the
steps that we took to enhance the performance of the system.

Authoring Approach was Too Restrictive. As the development team studied the
feedback, certain trends emerged. First, it was clear that authors wanted to be able to
define multiple correct procedures for many tasks, but that the current approach to
doing so felt cumbersome. They wanted an easier way to provide students with the
flexibility to complete tasks in a variety of ways. Second, because procedures were
frequently repeated in support of various tasks, they wanted an ability to easily re-use
the procedures previously demonstrated. Third, in some cases, task procedures had
complex timing and sequential patterns. There was a concern that RACE wasn’t suf-
ficiently expressive to support user needs as we moved from a prototype to a fielded
system.

To address these challenges the design team undertook an investigation regarding
the ability to create a more graphical “front end” to the authoring process. Our goal was
not to implement this approach, but to determine if we could create a design concept
that felt more natural to users. Sonalysts developed a “Performance Roadmap”
approach to authoring. With this approach, the author would select an LO and then use
a visual workspace and icons to build a sequence of goals that would satisfy that
learning objective. Each goal, in turn, would have one or more methods associated with
it. A method would be a path for a response – a series of steps to accomplish a specific
task or satisfy a goal. This approach would allow authors the flexibility to build many
ways to allow students to perform a task, answering one of the usability concerns.

After building a timeline, an author would “populate” method blocks one of two
ways. First, an author could import an existing method from an ever-growing RACE
library. This would allow the re-use of “building blocks,” answering the second of the
usability concerns. Second, an author could demonstrate new methods using a simu-
lation linked to the learning objective. Besides being saved to the current roadmap,
newly recorded methods would be saved to the RACE library and become available for
import into future roadmaps. After populating method blocks, an author would indi-
vidually adjust timing and accuracy standards for each using a visual interface.
A representation of this approach is shown in Fig. 2.

Concern About Coaching Level and Associated Level of Effort. With our new,
more graphical authoring approach in hand, the development team reviewed it with a
focus group. The user population expressed continued concern about the level of effort
associated with the authoring task and their ability to support that level while doing
their “day job.” To help reduce the level of effort, the audience suggested doing away
with methods and focusing instead on outcomes (e.g., “we only care if they get the job
done, not how they do it.”). In reaction to this feedback, the development team
undertook parallel analysis tasks. One group investigated whether an outcome-based
approach was practical. The second group investigated a mechanism for simplifying the
authoring process while maintaining process-oriented methods.

The development team concluded that a purely “outcome-based” approach to sup-
porting independent practice was possible, but probably not advisable. There were
several reasons for this determination. First, although the SST environment included the
level of detail necessary to define required outcomes, we could not be sure that was true

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 125



for all simulation environments and adopting this approach might violate our goal of
being simulation-agnostic. Second, the very richness of the SST data model that made
outcome-based assessment possible might make developing outcome recognition rules
complex. As a result, the reduction in the level of effort that authors were seeking might
not be realized. Third, the outcome-based strategy would limit the breadth of coaching
that was available to whether or not the outcome was achieved, not why. As a result, the
system would have a much diminished ability help to the students to improve.

Along the other path (simplifying process-based authoring), the development team
proceeded by making a few simplifying assumptions. The primary simplification was
to replace the “task-skill-knowledge-LO” decomposition process that would support
both skill- and knowledge-focused instruction and practice, with a scenario-goal-
method decomposition focused on supporting skill-based practice. Within this frame-
work, the authoring process would have two major tasks. First, the author would
decompose each scenario in the practice curriculum into a sequential series of useable
goals. Second, the author would demonstrate the methods associated with each goal.
By limiting the demonstration process to one goal at a time, this approach avoided the
combinatorial explosion among methods that could sometimes occur within the LO-
centric approach.

To explore this design concept, the design team proceeded along two paths. First,
we wanted to see if this approach could produce high-value coaching. To explore this,
we created a practice curriculum comprising eight scenarios that spanned an intro-
ductory curriculum in space operations. An SME analyzed the procedures associated
with each practice activity and decomposed them into a set of relatively small goals that
had a high degree of re-use across the practice activities. This process produced
approximately 56 small re-usable goals. In addition, the SME created a sequence chart
that illustrated when each goal could be completed. Figure 3 illustrates the outcome for
a relatively simple and a relatively complex practice activity.

Fig. 2. Representation of graphical roadmap approach to authoring

126 J. E. McCarthy et al.



We then updated the RACE software to allow us to populate these goals with
demonstrated methods and replicate these goal sequences within the coaching
sequence. To approximate the outcome-oriented coaching that the instructors preferred,
we disabled most of the evaluation standards (e.g., we no longer assessed pacing or the
parameters that students entered). We then asked our SME to review the resultant
performance assessment and coaching. These “pilot tests” allowed us to make further
refinements into how the RACE coaching engine responded to errors, how the system
recognized that the students thought they were done, and how the system summarized
student performance following the end of an activity.

Second, the development team replaced the graphical authoring approach discussed
earlier with one that provided explicit support for defining the methods associated with
each goal and sequencing those goals to support a given practice activity. The revised
approach asked authors to demonstrate the methods for one goal at a time. In doing so,
it avoided the sense of “overwhelming” instructors. Further, developing the roadmap
was simply a process of importing completed goals. To provide a little more flexibility,
we also allowed authors to disable methods if they felt that they were not appropriate in
a given setting and to adjust the performance standards that would be enforced within a
given practice activity. The result seems to strike a good balance between providing
both expressive flexibility and simplicity.

