
Exploring Errors in Reading a Visualization
via Eye Tracking Models Using Stochastic

Geometry

Michael G. Hilgers(&) and Aaron Burke

Missouri University of Science and Technology, Rolla, MO 65409, USA
hilgers@mst.edu

Abstract. Information visualizations of quantitative data are rapidly becoming
more complex as the dimension and volume of data increases. Critical to modern
applications, an information visualization is used to communicate numeric data
using objects such as lines, rectangles, bars, circles, and so forth. Via visual
inspection, the viewer assigns numbers to these objects using their geometric
properties of size and shape. Any difference between this estimation and the
desired numeric value we call the “visual measurement error”. The research
objective of this paper is to propose models of the visual measure error utilizing
stochastic geometry. The fundamental technique in building our models is the
conceptualization of eye fixation points as might be determined by an eye-tracking
experiment of viewers estimating size and shape of a visualization’s object con-
figurations. The fixation points are first considered as a stochastic point process
whose characteristics require comment before proceeding to the statistical shape
analysis of the visualization. Once clarified thefixation points are reinterpreted as a
sampling of the shape and size of the landmark configurations of geometric
landmarks on the visualization. The ultimate end of these models is to find optimal
shape and size parameters leading to minimum visual measurement error.

Keywords: Information visualization �Reading error � Stochastic shape analysis

1 Introduction

Information visualizations of quantitative data are rapidly becoming more complex as
the dimension and volume of data increases [1]. Critical to modern applications, an
information visualization is used to communicate numeric data using objects such as
lines, rectangles, bars, circles, and so forth. Via visual inspection, the viewer assigns
numbers to these objects using their geometric properties of size and shape [2]. Any
difference between this estimation and the desired numeric value we call the “visual
measurement error”. The research objective of this paper is to propose models of the
visual measurement error utilizing stochastic geometry. The fundamental technique in
building these models is to abstract the accumulation of eye fixation points produced
during an eye-tracking experiment [3]. Participants will be asked to “measure” the size
of objects with the visualization configuration. The fixation points are first viewed as a
spatial point pattern of a spatial stochastic point process. We will look at its properties
and see various shortcomings when applied to the analysis of the structure of
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information visualization. At this point, the research takes a novel turn. The fixation
points are reinterpreted as a sampling of the landmark configuration of a visualization
construct. The study of visualization measurement error will utilize Bookstein’s
analysis of the size and shape of a triangle. An error model will be given under strongly
simplifying assumptions.

2 Eye Tracking Analysis of Information Visualization

We pose the following abstract usability experiment. A group of people is shown the
simple bar chart seen in Fig. 1. They are given the task of measuring bar A against the
ruler and estimate it’s “height” according to the ruler’s scale. (We will use the term
height as if the scale where in inches.). While doing so they are monitored using an eye
tracker. Previous related research [22] showed the fixation points of the search
appeared as in the right-hand side of Fig. 1. Of course, the striking feature is the
formation of three clustered regions. To understand the information stored in these
clusters, it is necessary to build a mathematical framework to describe the experiment.
We will follow the lines of development and definitions used in [4] and [5].

Denote ~S as a set of fixation points in R
2. Mathematically, it is viewed as a spatial

point pattern.

Definition 1: A spatial point pattern is a set of points in the plane denoted as:

fx1; x2; . . .; xkg ð1Þ

where

xj ¼ xj
yj

� �
:

Fig. 1. The left picture shows the visualization. The right picture shows the fixation points from
the eye tracking data.
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Each person in the experiment will compare the Bar A to the axis to the left as
shown in Fig. 1 then report the bar’s height they observed, ĥ: Meanwhile, we collected
the data produced by the eye tracker. In an idealized sense, we have captured the
formation of a spatial point pattern Ŝ during the measurement process. For each test
subject, we obtain the pairing ðŜ; ĥÞ. If there are n participants in the experiment, we
collect a set of information of the form

fð~S1; ~h1Þ; ð~S2; ~h2Þ; . . .; ð~Sn; ~hnÞg: ð2Þ

2.1 Addressing Error

Error is the difference between h and ~h. The determination of the measurement ~h is the
result of a complex system of interactions between the eye, brain, and visualization.
Identifying every possible physiological and cognitive effect leading to ~h is beyond our
current level of understanding [2]. However, it is the hope of usability research that
many of these complexities are encapsulated in the eye’s motion during the mea-
surement process [6, 7]. Eye tracking can be view then as an indirect sampling of
unobservable processes. Unless the measurement of ~h is the result of a completely
random process, it seems reasonable any underlying process could be influenced by
observable factors such as lengths, widths, and areas. Expressing this influence will
occupy the rest of this paper.

