
On the Effectiveness of Control-Flow
Integrity Against Modern Attack

Techniques

Sarwar Sayeed(B) and Hector Marco-Gisbert

University of the West of Scotland, Paisley, UK
{sarwar.sayeed,hector.marco}@uws.ac.uk

Abstract. Memory error vulnerabilities are still widely exploited by
attackers despite the various protections developed. Attackers have
adopted new strategies to successfully exploit well-known memory errors
bypassing mature protection techniques such us the NX, SSP, and ASLR.
Those attacks compromise the execution flow to gain control over the tar-
get successfully.

Control-flow Integrity (CFI) is a protection technique that aims to
eradicate memory error exploitation by ensuring that the instruction
pointer (IP) of a running program cannot be controlled by a malicious
attacker. In this paper, we assess the effectiveness of 14 CFI techniques
against the most popular exploitation techniques including code reuse
attacks, return-to-user, return-to-libc and replay attacks.

Surveys are conducted to classify those 14 CFI techniques based on the
security robustness and implementation feasibility. Our study indicates
that the majority of the CFI techniques are primarily focused on restrict-
ing indirect branch instructions and cannot prevent all forms of vulnera-
bility exploitation. Moreover, we show that the overhead and implemen-
tation requirement make some CFI techniques impractical. We conclude
that the effort required to have those techniques in real systems, the
high overhead, and also the partial attack coverage is discouraging the
industry from adopting CFI protections.

Keywords: CFI Protection Techniques · CFI attacks

1 Introduction

Cyber Security is a changing platform, where new defense advances are being
evolved every moment to cope with the ongoing challenges. Due to continuous
changes in the attacking methods, a protection technique often remains outdated
and having required to come up with something more advanced. From the past
few decades, code-injection attack was most significant to corrupt the control-
flow of a program. To meet such attacking challenges, various strong protection
techniques were introduced by security developers. However, in-time the attack-
ers have advanced their ability to corrupt control-flow in a more efficient way;
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
G. Dhillon et al. (Eds.): SEC 2019, IFIP AICT 562, pp. 331–344, 2019.
https://doi.org/10.1007/978-3-030-22312-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22312-0_23&domain=pdf
http://orcid.org/0000-0002-9164-7672
http://orcid.org/0000-0001-6976-5763
https://doi.org/10.1007/978-3-030-22312-0_23


332 S. Sayeed and H. Marco-Gisbert

hence, it was imperative to introduce another protection technique which would
mitigate such leading threats.

CFI was first initiated by Microsoft in 2005 to obstruct the control-flow
exploitation challenges. CFI is a security policy which can be implemented to
mitigate various levels of severe attacks that mainly occur to corrupt the control-
flow of a program. To accomplish an attack, an adversary goes through various
attacking stages where obtaining control over the IP is the very first step of
the vulnerability exploitation. A compromised control-flow may lead to vari-
ous exploitation techniques, such as Code-reuse attacks (CRA), Code injection,
return-to-libc. Protection techniques such as Stack Smashing Protector (SSP),
Address Space Layout Randomization (ASLR) and Non-executable (NX) bit
are some mechanisms that are present in all modern systems, but unfortunately,
recent attacking techniques are improved to bypass all those protection mecha-
nisms [23].

The main contributions of this paper are:

• We analyze 14 CFI techniques revealing their main features and weaknesses.
• We show the competence between hardware and software based CFI imple-

mentation.
• We conduct a survey to classify the CFI techniques based on attacks that can

bypass them.
• We summarize the performance overhead revealing which of the CFI tech-

niques are prohibitive because of the overhead introduced.

The paper is organized as follows; Sect. 2 is the background section which
discusses control-flow transfers, attacks, and integrity. Section 3 defines various
attack vectors that subvert the control-flow of a program. In Sect. 4, we review
14 CFI techniques and point out the limitations associated with each technique.
Section 5 involves analyzing software and hardware-based CFI techniques and
produces a solution by debating which techniques are more protective against
control-flow attacks. In addition to that, the impact of performance overhead
is also discussed. Finally the concluding Sect. 6, which summarizes the findings
and discusses future work.

2 Background

To comprehend the complete control-flow mechanism this section describes types
of control-flow transfers and attacks adhering to them. CFI method and its
effectiveness towards control-flow attacks are also discussed.

2.1 Control Flow Transfers

Control-flow transfers can be direct or indirect. Direct control-flow transfer com-
prises read-only permissions; hence, these types of transfers are more secure and
protection is implemented by the memory management unit (MMU). Whereas
indirect control-flow transfer relies on run-time information; such as register or
memory values. In a control-flow attack, attackers tend to divert the indirect
control-flow to their chosen location to perform arbitrary code execution [32].



