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Abstract. Machine learning models, especially neural network (NN)
classifiers, are widely used in many applications including natural lan-
guage processing, computer vision and cybersecurity. They provide high
accuracy under the assumption of attack-free scenarios. However, this
assumption has been defied by the introduction of adversarial exam-
ples – carefully perturbed samples of input that are usually misclassi-
fied. Many researchers have tried to develop a defense against adversar-
ial examples; however, we are still far from achieving that goal. In this
paper, we design a Generative Adversarial Net (GAN) based adversarial
training defense, dubbed GanDef, which utilizes a competition game to
regulate the feature selection during the training. We analytically show
that GanDef can train a classifier so it can defend against adversarial
examples. Through extensive evaluation on different white-box adver-
sarial examples, the classifier trained by GanDef shows the same level
of test accuracy as those trained by state-of-the-art adversarial train-
ing defenses. More importantly, GanDef-Comb, a variant of GanDef,
could utilize the discriminator to achieve a dynamic trade-off between
correctly classifying original and adversarial examples. As a result, it
achieves the highest overall test accuracy when the ratio of adversarial
examples exceeds 41.7%.

Keywords: Neural network classifier · Generative Adversarial Net ·
Adversarial training defense

1 Introduction

Due to the surprisingly good representation power of complex distributions,
NN models are widely used in many applications including natural language
processing, computer vision and cybersecurity. For example, in cybersecurity,
NN based classifiers are used for spam filtering, phishing detection as well as face
recognition [1,18]. However, the training and usage of NN classifiers are based on
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an underlying assumption that the environment is attack free. Therefore, such
classifiers fail when adversarial examples are presented to them.

Adversarial examples were first introduced in [21] in the context of image
classification. It shows that a visually insignificant modification with specially
designed perturbations can result in a huge change of prediction results with
nearly 100% success rate. Generally, adversarial examples can be used to mislead
NN models to output any aimed prediction. They could be extremely harmful
for many applications that utilize NNs, such as automatic cheque withdrawal in
banks, traffic speed detection, and medical diagnosis in hospitals. As a result,
this serious threat inspires a new line of research to explore the vulnerability of
NN classifiers and develop appropriate defensive methods.

Recently, a plethora of methods to countermeasure adversarial examples
has been introduced and evaluated. Among these methods, adversarial training
defenses play an important role since they (1) effectively enhance the robust-
ness, and (2) do not limit adversary’s knowledge. However, most of them lack
the trade-off between classifying original and adversarial examples. For appli-
cations that are sensitive to misbehavior or operate in risky environment, it is
worth to enhance defenses against adversarial examples by sacrificing perfor-
mance on original examples. The ability to dynamically control such trade-off
makes the defense even more valuable.

In this paper, we propose a GAN based defense against adversarial examples,
dubbed GanDef. GanDef is designed based on adversarial training combined
with feature learning [10,12,24]. As a GAN model, GanDef contains a classifier
and a discriminator which form a minimax game. To achieve the dynamic trade-
off between classifying original and adversarial examples, we also propose a vari-
ant of GanDef, GanDef-Comb, that utilizes both classifier and discriminator.
During evaluation, we select several state-of-the-art adversarial training defenses
as references, including Pure PGD training (Pure PGD) [13], Mix PGD train-
ing (Mix PGD) [7] and Logit Pairing [7]. The comparison results show that
GanDef performs better than state-of-the-art adversarial training defenses in
terms of test accuracy. Our contributions can be summarized as follows:

– We propose the defensive method, GanDef, which is based on the idea of
using a discriminator to regularize classifier’s feature selection.

– We mathematically prove that the solution of the proposed minimax game in
GanDef contains an optimal classifier, which usually makes correct predictions
on adversarial examples by using perturbation invariant features.

– We empirically show that the trained classifier in GanDef achieves the same
level of test accuracy as that in state-of-the-art approaches. Adding the dis-
criminator, GanDef-Comb can dynamically control the trade-off on classifying
original and adversarial examples and achieves the highest overall test accu-
racy when the ratio of adversarial examples exceeds 41.7%.