3 Modeling

The purpose of this research is to propose models of visual measurement error. Some
models we will simply offer for future consideration. For other models, we will discuss
their reasonableness. Since we are using eye-tracking experiments as our inspirational
gateway into this topic, all of our models begin with a spatial point pattern. Based on
this, our models can be divided into approaches: spatial point processes and spatial
shape processes. Introductory ideas, including motivation, and some basic results will
be included in this section. The details of more involved models will be deferred to the
particular application. (We assume the reader is familiar with basic probabilities theory
a little measure theory.)

4 Stochastic Point Processes

4.1 Basic Premises

For beginners, the mathematical definition of a point process is surprising complex (see
[8] or [9]). To simplify our situation as much as possible, we will consider a point
process a random mechanism whose outcomes are spatial point patterns. Believing
there are only a finite number of fixation points on a visualization, we restrict attention
to finite point processes; bringing us to the following definition [4]:
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Definition 2: A finite point process X is a random mechanism for which,

1. Every possible outcome is a spatial point pattern with a finite number of points,
2. For all test sets (closed and bounded) subsets B of R2, the number of points of X in

B is finite, denoted as NðX\BÞ, is a well-defined random variable.

In considering spatial point pattern realizations of the underlying point process,
people seek answers to standards questions. Is the density (number of points per area)
constant? Are the points distributed “evenly” or “uniformly” across some region? Are
there voids (empty regions)? Has the data clustered? Is there evidence of point or area
interaction? What is the distribution function of the random processes at play? We
continue by following the presentation of Baddeley, Rubak, and Turner in their
excellent book [4].

4.2 Complete Spatial Randomness

Our first objective is to define complete spatial randomness (CSR). This is important
because our approach to building models is inspired by eye tracking. It is reasonable to
believe seemingly random motion of the eye demonstrates a certain lack of under-
standing or interest on the part of the viewer and will provide little insight into geo-
metric structure.

Formulating CSR requires several characteristics of the finite point distribution. We
want the spatial pattern to have no preferred location so they the points appear to be
distributed uniformly. This introduces the concept of a spatial probability density. To
comply with Definition 2 part (2), we will need the probability distribution of the count
functions NðX \BÞ:

We begin with the notion of a spatial pattern being uniformly distributed. To keep
things simple, we begin considering how to place a point in a window setW uniformly.
First, suppose that location of the single point ðu1; u2Þ in Fig. 2 is expressed by random
variables U1 and U2 with joint probability distribution kðu1; u2Þ. The probability that
U ¼ ðU1;U2Þ lies in the so-called test set B is

PðU 2 BÞ ¼
Z
B

kðu1; u2Þdu1du2: ð3Þ

Since the Lebesgue measure is non-atomic, Eq. (3) is different than

PððU1;U2Þ ¼ ðu1; u2ÞÞ ¼ 0 ð4Þ

If we require the probability density function kðu1; u2Þ to be a bivariate uniform
distribution on W , we have

kðu1; u2Þ ¼ 1= Wj j ðu1; u2Þ 2 W
0 otherwise

�
ð5Þ
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Here and elsewhere Wj j is the two-dimensional Lebesgue measure of W , which is
its area. Using Eq. (5) in Eq. (3),

PðU 2 BÞ ¼
Z
B

kðu1; u2Þdu1du2 ¼ 1
W

Z
B

1du1du2 ¼ Bj j
Wj j : ð6Þ

This is intuitively pleasing as the probability a spatial point “hits” the test set is the
proportion of area it occupies. Let us call this probability pðBÞ.