On the Effectiveness of CFI Against Modern Attack Techniques 333

2.2 Control Flow Attacks

A control-flow attack is a run-time exploitation technique which is performed
during a run-time state of a program [13]. In this attacking technique, the adver-
sary gets hold of the instruction pointer to divert the execution flow by exploiting
an application’s weakness. It is also used to overwrite the buffer in the stack. Two
major classes of control-flow attacks are mainly performed by random attackers;
Code injection and Code-reuse attack.

2.3 Control Flow Integrity

Control-Flow Integrity is a defense policy intending to restrict unintended con-
trol flow transfers to unauthorized locations [31]. It is able to defend against
various types of attacks whose primary intention is to redirect the execution
flow elsewhere. Many CFI techniques [4,6,24,27–29,35,38] have been proposed
over the past few years. However, they were not fully adopted due to practical
challenges and significant limitations.

3 Threats

In this section, we present several attacking techniques utilized by adversaries to
subvert the control-flow. The nature of exploitation strategies and their ability
to perform the attacks are pointed out.

3.1 Code Reuse Attack

Code-reuse attack is an attacking technique which relies on reusing the existing
code [5]. CRA exploitation occurs using codes that are already present in the
target’s application. For instance, the very first step of CRA begins by exploiting
a vulnerability in an application that runs in the targeted system. Once the
vulnerability is discovered, then the target machine can be exploited by malicious
input.

3.2 Code Injection

Code injection involves injecting and executing malicious code in the memory
address space [30]. The exploitation can be achieved by providing malicious
payload as input and then get processed by the program. Code injection occurs
when a program bug handles untrusted data. For instance, if a program does not
perform bounds checking of the given input, then an adversary might provide
large data than the actual limit resulting in possible buffer corruption.

3.3 Disclosure Attack

Disclosure attack endorses an attacker to uncover sensitive information, which
may include source code, stack information, passwords or database informa-
tion [19]. This attack can be exploited by authenticating users confidential infor-
mation and then apply such information to perform further attacks.



334 S. Sayeed and H. Marco-Gisbert

3.4 Return-to-User

Return-to-user (ret2usr) overwrites kernel data with user address space [21].
To conduct this attack vector, an adversary gets hold of the return address,
dispatch tables, and function pointers to perform arbitrary code execution. The
ultimate cause involves hijacking the kernel level control-flow to redirect towards
the userspace code.

3.5 Return-to-Libc

Return-to-libc occurs by jumping to the function address and allocating argu-
ments [34]. The adversary does not require to inject payload to exploit the target.
It overwrites the instruction pointer with the address pointing to the Global Off-
set Table (GOT), which contains pointers to glibc library functions.

3.6 Replay Attack

In this attack, an adversary copies series of data between two users and takes
advantage of the event by communicating with one or both parties [25]. The
adversary aims to eavesdrop the exchange of messages or aware of the message
rule from earlier communications between users. Correctly encrypted message,
sent by attackers, is considered as legit request and the necessary task is per-
formed accordingly.

4 CFI Protection Techniques and Limitations

In this section, we discuss the most relevant CFI techniques that can be used to
prevent control-flow hijacking. In our discussion, we also point out the limitations
associated with individual techniques. Table 1 shows the enforced mechanisms
in each CFI and Table 2 represents the essential characteristics related to each
technique.

4.1 CFI Principles, Implementations, and Applications (CFI)

CFI was proposed by Abadi et al. [1,2] and it is the first CFI proposal for CFI
implementation. They have implemented inlined CFI for windows on the x86
platform. Their work suggests that a Control flow graph (CFG) be obtained
before program execution. The CFG monitors runtime behavior; therefore, any
inconsistency in the program results in CFI exception to be called and appli-
cation to terminate. However, Davi et al. [14] point out three main limitations
of this technique. First, the source code is not always available. Second, bina-
ries lack the required debug information and finally, it causes high execution
overhead because of dynamic rewriting and run-time checks. It is also unable to
determine if the function returns to the current call site [9].



On the Effectiveness of CFI Against Modern Attack Techniques 335

4.2 CCFI: Cryptographically Enforced CFI (CCFI)

CCFI possesses new pointer arrangements, which can not be imposed with static
approaches [24]. It comprises two prime attributes. First, it recategorizes function
pointers at runtime to boost typecasting. Second, it restricts swapping of two
valid pointers which consist of the same type. Nevertheless, CCFI comprises
an average overhead of 52% on all benchmarks. CCFI is vulnerable to replay
attacks [28]. It also fails to identify structure pointers. It is possible to disrupt
the control flow by altering the current pointer with the old pointer. CCFI mainly
focuses on defending the user level program and does not include kernel level
security [24].