The rest of the paper is organized as follows: Sect. 2 presents background
material, Sect. 3 details the design and mathematical proof of GanDef, Sect. 4
shows evaluation results, and Sect. 5 concludes the paper.
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2 Background and Related Work

In this section, we introduce high-level background material about threat model,
adversarial example generators and defensive mechanisms for the better under-
standing of concepts presented in this work. We also provide relevant references
for further information about each topic.

2.1 Threat Model

The adversary aims at misleading the NN model utilized by the application to
achieve a malicious goal. For example, adversary adds adversarial perturbation
to the image of a cheque. As a result, this image may mislead the NN model
utilized by the ATM machine to cash out a huge amount of money. During the
preparation of adversarial examples we assume that adversary has full knowledge
of the targeted NN model, which is the white-box scenario. Also, we assume that
adversary has limited computational power. As a result, the adversary can gen-
erate iterative adversarial examples but cannot exhaustively search all possible
input perturbation.

2.2 Generating Adversarial Examples

The adversarial examples could be classified into white-box and black-box
attacks based on adversary’s knowledge of target NN classifier. Based on the
generating process, they could be also classified as single-step and iterative adver-
sarial examples.

Fast Gradient Sign Method (FGSM) is introduced by Goodfellow et al.
in [6] as a single-step white-box adversarial example generator against NN image
classifiers. This method tries to maximize the loss function value, L, of NN
classifier, C, to find adversarial examples. The function F is used to ensure that
the generated adversarial example is still a valid image.

maximize
δ

L(ẑ = C(x̂), t) subject to x̂ = F(x̄, δ) ∈ R
m
[0,1]

To keep visual similarity and enhance generation speed, this maximization prob-
lem is solved by running gradient ascent for one iteration. It simply generates
adversarial examples, x̂, from original images, x̄, by adding small perturbation, δ,
which changes each pixel value along the gradient direction of the loss function.
As a single step adversarial example generator, FGSM can generate adversarial
examples efficiently. However, the quality of the generated adversarial examples
is relatively low due to the linear approximation of the loss function landscape.

Basic Iterative Method (BIM) is introduced by Kurakin et al. in [8] as an
iterative white-box adversarial example generator against NN image classifiers.
In the algorithm design, BIM utilizes the same mathematical model as FGSM.
But, different from the FGSM, BIM is an iterative attack method. Instead of
making the adversarial perturbation in one iteration, BIM runs the gradient
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ascent algorithm multiple iterations to maximize the loss function. In each iter-
ation, BIM applies smaller perturbation and maps the perturbed image through
the function F . As a result, BIM approximates the loss function landscape by
linear spline interpolation. Therefore, it generates stronger adversarial examples
than FGSM within the same neighboring area.

Projected Gradient Descent (PGD) is another iterative white-box
adversarial example generator recently introduced by Madry et al. in [13]. Simi-
lar to BIM, PGD also solves the same optimization problem iteratively with the
projected gradient descent algorithm. However, PGD randomly selects an initial
point within a limited area of the original image and repeats this several times
to generate an adversarial example. With this multiple time random initializa-
tion, PGD is shown experimentally to solve the optimization problem efficiently
and generate more serious adversarial examples since the loss landscape has a
surprisingly tractable structure [13].

2.3 Adversarial Example Defensive Methods

Many defense methods have been proposed recently. In the following, we sum-
marize and present representative samples from three major defense classes.

Augmentation and Regularization aims at penalizing overconfident pre-
diction or utilizing synthetic data during training. One of the early ideas is the
defensive distillation. Defensive distillation uses the prediction score from orig-
inal NN, usually called teacher, as ground truth to train another smaller NN,
usually called student [16,17]. It has been shown that the calculated gradients
from the student model become very small or even reach zero and hence become
useless to the adversarial example generator [16]. Some of the recent works that
belong to this set of methods are referred to as Fortified Network [9] and Man-
ifold Mixup [23]. Fortified Network utilizes denoising autoencoder to regularize
the hidden states. Manifold Mixup also focuses on the hidden states but follows
a different way. During the training, Manifold Mixup uses interpolations of hid-
den states and logits during training to enhance the diversity of training data.
Compared with adversarial training defenses, this set of defenses has significant
limitations. For example, defensive distillation is vulnerable to Carlini attack [4]
and Manifold Mixup can only defend against single step attacks.