Suppose now that we wish to place n points uniformly in W . To this end, we define
a finite point process X ¼ fU1;U2; . . .;Ung where each Uj is a uniformly distribution
random point as per the proceeding the paragraph. Let B be a test set. If we associate a
“hit” with a “success”, we are counting the number of successes out of n trials. If we
suppose that each trial is independent of the others but share the same probability of
hitting B, we have from Eq. (6)

PðUj 2 BÞ ¼ Bj j= Wj j ¼ pðBÞ for i ¼ 1; 2; . . .; n: ð7Þ

From this, we quickly recognize that NðX\BÞ has the binomial distribution [10]

PðNðX\BÞ ¼ kÞ ¼ n!
k! n� kð Þ! pðBÞ

kð1� pðBÞÞn�k: ð8Þ

The expected value of a binomial process [10] is

E½NðX\BÞ� ¼ npðBÞ: ð9Þ

From Eq. (6),

Fig. 2. Uniformly distributed random points. Right: point is in a test set. left: point is given
coordinates as realization of random variables
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E½NðX\BÞ� ¼ nðXÞ Bj j
Wj j ¼

nðXÞ
Wj j Bj j ¼ k̂ðXÞ Bj j: ð10Þ

Here

k̂ðXÞ ¼ nðXÞ
Wj j : ð11Þ

The notation nðXÞ means the number of points in the process X. Likewise, k̂ðXÞ is
the expected number of points in a set B. We call this the intensity of X:

The utility of intensity warrants a formal definition. For a general point process X;

E½NðX\BÞ� ¼
Z
B

kðuÞdu ð12Þ

If it exists, kðuÞ is called the intensity function. We call a process homogeneous if
the intensity is constant,

E½NðX\BÞ� ¼ k Bj j: ð13Þ

A final issue of primary importance concerns the probability distribution of the
random variable NðX\BÞ as referred to in (2) of Definition 2. Assuming the process is
homogeneous; using Eq. (13) it can be shown NðX\BÞ Poisson distributed [11].

Definition 3: A non-negative integer-valued random variable Y has the Poisson
distribution [10] (denoted PðlÞ) if

P½Y ¼ k� ¼ e�l l
k

k!
for k ¼ 0; 1; 2; . . . ð14Þ

An important property of this distribution is

E½Y� ¼ l and V½Y� ¼ l ð15Þ

We are now ready to define what it means for process to be spatially random [4].

Definition 4: A homogenous Poisson Point Process X with k[ 0 has the following
properties:

1. Poisson Counts: the random variable NðX\BÞ has a Poisson distribution PðlÞ with

lðBÞ ¼
Z
B

kðuÞdu ¼ k Bj j; ð16Þ
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2. Homogeneous Intensity: the expected number of points hitting a test set B is

E½NðX\BÞ� ¼ k Bj j; ð17Þ

3. Independence: if B1;B2; . . . are disjoint regions of the plane, then
NðX\B1Þ;NðX\B2Þ; . . . are independent random variables.

5 Point Process Error Models

Returning to the eye tracking experiment, we are asking test subjects to visually
measure the height of a bar ðhÞ using a ruler which is d units away. As is suggested in
the picture on the right in Fig. 1, the measurement effort leads to the formation of an
eye tracking spatial point pattern as a cluster around the point h. (We will use the
notation h ¼ ð0; hÞ when referring to the point in the plane and h for its length.). From
out of this cluster, the subject produces a number ĥj most often different from h leading
to a difference ej, which we are calling the visual measurement error.

To quantify this, we begin with a spatial point pattern given in Definition 1. In
order to specify the magnitude ej, we need an appropriate distance measure [4].
A natural approach is the classic Euclidean norm for the plane and use it to define the
pairwise distances

dij ¼ xi � xj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þðyi � yjÞ2

q
ð18Þ

This distance is defined independent of the eye tracking behavior, which is a
concern, since we are trying to understand the impact of visualization design on the
visual measurement error.