4.3 CFI for COTS Binaries (binCFI)

In this technique, CFI is applied to stripped binaries on x86/Linux architecture.
It involves implementing CFI to the shared libraries; for instance glibc [38].
binCFI focuses on overcoming the drawbacks which are highlighted by the static
analysis technique. According to Niu et al. [29], bin-CFI permits a function to
return to every viable return addresses; hence, the accuracy of this CFI is fragile
to Return-Oriented programming (ROP) based attacks.

4.4 Practical CFI and Randomization for Binary Executables
(CCFIR)

CCFIR gathers the legit target of indirect branch instructions and places them
randomly in a “Springboard Section” [37]. CCFIR restricts indirect branch
instructions and permits them only towards white-list destinations. The average
execution overhead of CCFIR is 3.6% and can be a maximum of 8.6%. It can
be challenging to disassemble a PE file properly. CCFIR utilizes three ID’s for
each branch instruction, excluding the shadow stack. A ROP chain can be built
to subvert CCFIR [27].

4.5 Hardware (CFI) for an IT Ecosystem (HW-CFI)

HW-CFI is a security proposal by NSA information assurance [4]. They put
forward two notional features to enhance CFI. One of the features recommends
implementing CFG to hardware. The other feature protects the dynamic control-
flow by a protected shadow stack. This CFI proposal is a notional CFI design and
might not be compatible with all system architecture. Though shadow stack can
be an excellent option but monitoring shadow stack explicitly might not often
be possible.

4.6 Per-Input CFI (PICFI)

PICFI imposes computed CFG to each input. It is certainly difficult to consider
all inputs of an application and CFG for each of the inputs. Therefore, PICFI



336 S. Sayeed and H. Marco-Gisbert

Table 1. Mechanism that is enforced in CFI techniques

CFI techniques CFI enforcement

CFI Inlined CFI

CCFI Dynamic Analysis

binCFI Static Binary Rewriting

CCFIR Binary Rewriting

HW-CFI Landing Point

PICFI Static Analysis

KCofi SVA Compiler Instrumentation

Kernel CFI Retrofitting Approach

IFCC Dynamic Analysis

CFB Precise Static CFI

SAFEDISPATCH Static Analysis

C-Guard Dynamic Instrumentation

RAP Type Based

O-CFI Static Rewriting

runs an application with empty CFG and lets the program to discover the CFG
by itself [29]. PICFI consists overall run-time overhead as low as 3.2%. PICFI
statically computes CFG to determine the edges that will be added on run-
time and implements DEP to defend against code injection. However, statically
computed CFG does not produce a proper result, and various experiments prove
that DEP is by-passable.

4.7 KCoFI: Complete CFI for Commodity Operating System
Kernels (KCoFI)

KCoFI ensures protection for commodity operating systems from attacks, such
as, ret2usr, code segment modification [12]. KCoFI performs its tasks in-between
the stack and the processor. KCoFI includes a conventional label-based approach
to deal with indirect branch instructions. KCoFI consists of about 27% overhead
on transferred file with the size between 1 KB and 8 KB and on smaller files it
consists average overhead of 23%. Though KCoFI fulfills all the requirements of
managing event handling based on SVA but the outcome of this CFI enforcement
is too expensive, over 100% [17].

4.8 Fine-Grained CFI for Kernel Software (Kernel CFI)

Kernel CFI implements retrofitting approach entirely to FreeBSD, the MINIX
microkernel system, MINIX’s user-space server and partially to BitVisor hyper-
visor [17]. It follows two main approaches to CFI implementation. The aver-
age performance overhead ranges from 51%/25% for MINIX and 12%/17% for



On the Effectiveness of CFI Against Modern Attack Techniques 337

Table 2. Key features of CFI techniques.

CFI techniques Based on Compiler
modified

Shadow
stack

CFG Label Coarse
grained

Fine
grained

Backward
edge

HW SW

CFI [1,2] ✓ ✓ ✓ ✓ ✓ ✓

CCFI [24] ✓ ✓ ✓ ✓ ✓

binCFI [38] ✓ ✓ ✓

CCFIR [37] ✓ ✓ ✓ ✓

HW-CFI [4] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PICFI [29] ✓ ✓ ✓ ✓ ✓

KCoFI [12] ✓ ✓ ✓ ✓ ✓

Kernel CFI [17] ✓ ✓ ✓ ✓

IFCC [35] ✓ ✓ ✓ ✓

CFB [6] ✓ ✓ ✓ ✓ ✓

SAFEDISPATCH [20] ✓ ✓ ✓

C-Guard [26] ✓ ✓ ✓ ✓

RAP [18] ✓ ✓ ✓ ✓ ✓

O-CFI [27] ✓ ✓ ✓ ✓ ✓

FreeBSD. Though Kernel CFI cuts down the indirect transfer up to 70%; how-
ever, there still a chance remains for indirect branch instructions to transfer
control to an unintended destination.