Protective Shell is a set of defensive methods which aim at using a shell to
reject or reform the adversarial examples. An example of these methods is intro-
duced by Meng et al. in [14] which is called MagNet. In this work, the authors
design two types of functional components: the detector and the reformer. Adver-
sarial examples are either rejected by the detector or reformed to eliminate the
perturbations. Other recent works such as [11] and [19] try to utilize different
methods to build the shell. In [11], authors inject adaptive noise to input images
which breaks the adversarial perturbations without significant decrease of clas-
sification accuracy. In [19], a generator is utilized to generate images that are
similar to the inputs. By replacing the inputs with generated images, it achieves
resistance to adversarial examples. However, this set of methods usually assume
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the shell itself is black-box to the adversary and the work in [2] has already
found ways to break such an assumption.

Adversarial Training is based on a straightforward idea that treats adver-
sarial examples as blind spots of the original training data [25]. Through retrain-
ing with adversarial examples, the classifier learns the perturbation pattern and
generalizes its prediction to account for such perturbations. In [6], the adver-
sarial examples generated by FGSM are used for adversarial training and the
trained NN classifier can defend single step adversarial examples. Later works
in [13] and [22] enhance the adversarial training method to defend examples
like BIM and PGD. A more recent work in [7] requires that the pre-softmax
logits from original and adversarial examples to be similar. Authors believe this
method could utilize more information during adversarial training. A common
problem in existing adversarial training defenses is that the trained classifier has
no control of the trade-off between correctly classifying original and adversarial
examples. Our work achieves this flexibility and shows the benefit.

3 GanDef: GAN Based Adversarial Training

In this section, we present the design of our defensive method (GanDef) as
follows. First, the design of GanDef is introduced as a minimax game of the
classifier and discriminator. Then we conduct a theoretical analysis of the pro-
posed minimax game in GanDef. Finally, we conduct experimental analysis to
evaluate the convergence of GanDef.

3.1 Design

Given the training data pair 〈x, t〉, where x ∈ ∪(X̄, X̂), we try to find a classifi-
cation function C that uses x to produce pre-softmax logits z such that:

ti = f(zi) =
ezi

∑
zj

ezj
The mapping between z and t is the softmax function.

Since x can be either original example x̄ or adversarial example x̂, we want the
classifier to model the conditional probability qC(z|x) with only non-adversarial
features. To achieve this, we employ another NN and call it discriminator D. D
uses the pre-softmax logits z from C as inputs and predicts whether the input to
classifier is x̄ or x̂. This process can be performed by maximizing the conditional
probability qD(s|z), where s is a Boolean variable indicating the source of x is
original or adversarial. Finally, by combining the classifier and the discriminator,
we formulate the following minimax game:

min
C

max
D

J(C,D)

where J(C,D) = E
x∼X,t∼T

{−log[qC(z|x)]} − E
z∼Z,s∼S

{−log[qD(s|z = C(x))]}
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Table 1. Summary of notations

L Loss function of NN classifier

F Function which regularize pixel value of generated example

x̄, X̄; x̂, X̂; x, X Original, adversarial and all training examples

t̄, T̄ ; t̂, T̂ ; t, T Ground truth of original, adversarial and all training examples

z̄, Z̄; ẑ, Ẑ; z, Z Pre-softmax logits of original, adversarial and all training examples

s̄, S̄; ŝ, Ŝ; s, S Source indicator of original, adversarial and all training examples

δ Adversarial perturbation

C, C∗ NN based classifier

D, D∗ NN based discriminator

J, J ′ Reward function of the minimax game

Ω, ΩC , ΩD Weight parameter in the NN model

γ Trade-off hyper-parameters in GanDef

In this work, we envision that the classifier could be seen as a generator
that generates pre-softmax logits based on selected features from input images.
Then, the classifier and the discriminator engage in a minimax game, which is
also known as Generative Adversarial Net (GAN) [5]. Therefore, we name our
proposed defense as “GAN based Adversarial Training” (GanDef). While other
defenses ignore or only compare z̄ and ẑ, utilizing discriminator with z adds a
second line of defense when the classifier is defeated by adversarial examples.