Fig. 3. Right: Shows the nearest neighbor distance is a from point to point in the process. Left:
shows the empty-space distance is from a fixed location to a point in the process
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We are modelling through the lens of the eye tracking patterns. Therefore, it is
reasonable we consider whether there is a characteristic of the pattern that reveals the
estimated height. This means we seek a “process specific” distance measure. Choosing
a point in the process, say xi, we define the nearest neighbor distance (Fig. 3) as

di ¼ minj 6¼idij ð19Þ

In our situation, we need to identify areas of interest (AOI) and measure how the
process behaves in and around them. For example, we might question if the process
enters a disk around h. This leads us to a final measure of distance. The empty-space
distance

dðuÞ ¼ minj u� xj
�� ��: ð20Þ

It is the distance from a fixed reference location u to the nearest point in the
process.

6 Analysis of Fixation Point Process

The first question we must face is whether the fixation points are randomly generated
by the eye. In what follows, we do two things. First, we consider whether a reasonable
error model derived, assuming the fixation points, satisfies complete spatial random-
ness (CSR) criteria. Second, we will show that CSR does not provide any of the desired
implications of geometric structure.

6.1 Nearest Neighbor

Let us consider the cluster of fixation points about the point h ¼ ð0; hÞ. The experiment
asks the test subject is to estimate h. Suppose that ĥ is returned. Odds are they are
different. We have been calling this the visual measurement error. We have now
reached the beginning of the modelling process. The first issue we face is to define the
error metric to be used. This is more challenging than it seems. Of course, the distance
h� ĥ
�� �� is obvious but it contains no information about the point process.

As a starting point, we will suppose fixation points form a homogenous Poisson
process called X. To include the point of X in the measurement process, we could
reason as follows. While we do not know how the brain does the visual measurement, it
seems safe to believe the points of X nearest h contribute the most information.
Suppose we place a disk around h with radius e. We then increase the radius until the
disk makes contact with a point of X. This is the empty space distance discuss above. It
is a random variable with a known probability distribution function [9]

HSðrÞ ¼ 1� expð�kpr2Þ: ð21Þ
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Using this, we derive the mean empty space distance is

ms ¼ 1

2
ffiffiffi
k

p : ð22Þ

This tells us that the expected difference between the observed and actual height of
the bar. Is this a good error model? We note the mean is independent of h. Another
feature is the mean is proportional to the inverse square root of the intensity k. This is
curious. If we increase by four the number of points about h, we will reduce the error
by only a half. It would seem that increasing the amount of visual activity by so much
produced too little.

6.2 Stationary Process

It already seems as though modeling eye tracking as a spatially random point process
has issues. We now see another. CSR is stationary or translation invariant [4]. For-
mally, we say a point process X stationary if for every vector v, the process Xþ v has
the same statistical properties as X.

Suppose that X is a stationary process associated with an eye tracking experiment.
Consider the vector v ¼ ðd; 0Þ and form the translated process X0 ¼ Xþ v. Being
stationary X0 has the same properties at ðd; hÞ as X at ð0; hÞ. This would say that the
error inherent in measuring the bar height by looking at the ruler is no different than
looking at the bar.

Does this seem reasonable? Let us perform a simple analysis. If we think of the
eyes as tracing gaze paths generally along y ¼ h from the bar to the ruler, it is seems
plausible the paths can be bounded by a triangle1, as show in Fig. 4. This shows that a
small angle error in “shooting” a path from the bar to ruler can result in an error of the
form

e ¼ d tanðhÞ: ð23Þ

While not rigorous, it supports a belief the visual measurement error depends on the
distance of the bar from the ruler.

1 A more rigorous approach is to consider stochastic paths from the bar to the ruler generated by a
Brownian motion. These would be bounded by the famous square root curve opening to the left. This
is another interesting research direction to follow, particularly given Kendall’s work on diffusion
models of Bookstein triangles [12]
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6.3 Inhomogeneous Processes

Based on the preceding discussion, homogeneous point processes make poor models of
visual measurement error. Therefore, our next step along this path is to find a good
model with a non-constant intensity. The numerical covariate of the distance from a
selected point to say ð0; hÞ might serve as an excellent effect to build into the model. It
could represent the challenge/ease one has in concentrating on h. This is a good subject
to explore in upcoming work.