4.9 Enforcing Forward-Edge CFI in GCC & LLVM (IFCC)

Indirect Function-Call Checks (IFCC), a CFI transformation mechanism, is
imposed over LLVM. IFCC introduces a dynamic tool which can be used to
analyze CFI and locate forward edge CFI vulnerabilities [35]. The implemen-
tation mainly concentrates on three compiler-based mechanisms. It consists 1%
to 8.7% performance overhead measured on SPECCPU2006 benchmark. Nev-
ertheless, IFCC fails to protect against control Jujutsu attack, a fine-grained
attacking technique which aims to execute malicious payload [16].

4.10 Control-Flow Bending: On the Effectiveness of CFI (CFB)

CFB comprises static CFI implementation [6]. It is based on non-control-data
attacks. For instance; if arguments are overwritten directly, then that is consid-
ered as a data-only attack as it did not require to invade the control-flow for such
operation, but if the overwritten data is non-control-data, then it has affected
the control-flow. CFB implements fully-precise static CFG which can be unde-
cidable [16]. CFB also violates certain functions at a high level and execution of
such functions likely to alter the return address and corrupt control-flow [29].



338 S. Sayeed and H. Marco-Gisbert

4.11 SAFEDISPATCH: Securing C++ Virtual Calls from Memory
Corruption Attacks (SAFEDISPATCH)

SAFEDISPATCH defenses against vtable hijacking. It examines C++ programs
statically and carries out a run-time check to ensure that the control-flow at
virtual method call sites is not hijacked by attackers [20]. SAFEDISPATCH is
an enhanced C++ compiler and is built based on Clang++/LLVM. The run
time overhead of SAFEDISPATCH is quite low as 2.1% and having a mem-
ory overhead of 7.5%. However, all the compiler based fine-grained illustration
undergoes common problems: Shared libraries; as recent programs frequently use
shared library or dynamic loaded libraries [28]. SAFEDISPATCH is also unable
to protect binaries; hence, making them vulnerable to ROP based attacks [27].

4.12 Control Flow Guard (C-Guard)

Control Flow Guard is a highly implemented security mechanism developed by
Microsoft to defense against memory error vulnerabilities [26]. It enhances high
restrictions so that arbitrary codes cannot be executed through vulnerabilities
such as memory buffer overflow. However, it is unable to verify when a function
returns to some unauthorized destination [18].

4.13 Reuse Attack Protector (RAP)

RAP is imposed on GCC compiler as a plugin; therefore, developers do not have
to use a reformed compiler to utilize RAP [18]. RAP has a commercial version,
which comes with two prime defense mechanisms to protect against control-flow
attacks. However, RAP’s implemented approach is very much similar to the
traditional label-based approach. Label based CFI suffers from security issues as
a function could return to any call site. RAP does not have a solid protection
against ret2usr attacks [22].

4.14 Opaque CFI (O-CFI)

O-CFI comprises binary software randomization for CFI enforcement [27]. It
protects legacy binaries without even accessing the source code. CFI checks are
done on Intel x86/x64 memory protection extensions (MPX), which is hard-
ware driven. It consists of a performance overhead of only 4.7%. O-CFI com-
prises static binary phase; therefore, it fails to protect codes that are gener-
ated dynamically. It is also incompatible with the Windows Component Object
Model(COM). Moreover, MPX is much slower than software-based implementa-
tion and not protective against memory based errors.

5 Analysis

In this section, we assess the effectiveness of software and hardware-based CFI
techniques against the threats presented in Sect. 3. The assessment involves sur-
veying on the security experiments that are done by various research groups



On the Effectiveness of CFI Against Modern Attack Techniques 339

Table 3. State of the art of the attacks bypassing CFI

CFI Tech. Code reuse Code-injection Disclosure Return2user Return2libc Replay

CFI [7] [7]

CCFI [28]

binCFI [27]

CCFIR [14]

HW CFI [8]

PICFI [15]

KCofi [7] [7]

Kernel CFI [16,33]

IFCC [16]

CFB [36]

SafeDispatch [14]

C-Guard [10] [3]

RAP [22]

O-CFI [11]

and then put them together to define the flaws. We establish the outcome of
our evaluation by suggesting an optimal security solution and also discuss the
impact of performance overhead towards CFI implementation.