The pseudocode of GanDef training is summarized in Algorithm1 and is
visualized in Fig. 1. A summary of the notations used throughout this work is
available in Table 1.

Algorithm 1. GanDef Training
Input: training examples X, ground truth T , classifier C, discriminator D
Output: classifier C, discriminator D
1: Initialize weight parameters Ω in both classifier and discriminator
2: for the global training iterations do
3: for the discriminator training iterations do
4: Randomly sample a batch of training examples, 〈x, t〉
5: Generate a batch of boolean indicator, s, corresponding to training inputs
6: Fix weight parameters ΩC in classifier C
7: Update weight parameters ΩD in discriminator D by stochastic gradient

descent
8: end for
9: Randomly sample a batch of training examples, 〈x, t〉

10: Generate a batch of boolean indicator, s, corresponding to training inputs
11: Fix weight parameters ΩD in discriminator D
12: Update weight parameters ΩC in classifier C by stochastic gradient descent
13: end for
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3.2 Theoretical Analysis

With the formal definition of our GanDef, we perform a theoretical analysis in
this subsection. We show that under the current definition where J is a com-
bination of log likelihood of Z|X and S|Z, the solution of the minimax game
contains an optimal classifier which can correctly classify adversarial examples.
It is worth noting that our analysis is conducted in a non-parametric setting,
which means that the classifier and the discriminator have enough capacity to
model any distribution.

Proposition 1. If there exists a solution (C∗,D∗) for the aforementioned min-
max game J such that J(C∗,D∗) = H(Z|X) − H(S), then C∗ is a classifier that
can defend against adversarial examples.

Proof. For any fixed classification model C, the optimal discriminator can be
formulated as

D∗ = arg max
D

J(C,D) = arg min
D

E
z∼Z,s∼S

{−log[qD(s|z = C(x))]}

In this case, the discriminator can perfectly model the conditional distribution
and we have qD(s|z = C(x)) = p(s|z = C(x)) for all z and all s. Therefore, we
can rewrite J with optimal discriminator as J ′ and denote the second half of J
as a conditional entropy H(S|Z)

J ′(C) = E
x∼X,t∼T

{−log[qC(z|x)]} − H(S|Z)

For the optimal classification model, the goal is to achieve the conditional prob-
ability qC(z|x) = p(z|x) since z can determine t by taking softmax transfor-
mation. Therefore, the first part of J ′(C) (the expectation) is larger than or
equal to H(Z|X). Combined with the basic property of conditional entropy that
H(S|Z) ≤ H(S), we can get the following lower bound of J with optimal clas-
sifier and discriminator

J(C∗,D∗) ≥ H(Z|X) − H(S|Z) ≥ H(Z|X) − H(S)

This equality holds when the following two conditions are satisfied:

– The classifier perfectly models the conditional distribution of z given x,
qC(z|x) = p(z|x), which means that C∗ is an optimal classifier.

– S and Z are independent, H(S|Z) = H(S), which means that adversarial
perturbations do not affect pre-softmax logits.

In practice, the assumption of unlimited capacity in classifier and discrimi-
nator may not hold and it would be hard or even impossible to build an optimal
classifier that outputs pre-softmax logits that are independent from adversarial
perturbation. Therefore, we introduce a trade-off hyper-parameter γ into the
minimax function as follows:

E
x∼X,t∼T

{−log[qC(z|x)]} − γ E
z∼Z,s∼S

{−log[qD(s|z = C(x))]}

When γ = 0, GanDef is the same as traditional adversarial training. When γ
increases, the discriminator becomes more and more sensitive to information of
s contained in pre-softmax logits, z.
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Fig. 1. Training with GanDef Fig. 2. Convergence experiments

3.3 Convergence Analysis

Beyond the theoretical analysis, we also conduct an experimental analysis of
the convergence of GanDef. Based on the pseudocode in Algorithm1, we train a
classifier on MNIST dataset. In order to compare the convergence, we also imple-
ment Pure PGD, Mix PGD and Logit Pairing and present their test accuracies
on original test images during different training epochs.