The most obvious characteristic we have not addressed in our error modeling
discussion is that the fixation points cluster around areas critical to measuring the
height of bar A. See Fig. 1. Cluster formation is typically modelled in steps similar to
growing a forest. First, a process places parent points (trees). Then in a region about the
parent, child points (seedlings) are placed according to another distribution. Most of the
popular cluster models assign independence to these clusters meaning what happens
around one tree does not affect another. (Trees are not interacting with each other.).
This confronts another issue. Are the clusters are spatially correlated? Correlation is
likely as judging the height of the bar requires looking at both the bar and the ruler.

Gathering our thoughts, a useful cluster model needs the parents to be fixed with
clusters forming around them. Consideration needs to be given to how the children in
different clusters interact. For example, the eye fixating on a point near the bar might
then quickly skip to the ruler. One approach to modeling this skipping behavior is to
choose a child in each cluster and connect them by line. The simplest way to connect
all three clusters is to build triangles with vertices in each point cluster.

This, then, has led us to statistical shape processes as a reasonable basis for visual
measurement error modeling.

Fig. 4. This suggests that if the eye makes a small error in tracing along the line from the bar to
the ruler, then the resulting error grows linearly in the distance.
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7 Stochastic Geometry Processes

We are exploring the relationship between visual measurement error and the geomet-
rical shape of subcomponents of a visualization. In the first part, we viewed the eye as
sampling data at points in the picture. We then built models utilizing random point
processes. These mechanisms place points “randomly” around the plane based on
underlying premises.

We now make a major change of philosophy. While we track fixation points, we
suggest that the brain is seeing geometry in our case triangles. As show conceptually in
Fig. 5, we propose to consider a mechanism placing triangles randomly on the visu-
alization. To the best of our knowledge, stochastic geometry has yet to be utilized in
usability analysis of information visualizations.

To this end, we must introduce the notions of landmark configurations and shape.
We follow the approach introduced by Kendall [13]. Herein, we use the presentation by
Dryden and Mardia [14].

7.1 Landmark Configurations

Consider a family of bar graphs. Any single bar graph is a collection of rectangles
positioned on some (normally unspecified) coordinate system. In order to relate the
family of bar graphs to each other, we introduce landmarks [14, 15].

As shown in Fig. 6 the landmarks are chosen as the corners of the bar. The
landmarks ensure that a family of bar graphs, which varies the parameters d, w and h,
maps the corners correctly. In practice, a heuristic approach is taken to landmark
selection [14]. For visualizations of count data, landmarks might be assigned to corners
of rectangles, the intersection of lines and so forth.

Fig. 5. A random triangle process
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Definition 5: A landmark is a point of correspondence on each object that matches
between and within populations.

Definition 6: A configuration is the set of landmarks on a particular object:

fx1; x2; . . .; xkg ð24Þ

For the planar case,

xj ¼ xj
yj

� 	
ð25Þ

7.2 Shape and Size

Consider the triangle in Fig. 6. It seems reasonable that where the triangle occurs in the
visualization does not affect its intrinsic geometric properties. In most bar graphs, the
bar rectangles are either horizontal or vertical. Which one is used will cause the triangle
to rotate. Again, one would suspect that rotation does not change the intrinsic prop-
erties of the triangle. As a viewer can zoom in or out, the geometric properties should
remain unchanged. Translation, rotation, and scaling comprise the so-called Euclidean
similarity transformations (see [14] for precise definitions).

With these ideas in mind, Kendall [13] proposed the following definitions of shape
and size.

Definition 7: Shape is all of the geometric information that remains after location,
scale, and rotational effects are filtered out of an object.

Definitions require examples. Let us consider the triangle in Fig. 7. If it is translated,
the angles do not change. If it is rotated, the angles do not change. If the triangle is

Fig. 6. The landmark configuration of a single bar with the triangle shape needed to capture
error in visual measurement
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dilated, the angles do not change. Hence, the angles invariant under the set of Eucli-
dean similarity transformations. Another item to note is that aþ bþ c ¼ 180�.
Therefore, we need to know only two of the three angles to identify the shape of the
triangle. This little observation was made profound by Kendall ([16–18]). In practice
however, using all three angles as shape parameters has proven to be problematic
particularly in the possibility of a degenerate case of a flat triangle. We will use the
shape parameters proposed by Bookstein [15, 19].