5.1 Software-Based CFI

Software-based CFI enforcement primarily focuses on program instructions,
which are corrupted by indirect branch instructions.

Table 3 shows that CFI [1] does not comprise strong protection and accord-
ing to Chen et al. [7], it is possible to execute ROP based attacks while this
technique is deployed. bin-CFI does not comprise shadow stack policy and uses
ID/label for each branch instructions. Mohan et al. [27] illustrates that the most
recent experiments prove that label based approaches are also vulnerable to
ROP based attacks. Though CCFIR enhances a security policy that restricts
indirect branch instructions to predefined functions; however, it misuses exter-
nal library call dispatching policy in Linux and also causes boundless direct
calls to critical functions in windows libraries which can be exploited. More-
over, the springboard section can be exploited by disclosure attacks [14]. PICFI
lacks security, and the control-flow can be compromised by performing three
distinguish attacking stages illustrated by [15]. KCoFI and Kernel CFI are ker-
nel based CFI techniques. KCoFI depends only on the source code; therefore,
ensuring minimal protection to binaries. It also does not provide stack protec-
tion; hence, it is exploitable by various memory error vulnerabilities, such as
CRA and memory disclosure [7]. Beside that, Kernel CFI is able to build a
minimal challenge to defend against ROP based attacks [33]. Table 3 also shows
that IFCC is unable to mitigate control-flow exploitation and can be by-passable



340 S. Sayeed and H. Marco-Gisbert

by control-flow attack [16]. Though CFB enhances strong CFI enforcement by
imposing shadow stack. However, it is evidenced that it can be by-passable by
CFG-Aware Attack [36]. SAFEDISPATCH is a compiler based CFI enforcement
focuses on securing indirect calls to virtual methods in C++, and it can also
be subverted by CRA such as ROP [14]. Control Flow Guard fails to protect
against indirect jumps. Moreover, It is fully by-passable by Back To The Epi-
logue (BATE) attack [3]. RAP makes it very hard for a ROP chain to be built
up; however, it is unable to provide security against ret2usr attacks [22].

5.2 Hardware-Based CFI

Hardware-based CFI enforcement requires the system to have hardware-based
components in place for deployment. Our assessment involves 3 CFI techniques,
which are implemented in both hardware and software. Hardware implementa-
tion is an expensive option as it might not be compatible with the running sys-
tem; hence, it may require to transform the whole system. CCFI requires AES-NI
implementation besides compiler fulfillment. Experiments suggest that AES-NI
can be exploited by replay attack [28]. HW-CFI comprises shadow stack to pro-
tect backward edge and landing point instructions for indirect branch transfers.
In the context of security, this CFI technique will fail to mitigate indirect branch
transfers if implemented. An adversary will be able to direct forward edge to any
landing point instruction causing control-flow corruption [8]. Memory Protection
Extention (MPX) is adopted by O-CFI; however, MPX is not a quick approach
and hits 4x slow down compared to the software approach. O-CFI can also be
exploited by function-reuse attacks [11].

5.3 Optimal Protection

We present that all the 14 CFI techniques comprise major limitations; hence,
they are very much prone to be compromised. Table 3 does not give any indica-
tion on how much effort is required to subvert the individual CFI; however, it
reveals the exploitation method, by providing a reference, related to particular
CFI technique.

Based on our analysis, we are able to identify two software-based CFI tech-
niques, which are more practical and realistic for industry deployment.

CCFIR, a coarse-grained approach, does not rely on weak implementations
such as CFG or shadow stack. Since it involves binary instrumentation; hence, it
does not need source code or debug information. It also protects backward edges
by allowing them only towards a white-list destination. CCFIR avoids most of
the weak implementation classes, which are used in most software-based CFI
techniques.

RAP, a fine-grained approach, has already been adopted by the industry.
A modified compiler is not required to utilize RAP. RAP enhances security by
ensuring that a function is called from a designated place and returned to that



On the Effectiveness of CFI Against Modern Attack Techniques 341

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

CCFI Kernel CFI CFI KCofi IFCC bin CFI CCFIR SAFEDISPATCH O-CFI PICFI

M
ax

im
um

 O
ve

rh
ea

d 
(%

)

CFI Techniques

Fig. 1. Performance overhead of major CFI techniques

specific function. RAP instruments Linux kernel at compile time to implement
strict CFI at runtime and assures that code pointer are not corrupted by the
adversary.

Though CCFIR and RAP are not a completely secure CFI enforcement
technique; however, they are able to restrict control-flow hijacking to an
extensive level.