As we can see from Fig. 2, the convergence of GanDef is not as good as
other state-of-the-art adversarial training defenses. Although all these methods
converge to over 95% test accuracy, GanDef shows significant fluctuation during
the training process.

In order to improve the convergence of GanDef, we carefully trace back the
design process and identify the root cause of the fluctuations. During the training
of the classifier, we subtract the penalty term E

z∼Z,s∼S
{−log[qD(s|z = C(x))]}

which encourages the classifier to hide information of s in every z. Compared with
Logit Pairing which requires similar z from original and adversarial examples,
our penalty term is too strong. Therefore, we modify the training loss of the
classifier to:

E
x∼X,t∼T

{−log[qC(z|x)]} − γ E
ẑ∼Ẑ,ŝ∼Ŝ

{−log[qD(ŝ|ẑ = C(x̂))]}

Recall that x̂, ẑ and ŝ represent the adversarial example, its pre-softmax log-
its, and the source indicator, respectively. It is also worth to mention that this
modification is only applied to the classifier. Therefore, it does not affect the
consistency of the previous proof. During convergence analysis, we denote the
modified version of our defensive method as GanDef V2 and its convergence
results are also shown in Fig. 2. It is clear that GanDef V2 significantly improves
the convergence and stability during the training. Moreover, its test accuracy
on the original as well as several different white-box adversarial examples is
also higher than the initial design. Due to these improvements, we use it as the
standard implementation of GanDef in the rest of this work.

4 Experiments and Results

In this section, we present comparative evaluation results of the adversarial train-
ing defenses introduced previously.
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4.1 Datasets, NN Structures and Hyper-parameter

During evaluation, we conduct experiments for classifying original and adversar-
ial examples on both MNIST and CIFAR10 datasets. To ensure the quality of
evaluation, we utilize the standard python library (CleverHans [15]) and run all
experiments on a Linux Workstation with NVIDIA GTX-1080 GPU. We choose
the adversarial examples introduced in Sect. 2 and denote them as FGSM, BIM,
PGD-1 and PGD-2 examples. For MNIST dataset, PGD-1 represents 40-iteration
PGD attack while PGD-2 corresponds to 80-iteration PGD attack. Moreover, the
maximum perturbation limitation is 0.3. The per step perturbation limitations
for BIM and PGD examples are 0.05 and 0.01. For CIFAR10 dataset, these two
sets of adversarial examples are 7-iteration and 20-iteration PGD attack. The
maximum perturbation limitation is 8

255 while per step perturbation limitation
for BIM and PGD is 2

255 .
During the training, the vanilla classifier only uses original training data

while defensive methods utilize original and PGD-1 examples except for Pure
PGD which only requires the PGD-1 examples. For the testing part, we gen-
erate adversarial examples based on test data which was not used in training.
These adversarial examples together with original test data form the complete
test dataset during the evaluation stage. To make a fair comparison, defensive
methods and vanilla classifier share the same NN structures which are (1) LeNet
[13] for MNIST, and (2) allCNN [20] for CIFAR10. Due to the page limitation,
the detailed structure is shown in the Appendix. The hyper-parameter of exist-
ing defensive methods are the same as the original papers [7,13]. During the
training of Logit Pairing on CIFAR10, we found that using the same trade-off
parameter as MNIST lead to divergence. To resolve the issue, we try to change
the optimizer, learning rate, initialization and weight decay. However, none of
them work until the weight of logit comparison loss is decreased to 0.01.

To validate the NN structure as well as the adversarial examples, we utilize
the vanilla classifier to classify original and adversarial examples. Based on the
results in Table 2, the test accuracy of the vanilla classifier on original examples
matches the records of benchmarks in [3]. Moreover, the test accuracy of the
vanilla classifier on any kind of adversarial examples has significant degeneration
which shows the adversarial example generators are working properly.