Definition 8: The size-and-shape is all of the geometric information that remains
after location and rotational effects are filtered out of an object.

The notion of the size of an object being is invariant over scaling is odd. It means
that size is internal. A common version is the sum of the lengths from a vertex to the
centroid. We will introduce another in the next section.

7.3 Bookstein’s Approach to Triangles

Rather than continuing this discussion in an abstract sense, let us focus on the case of
the triangles in the plane. We will use Bookstein’s approach [15, 19] as it illustrate the
concept of stochastic triangles fairly well.

We begin the following statistical model:

pk ¼ zk þ dk for k ¼ 1; 2; 3 ð26Þ

We interpret pk as the sampling of kth landmark zk, in which encountered an error
of dk. In coordinate form

Fig. 7. The internal angles of a triangle describe the shape of the triangle.
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xk
yk

� �
¼ zkx

zky

� �
þ dkx

dky

� �
for k ¼ 1; 2; 3 ð27Þ

The error terms are random variables with a normal distribution,

dkx; dky �Nð0; r2kÞ ð28Þ

As shown in Fig. 8 left picture, there are three clusters of fixation points. For
simplicity, we will assume that each has M of these. We draw a point from each cluster
to form the jth sample configuration

P j ¼ fp j
1; p

j
2; p

j
3g for j ¼ 1; . . .; n where n ¼ M3: ð29Þ

What can we hope to learn from this information? We will not be able to recover
the original landmarks since our data might have been subject to translation, rotation, or
scaling changes. Therefore, we must focus on the size and shape parameters. For the
purpose of this paper, size characteristics will suffice.

7.4 Configuration Sizes

In our original triangle derived from the eye tracking experiment, we have

z1 ¼ ðdþw; 0Þ z2 ¼ ðdþw; hÞ z ¼ ðdþw; hÞ ð30Þ

As nothing in what is to follow will distinguish d from w, let us relabel dþw as d.
By Eq. (17),

Fig. 8. Left: Connect any three points from each cluster. Right: Bookstein’s approach to a
random configuration
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d12 ¼ z2 � z1k k ¼ h d23 ¼ z3 � z2k k ¼ d d13 ¼ z3 � z1k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2

p
ð31Þ

Using the data from the jth configuration, we estimate the distances with

d̂ j
12 ¼ p j

2 � p j
1

�� �� d̂ j
23 ¼ p j

3 � p j
2

�� �� d̂ j
13 ¼ p j

3 � p j
1

�� �� ð32Þ

Let us now integrate the stochastic elements. In Fig. 9, we show a simplified
calculation of the type in Eq. (32) in which we translated to the origin. By Eq. (28),

g ¼ d2x � d1x g�N(0,r212Þ
n ¼ d2y � d1y n�N(0,r212Þ

ð33Þ

With r212 ¼ r21 þ r22
In Fig. 9, we show how an edge of the triangle is calculated based upon the eye

tracking fixation points. The edge shown corresponds to the height of the Bar A. The
random variable length D represents the measure reported by the test subject so our
visual measurement error corresponds to h� Dj j.

The quantity D=r12, introduced in Fig. 9, has the non-central Chi-distribution with
2 degrees of freedom and non-centrality parameter k ¼ h2=r212 [5]. Its probability
density function [20] is

x
r2

exp
�ðx2 þ h2Þ

2r2

� 	
I0

xh
r2

� 	
: ð34Þ

Here I0 is the Modified Bessel Function of the First Kind [21] with series expansion

1þ x2

4
þ x4

64
þ x6

2304
þ x8

147456
þ x10

14745600
þO x11


 � ð35Þ

The mean of the distribution of D [20] as shown in Fig. 9 is

E½D� ¼
ffiffiffi
p
2

r
� r � L1=2 � h2

2r2

� 	
ð36Þ

In our notation, L1=2ðxÞ is the generalized Laguerre polynomial [10]. This is

L1=2ðxÞ ¼ 1F1 � 1
2
; 1; x

� 	
ð37Þ

This introduces the Confluent Hypergeometric Functions (Kummer’s Functions)
[10] into our model. This is equivalent to [10]
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1F1 � 1
2
; 1; � h2