5.4 Performance Overhead

Overhead plays a significant part in CFI implementation. Figure 1 presents the
maximum performance overhead of 10 CFI techniques. Distinct CFI techniques
use different platforms to measure execution, performance, and space overhead.
Figure 1 shows that CFI, KCofi, Kernel CFI cause the most overhead ranging
from 27%–51%. CFI enforcement with such amount of overhead is not accepted
and must receive a denial. bin-CFI consists considerable amount of overhead.
Hardware-based enforcement, CCFI, comprises 52% overhead raising the ques-
tion if hardware implementation is worth enough beside software implementa-
tion. However, O-CFI another hardware-based implementation comprises only
4.7% overhead. Compiler implemented CFI approaches, such as PICFI, IFCC,
SAFEDISPATCH comprise very low overhead too. CCFIR also consists of very
low overhead, 8.6%.

We evidence that an advanced CFI technique with high overhead may not
be accepted since, besides integrity, performance is an important factor.



342 S. Sayeed and H. Marco-Gisbert

6 Conclusions and Future Work

In this paper, we have surveyed 14 major CFI techniques. It is clear that each
technique comprises severe limitations and can be subverted by various attack
vectors. It is identified that software-based techniques are more secure compared
to hardware-based techniques and also based on practical implication. They are
easy to implement and does not require an improper architectural requirement.
Based on our findings, we have upheld two software-based techniques, assuming
that they provide enhanced protection in-terms of security. The impact of high
overheads has also been brought out in regards to CFI implementation. Our
survey has established that most CFI techniques are dis-functional to provide
proper security, and as a result, they were not fully acquired by the industry.
Hence, future researches on CFI may consider overcoming the limitations dis-
cussed in this paper to develop a more advanced CFI implementation.

For our future work, we would like to develop a standardized method, which
can be used in comparing and analyzing distinct CFI techniques so that particu-
lar information about CFI techniques and their attack types could be obtained.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, pp. 340–353. ACM, New York (2005). https://doi.org/10.1145/1102120.
1102165

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40
(2009). https://doi.org/10.1145/1609956.1609960

3. Biondo, A., Conti, M., Lain, D.: Back to the epilogue: evading control flow guard
via unaligned targets. In: Network and Distributed Systems Security (NDSS) Sym-
posium 2018 (2018). https://doi.org/10.14722/ndss.2018.23318

4. NSA Information Assurance: Hardware control flow integrity CFI for an IT ecosys-
tem. NSA, April 2015

5. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, pp. 30–40.
ACM, New York (2011). https://doi.org/10.1145/1966913.1966919

6. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bending:
on the effectiveness of control-flow integrity. In: Proceedings of the 24th USENIX
Conference on Security Symposium, SEC 2015, pp. 161–176. USENIX Association,
Berkeley (2015). http://dl.acm.org/citation.cfm?id=2831143.2831154

7. Chen, X., Slowinska, A., Andriesse, D., Bos, H., Giuffrida, C.: StackArmor: com-
prehensive protection from stack-based memory error vulnerabilities for binaries.
In: NDSS 2015. Internet Society, San Diego (2015). https://doi.org/10.14722/ndss.
2015.23248

8. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI: hardware-
enforced control-flow integrity. In: Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, CODASPY 2016, pp. 38–49. ACM,
New York (2016). https://doi.org/10.1145/2857705.2857722

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.14722/ndss.2018.23318
https://doi.org/10.1145/1966913.1966919
http://dl.acm.org/citation.cfm?id=2831143.2831154
https://doi.org/10.14722/ndss.2015.23248
https://doi.org/10.14722/ndss.2015.23248
https://doi.org/10.1145/2857705.2857722


On the Effectiveness of CFI Against Modern Attack Techniques 343

9. de Clercq, R., Verbauwhede, I.: A survey of hardware-based control flow integrity
(CFI). CoRR abs/1706.07257 (2017). http://arxiv.org/abs/1706.07257

10. Power of Community: Windows 10 Control Flow Guard Internals (2014). http://
www.powerofcommunity.net/poc2014/mj0011.pdf. Accessed 15 Jan 2018

11. Crane, S.J., et al.: It’s a TRaP: table randomization and protection against
function-reuse attacks. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015, pp. 243–255. ACM, New York
(2015). https://doi.org/10.1145/2810103.2813682

12. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity
for commodity operating system kernels. In: Proceedings of the 2014 IEEE Sym-
posium on Security and Privacy, SP 2014, pp. 292–307. IEEE Computer Society,
Washington, DC (2014). https://doi.org/10.1109/SP.2014.26

13. Davi, L., Sadeghi, A.-R.: Building Secure Defenses Against Code-Reuse Attacks.
SCS. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25546-0