4.2 Comparative Evaluation of Defensive Approaches

As the first step, we compare the GanDef with state-of-the-art adversarial train-
ing defenses in terms of test accuracy on original and white-box adversarial
examples. The results are presented in Fig. 3 and summarized in Table 2.

On MNIST, all defensive methods achieve around 99% test accuracy on orig-
inal examples and Pure PGD is slightly better than others. In general, the test
accuracy of defensive methods are almost the same and does not go lower than
that of the vanilla model. On CIFAR10, we can see that the test accuracy of
defensive methods on original data is around 83% and these of Logit Pairing
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Fig. 3. Visualization of test accuracy on original and adversarial examples

and GanDef are slightly higher than others. Compared with the vanilla classi-
fier, there is about 5% decrease in test accuracy. Similar degeneration is also
reported in previous works on Pure PGD, Mix PGD and Logit Pairing [7,13].

During the evaluation on MNIST, there are no significant differences among
defensive methods and each could achieve around 95% test accuracy. The Pure
PGD method is the best on the evaluation of FGSM and BIM examples, while
the Logit Pairing is the best on the evaluation of PGD-1 and PGD-2 examples.
Based on the evaluation results from CIFAR10, we can see the differences between
defensive methods are slightly larger. On all four kinds of white-box adversarial
examples, Pure PGD is the best method and the test accuracy ranges from 48.33%
(PGD-1) to 56.18% (FGSM). In the rest of defensive methods, GanDef is the best
choice with test accuracy ranges from 45.62% (PGD-1) to 54.14% (FGSM).

Based on the comparison as well as visualization in Fig. 3, it is clear that the
proposed GanDef has the same level of performance as state-of-the-art adversar-
ial training defenses in terms of the trained classifier’s test accuracy on original
and different adversarial examples.

4.3 Evaluation of GanDef-Comb

In the second phase of evaluation, we consider GanDef-Comb which is a variant
of GanDef. This variant utilizes both classifier and discriminator trained by
GanDef. As we show in Sect. 3, the discriminator could be seen as a second
line of defense when the trained classifier fails to make correct predictions on
adversarial examples. By setting different threshold values for the discriminator,
GanDef can dynamically control the trade-off between classifying original and
adversarial examples. In current evaluation, the threshold is set to 0.5.

On MNIST, the test accuracy of GanDef-Comb on original, FGSM and BIM
examples is the same as that of GanDef. On PGD-1 and PGD-2 examples, the
test accuracy of GanDef-Comb has a small degeneration (less than 0.3%). This
is because MNIST dataset is so simple such that the classifier alone can provide
near optimal defense. Those misclassified corner cases are hard to be patched by
utilizing discriminator. In common cases, the classifier has much larger degen-
eration on classifying adversarial examples. For example, on the CIFAR10, the
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Table 2. Summary of test accuracy on original and adversarial examples

Vanilla Pure PGD Mix PGD Logit Pairing GanDef GanDef-Comb

MNIST Original 98.70% 99.15% 99.17% 98.50% 99.10% 99.10%

FGSM 12.15% 97.60% 96.89% 97.00% 96.85% 96.85%

BIM 1.07% 94.75% 94.58% 95.83% 94.28% 94.28%

PGD-1 0.87% 95.60% 95.56% 96.34% 95.31% 95.21%

PGD-2 0.93% 94.14% 93.99% 95.42% 93.62% 93.38%

CIFAR10 Original 89.69% 82.06% 83.70% 84.21% 84.05% 63.97%

FGSM 18.43% 56.18% 52.21% 51.63% 54.14% 87.61%

BIM 6.76% 49.21% 44.39% 44.09% 46.64% 76.02%

PGD-1 6.48% 51.51% 47.11% 46.53% 49.21% 80.39%

PGD-2 6.44% 48.33% 43.48% 43.28% 45.62% 73.56%

Fig. 4. Visualization of test accuracy under different ratio of adversarial examples

benefit of utilizing discriminator is obvious due to such degeneration. From the
results of test accuracy, GanDef-Comb is significantly better than state-of-the-
art adversarial training defenses on mitigating FGSM, BIM, PGD-1 and PGD-2
examples. Based on the comparison, GanDef-Comb enhances test accuracy by
at least 31.43% on FGSM, 26.81% on BIM, 28.88% on PGD-1 and 25.23% on
PGD-2. Although the test accuracy of GanDef-Comb on original examples has
about 20% degeneration, the enhancement on defending adversarial examples
benefits the overall test accuracy when the ratio of adversarial examples exceeds
a certain limit.