2r2

� 	� 	
¼ 1

2r2
e�

h2

4r2 h2I1
h2

4r2

� 	
þ h2 þ 2r2

 �

I0
h2

4r2

� 	� 	
ð38Þ

Combining the previous three equations, we get

E½D� ¼
ffiffiffiffiffiffiffi
p
8r2

r
e�

h2

4r2 h2I1
h2

4r2

� 	
þ h2 þ 2r2

 �

I0
h2

4r2

� 	� 	
: ð39Þ

Figure 9 on the left shows our conceptual construction of the line segment with
length D. A simple means to predicting the expected length would be to believe the two
clusters are unrelated and will “average themselves out” regardless of the spread of the
fixation points. Hence, we might suspect

E½D� ¼ h: ð40Þ

However, the expression for the expected value in Eq. (39) might cast some doubt
on this suspicion. Now we must balance intuition with mathematical analysis.

In Fig. 10 we show h� E½D�j j for different values of the standard deviation of the
spatial point pattern (r). The difference is astounding. If we simply view the point
pattern as having a standard normal spatial distribution then the errors are on the size h
itself, nearly 100% error. For r ¼ 5, the error is so large it is senseless. Now let us go to
the other end. If the standard deviations of the fixation point pattern on both ends are
small, the expected length of that edge is very close to the actual bar height, particularly
for taller bars.

Fig. 9. Approximating the edge length with the distance between sample points
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After some thought, we see that k ¼ h2=r2 is the critical factor. If 1 � k then
Eq. (40) is approximately true. Hence, there is little visual measurement error on
average. However, if k 	 1 then there is significant difference leading to large visual
measurement error. In his paper, Bookstein commented that his model needs 1 � k to
be sensible and have reliable statistics. If the spread of the point patterns from both
ends of the bar essentially cover the bar, the model allows for large expected lengths of
the bar since such long bar lengths can be “drawn” randomly. If we are thinking “point
processes”, this conversation makes no sense, as we have seen. However, thinking in
terms of a triangle process helps us see the issues in visualizing length and not location.

We should also mention, we have not yet discussed the “rest” of the triangle. We
can learn several things from the lengths. What can we learn from the shapes? This
question is unexplored. Much work remains, but this discussion seems to justify
considering stochastic shape processes in modeling eye patterns on information
visualizations.

8 Conclusion

Let us summarize what we have discussed in this paper. The problem at hand is visual
measurement error encounter in information visualizations. We explored the simplest
of all visual tasks: determine the height of a bar relative to a given “ruler”. Simple, but
we know from experience, answers can vary wildly. As designers of visualizations, we
would like to know which qualities of the visualization contribute to the erroneous
measurements. It is easy to see that the geometry of the layout of the influences
measurement error. Place a bar next to the scale and there is likely to be little error.
Move the bar across the page and error would worsen. In modelling error, we need to
include geometric factors.

In this paper, we explored the use of eye tracking data to help us understand error
models based on the geometry of the figure. In the first half of the paper, we focused on
stochastic point processes as a way to model the fixation points. After looking at the
qualities of several classical processes, we found they gave no usable information about
the error measurement and the underlying geometry.

Fig. 10. Notice how the smaller variances in the fixation patterns lead to smaller expected visual
measurement error
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In the second half of the paper, approached the fixation point data from a com-
pletely novel perspective: stochastic shape processes. To this end, we viewed the point
patterns as centering on various landmarks of an underlying geometric entity, in our
case a triangle. We introduced the size and shape models for landmark data based on
Bookstien [15]. Though we focused on just the side of the triangle related to our Bar A,
we managed to demonstrate a working approach to the measurement error. We were
able to discuss probability distributions and expected value of this error. In the end, we
saw there are issue to be considered when building a bar graph. For example, the bar
needs to be long enough to separate the cluster of focal points.

This is a new approach to error modeling in information visualization. We believe it
has great promise in both experimental design and analytical analysis of visualizations.
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