14. Davi, L., Sadeghi, A.R., Lehmann, D., Monrose, F.: Stitching the gadgets: on
the ineffectiveness of coarse-grained control-flow integrity protection. In: Proceed-
ings of the 23rd USENIX Conference on Security Symposium, SEC 2014, pp.
401–416. USENIX Association, Berkeley (2014). http://dl.acm.org/citation.cfm?
id=2671225.2671251

15. Ding, R., Qian, C., Song, C., Harris, B., Kim, T., Lee, W.: Efficient pro-
tection of path-sensitive control security. In: 26th USENIX Security Sympo-
sium (USENIX Security 2017), pp. 131–148. USENIX Association, Vancouver
(2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/ding

16. Evans, I., et al.: Control jujutsu: on the weaknesses of fine-grained control flow
integrity. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS 2015, pp. 901–913. ACM, New York (2015).
https://doi.org/10.1145/2810103.2813646

17. Ge, X., Talele, N., Payer, M., Jaeger, T.: Fine-grained control-flow integrity for
kernel software. In: Proceedings of the IEEE European Symposium on Security
and Privacy, pp. 179–194, March 2016

18. grsecurity: How Does RAP Works. https://grsecurity.net/rap faq.php. Accessed 3
Feb 2018

19. Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP 2015, pp. 3–19. IEEE
Computer Society, Washington, DC (2015). https://doi.org/10.1109/SP.2015.8

20. Jang, D., Tatlock, Z., Lerner, S.: SafeDispatch: securing C++ virtual calls from
memory corruption attacks. In: NDSS 2014. Internet Society, San Diego, February
2014. http://dx.doi.org/doi-info-to-be-provided-late

21. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: Ret2dir: rethinking kernel
isolation. In: Proceedings of the 23rd USENIX Conference on Security Symposium,
SEC 2014, pp. 957–972. USENIX Association, Berkeley (2014). http://dl.acm.org/
citation.cfm?id=2671225.2671286

22. Li, J., Tong, X., Zhang, F., Ma, J.: Fine-CFI: fine-grained control-flow integrity
for operating system kernels. IEEE Trans. Inf. Forensics Secur. 13(6), 1535–1550
(2018). https://doi.org/10.1109/TIFS.2018.2797932

23. Marco-Gisbert, H., Ripoll, I.: On the effectiveness of NX, SSP, RenewSSP, and
ASLR against stack buffer overflows. In: NCA, pp. 145–152. IEEE Computer Soci-
ety (2014)

http://arxiv.org/abs/1706.07257
http://www.powerofcommunity.net/poc2014/mj0011.pdf
http://www.powerofcommunity.net/poc2014/mj0011.pdf
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1109/SP.2014.26
https://doi.org/10.1007/978-3-319-25546-0
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dl.acm.org/citation.cfm?id=2671225.2671251
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://doi.org/10.1145/2810103.2813646
https://grsecurity.net/rap_faq.php
https://doi.org/10.1109/SP.2015.8
http://dx.doi.org/doi-info-to-be-provided-late
http://dl.acm.org/citation.cfm?id=2671225.2671286
http://dl.acm.org/citation.cfm?id=2671225.2671286
https://doi.org/10.1109/TIFS.2018.2797932


344 S. Sayeed and H. Marco-Gisbert

24. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: cryptographically
enforced control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2015, pp. 941–951. ACM,
New York (2015). https://doi.org/10.1145/2810103.2813676

25. Microsoft: Replay Attacks (2017). https://docs.microsoft.com/en-us/dotnet/
framework/wcf/feature-details/replay-attacks. Assessed May 2018

26. Microsoft.com: Control Flow Guard (2013). https://courses.cs.washington.edu/
courses/cse484/14au/reading/25-years-vulnerabilities.pdf. Accessed 29 Mar 2018

27. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque control
flow integrity. In: 22nd Annual Network and Distributed System Security Sympo-
sium, NDSS 2015, San Diego, California, USA, 8–11 February 2015 (2015). https://
www.ndss-symposium.org/ndss2015/opaque-control-flow-integrity

28. Muench, M., Pagani, F., Shoshitaishvili, Y., Kruegel, C., Vigna, G., Balzarotti,
D.: Taming transactions: towards hardware-assisted control flow integrity using
transactional memory. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J.
(eds.) RAID 2016. LNCS, vol. 9854, pp. 24–48. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45719-2 2

29. Niu, B., Tan, G.: Per-input control-flow integrity. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS 2015, pp.
914–926. ACM, New York (2015). https://doi.org/10.1145/2810103.2813644