To show the benefit of being able to control the trade-off, we design two
experiments on CIFAR10 dataset. We form test dataset with original and adver-
sarial examples (FGSM examples in the first experiment and PGD-2 examples
in the second one). The ratio of adversarial examples, ρ, changes from 0 to 1.
Giving similar weight losses in classifying original and adversarial examples, ρ
represents the probability of receiving adversarial examples. Or, giving simi-
lar probabilities of receiving original and adversarial examples, ρ represents the
weight of correctly classify adversarial examples (1 − ρ for original examples).



30 G. Liu et al.

These two evaluations are designed for risky or misbehavior-sensitive running
environments, respectively.

The results of the overall test accuracy under different experiments are
shown in Fig. 4. It can be seen that GanDef-Comb is better than state-of-the-art
defenses in terms of overall test accuracy when ρ exceeds 41.7%. In real applica-
tions, we could further enhance the overall test accuracy through changing the
discriminator’s threshold value. When ρ is low, GanDef-Comb gives less atten-
tion to discriminator (high threshold value) and achieves similar performance
as that of the state-of-the-art defenses. When ρ is high, GanDef-Comb relies on
discriminator (low threshold value) to detect more adversarial examples.

5 Conclusion

In this paper, we introduce a new defensive method for Adversarial Examples,
GanDef, which formulates a minimax game with a classifier and a discriminator
during training. Through evaluation, we show that (1) the classifier achieves the
same level of defense as classifiers trained by state-of-the-art defenses, and (2)
using both classifier and discriminator (GanDef-Comb) can dynamically control
the trade-off in classification and achieve higher overall test accuracy under the
risky or misbehavior-sensitive running environment. For future work, we consider
utilizing more sophisticated GAN models that can mitigate the degeneration
when the classifier and the discriminator are combined.

Appendix Classifier Structures

(See Tables 3 and 4).

Table 3. MNIST LeNet classifier structure

Layer Kernel size Strides Padding Init

Convolution 5 × 5 × 32 1 × 1 Same Default

MaxPool 2 × 2 2 × 2 - -

ReLU - - - -

Convolution 5 × 5 × 64 1 × 1 Same Default

MaxPool 2 × 2 2 × 2 - -

ReLU - - - -

Flatten - - - -

Dense 1024 - - Default

ReLU - - - -

Dense 10 - - Default
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Table 4. CIFAR10 allCNN classifier structure

Layer Kernel size Strides Padding Init

Dropout 0.2 (drop rate) - - -

Convolution 3 × 3 × 96 1 × 1 Same He

ReLU - - - -

Convolution 3 × 3 × 96 1 × 1 Same He

ReLU - - - -

Convolution 3 × 3 × 96 1 × 1 Same He

ReLU - - - -

MaxPool 2 × 2 2 × 2 - -

Dropout 0.5 (drop rate) - - -

Convolution 3 × 3 × 192 1 × 1 Same He

ReLU - - - -

Convolution 3 × 3 × 192 1 × 1 Same He

ReLU - - - -

Convolution 3 × 3 × 192 1 × 1 Same He

ReLU - - - -

MaxPool 2 × 2 2 × 2 - -

Dropout 0.5 (drop rate) - - -

Convolution 3 × 3 × 192 1 × 1 Valid He

ReLU - - - -

Convolution 1 × 1 × 192 1 × 1 Same He

ReLU - - - -

Convolution 1 × 1 × 192 1 × 1 Same He

ReLU - - - -

GlobalAvgPool - - - -

Dense 10 - - Default
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