Relativity 
Simple 
Practice 
Activity

Relatively 
Complex 
Practice 
Activity

Fig. 3. Sample goal sequences

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 127



4 Discussion

The RACE project explored the ability to develop authoring tools that would make it
simpler to develop and maintain intelligent tutoring systems that can enable indepen-
dent student practice. From a technology perspective, the development team felt that
they were successful. The most daunting technical challenge was developing a gen-
eralized and usable approach to situation assessment. We made progress on this front,
but ultimately other factors (specifically, the explicit definition of goal sequences to
simplify other facets of authoring) obviated the need for a complete solution. This is an
area ripe for further exploration in a cross-simulation/cross-domain environment.

A second challenge was the need to make the authoring as simple and intuitive as
possible for our authors while maintaining the full power of an ITS. Our efforts here
were helped by the inclusion of formal usability assessments within the effort. Perhaps
more strikingly, our efforts were also enhanced by more periodic feedback afforded by
the monthly development “sprints” used within these efforts. The Agile development
approach allowed us to experiment with ideas and to get timely internal/external
feedback on what “worked” while there was still time to benefit from the lessons
learned. We plan to combine these two methods in most of our future research and
development efforts.

Across the span of the prototyping effort, the development team feels that they have
made significant progress in demonstrating the ability to field an authoring tool that is
agnostic to both the hosting simulation environment and the tutoring engine and that
produces high-quality coaching. We look forward to the opportunity to continue to test
and refine this emerging technology.

References

Aleven, V., Mclaren, B.M., Sewall, J., Koedinger, K.R.: A new paradigm for intelligent tutoring
systems: example-tracing tutors. Int. J. Artifi. Intell. Educ. 19(2), 105–154 (2009)

Amant, R.S., Freed, A.R., Ritter, F.E.: Specifying ACT-R models of user interaction with a
GOMS language. Cogn. Syst. Res. 6(1), 71–88 (2005)

Cohen, M.A., Ritter, F.E., Haynes, S.R.: Herbal: a high-level language and development
environment for developing cognitive models in Soar. In: Proceedings of the 14th Conference
on Behavior Representation in Modeling and Simulation, pp. 133–140 (2005)

Corbett, A.T., Koedinger, K.R., Anderson, J.R.: Intelligent tutoring systems. In: Helander, M.G.,
Landauer, T.K., Prabhu, P.V. (eds.) Handbook of Human-Computer Interaction. Elsevier
Science B.V., Amsterdam (1997)

Fletcher, J.D.: Intelligent training systems in the military. In: Andriole, S.J., Hopple, G.W. (eds.)
Defense Applications of Artificial Intelligence: Progress and Prospects. Lexington Books,
Lexington (1988)

Gott, S.P., Kane, R.S., Lesgold, A.: Tutoring for transfer of technical competence. Air Force
Technical Report: AL/HR-TP-1995-0002. Armstrong Laboratory, Human Resources Direc-
torate, Brooks AFB, TX (1995)

Katz, S., Lesgold, A.: The role of the tutor in computer-based collaborative learning situations.
In: Lajoie, S.P., Derry, S.J. (eds.) Computers as Cognitive Tools. Erlbaum, Hillsdale (1993)

128 J. E. McCarthy et al.



Koedinger, K.R., Aleven, V., Heffernan, N.: Toward a rapid development environment for
Cognitive Tutors. In: Artificial Intelligence in Education: Shaping the Future of Learning
through Intelligent Technologies, Proceedings of AI-ED 2003. IOS Press (2003)

Lesgold, A., Lajoie, S., Bunzo, M., Eggan, G.: SHERLOCK: a coached practice environment for
an electronics troubleshooting job. In: Larkin, J., Chabay, R. (eds.) Computer-Assisted
Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary Approaches.
Lawrence Erlbaum Associates, Hillsdale (1992)

McCarthy, J.E.: Military applications of adaptive training technology. In: Lytras, M.D.,
Gaševiće, D., Ordóñez de Pablos, P., Huang, W. (eds.) Technology Enhanced Learning: Best
Practices. IGI Publishing, Hershey (2008)

Nullmeyer, R., Bennett, W.: Leading-Edge Training Research is Catalyst for Training
Transformation in Space Operations. Fight’s On 7(1), 1 (2008)

Ritter, S., Koedinger, K.R.: Towards lightweight tutoring agents. In: Proceedings of AI-ED 1995
- World Conference on Artificial Intelligence in Education, Washington, DC, pp. 91–98,
August 1995

Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice Hall, Upper
Saddle River (2002)

Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems 129


	Developing Authoring Tools for Simulation-Based Intelligent Tutoring Systems: Lessons Learned
	Abstract
	1 Introduction
	2 Baseline Approach
	2.1 Outlining
	2.2 Developing Practice Scenarios
	2.3 Demonstrating Solutions
	2.4 Setting Evaluation Standards
	2.5 Validating Coaching Statements
	2.6 Supporting Multiple Tutoring Environments

	3 Evaluations and Revisions
	3.1 Formal Evaluations
	3.2 Informal Evaluation

	4 Discussion
	References