30. OWASP: Code Injection (2013). https://www.owasp.org/index.php/Code
Injection. Accessed 28 Sept 2017

31. Pappas, V.: Defending Against Return-Oriented Programming (2015). https://
www.cs.columbia.edu/∼angelos/Papers/theses/vpappas thesis.pdf. Accessed 21
Feb 2018

32. Payer, M.: Control-Flow Integrity: An Introduction (2016). https://nebelwelt.net/
blog/20160913-ControlFlowIntegrity.html. Accessed 21 April 2018

33. Pomonis, M., Petsios, T., Keromytis, A.D., Polychronakis, M., Kemerlis, V.P.: krˆx:
comprehensive kernel protection against just-in-time code reuse. In: EuroSys, pp.
420–436. ACM (2017)

34. Shellblade.net: Performing a ret2libc Attack (2018). https://www.shellblade.net/
docs/ret2libc.pdf. Accessed 25 May 2017

35. Tice, C., et al.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
Proceedings of the 23rd USENIX Conference on Security Symposium, SEC 2014,
pp. 941–955. USENIX Association, Berkeley (2014). http://dl.acm.org/citation.
cfm?id=2671225.2671285

36. van der Veen, V., et al.: Practical context-sensitive CFI. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS 2015,
pp. 927–940. ACM, New York (2015). https://doi.org/10.1145/2810103.2813673

37. Zhang, C., et al.: Practical control flow integrity and randomization for binary
executables. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP 2013, pp. 559–573. IEEE Computer Society, Washington, DC (2013). https://
doi.org/10.1109/SP.2013.44

38. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of
the 22nd USENIX Conference on Security, SEC 2013, pp. 337–352. USENIX Asso-
ciation, Berkeley (2013). http://dl.acm.org/citation.cfm?id=2534766.2534796

https://doi.org/10.1145/2810103.2813676
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/replay-attacks
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/replay-attacks
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://www.ndss-symposium.org/ndss2015/opaque-control-flow-integrity
https://www.ndss-symposium.org/ndss2015/opaque-control-flow-integrity
https://doi.org/10.1007/978-3-319-45719-2_2
https://doi.org/10.1007/978-3-319-45719-2_2
https://doi.org/10.1145/2810103.2813644
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.cs.columbia.edu/~angelos/Papers/theses/vpappas_thesis.pdf
https://www.cs.columbia.edu/~angelos/Papers/theses/vpappas_thesis.pdf
https://nebelwelt.net/blog/20160913-ControlFlowIntegrity.html
https://nebelwelt.net/blog/20160913-ControlFlowIntegrity.html
https://www.shellblade.net/docs/ret2libc.pdf
https://www.shellblade.net/docs/ret2libc.pdf
http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dl.acm.org/citation.cfm?id=2671225.2671285
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/SP.2013.44
https://doi.org/10.1109/SP.2013.44
http://dl.acm.org/citation.cfm?id=2534766.2534796

	On the Effectiveness of Control-Flow Integrity Against Modern Attack Techniques
	1 Introduction
	2 Background
	2.1 Control Flow Transfers
	2.2 Control Flow Attacks
	2.3 Control Flow Integrity

	3 Threats
	3.1 Code Reuse Attack
	3.2 Code Injection
	3.3 Disclosure Attack
	3.4 Return-to-User
	3.5 Return-to-Libc
	3.6 Replay Attack

	4 CFI Protection Techniques and Limitations
	4.1 CFI Principles, Implementations, and Applications (CFI)
	4.2 CCFI: Cryptographically Enforced CFI (CCFI)
	4.3 CFI for COTS Binaries (binCFI)
	4.4 Practical CFI and Randomization for Binary Executables (CCFIR)
	4.5 Hardware (CFI) for an IT Ecosystem (HW-CFI)
	4.6 Per-Input CFI (PICFI)
	4.7 KCoFI: Complete CFI for Commodity Operating System Kernels (KCoFI)
	4.8 Fine-Grained CFI for Kernel Software (Kernel CFI)
	4.9 Enforcing Forward-Edge CFI in GCC & LLVM (IFCC)
	4.10 Control-Flow Bending: On the Effectiveness of CFI (CFB)
	4.11 SAFEDISPATCH: Securing C++ Virtual Calls from Memory Corruption Attacks (SAFEDISPATCH)
	4.12 Control Flow Guard (C-Guard)
	4.13 Reuse Attack Protector (RAP)
	4.14 Opaque CFI (O-CFI)

	5 Analysis
	5.1 Software-Based CFI
	5.2 Hardware-Based CFI
	5.3 Optimal Protection
	5.4 Performance Overhead

	6 Conclusions and Future Work
	References




