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Abstract. Open data plays a fundamental role in the 21st century by
stimulating economic growth and by enabling more transparent and
inclusive societies. However, it is always difficult to create new high-
quality datasets with the required privacy guarantees for many use cases.
In this paper, we developed a differential privacy framework for privacy
preserving data publishing using Generative Adversarial Networks. It
can be easily adapted to different use cases, from the generation of time-
series, to continuous, and discrete data. We demonstrate the efficiency
of our approach on real datasets from the French public administration
and classic benchmark datasets. Our results maintain both the original
distribution of the features and the correlations among them, at the same
time providing a good level of privacy.
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1 Introduction

The digital revolution has changed societies and democracies across the globe,
making personal data an extremely valuable asset. In such a context, protecting
individual privacy is a key need, especially when dealing with sensitive infor-
mation, such as political preferences. At the same time, the demand for public
administration transparency has introduced guidelines and laws in some coun-
tries to release open datasets.

To limit personal data breaches, privacy-preserving data publishing tech-
niques can be employed. This approach aims at adding the noise directly to the
data, not only to the result of a query (like in interactive settings). The result
is a completely new dataset, where analysts can perform an infinite number of
requests without increasing the privacy costs, nor disclosing private information.
Meanwhile, it is difficult to preserve the utility of the data.
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A strong standard privacy guarantee widely accepted by the research com-
munity is differential privacy. It ensures that each individual participating in a
database does not disclose any additional information by participating in it. Tra-
ditionally, many approaches tried to reach differential privacy by adding noise
to the data in order to protect personal information [5,8,12], however they have
never been able to provide satisfying results on real semantically-rich data; most
of the implementations were limited to very specific purposes such as histogram
queries or counting queries [18]. Generative models represent the most promising
approach in this field. Interesting results have been obtained through Genera-
tive Adversarial Networks (GANs) [9]. These models are able to generate new
samples coming from a given distribution. The advantage of generative models
is that the noise to guarantee privacy is not added directly to the data, causing
a significant loss of information, but it is added inside the latent space, reducing
the overall information loss, but guaranteeing meanwhile privacy.

This paper extends the notion of dp-GAN, an anonymized GAN with a differ-
ential privacy mechanism, to handle continuous, categorical and time-series data.
It introduces an optimization called clipping decay that improves the overall per-
formances. This new expansion shapes the noise addition during the training.
This allows to obtain a better data utility at the same privacy cost. A set of
analysis on real scenarios evidence the flexibility and applicability of our app-
roach, which is supported by an evaluation of the membership inference attack
accuracy, proving the positive effects of differential privacy. We provide experi-
mental results on real industrial datasets from the French public administration
and over well-known publicly available datasets to allow for benchmarking.

The remainder of the paper is organized as follows: Sect. 2 provides the
theoretical background for the paper; In Sect. 3, presents our framework for
anonymization, together with the mathematical proofs of differential privacy.
Section 4 provides a set of experiments on diverse use cases to highlight the flex-
ibility and effectiveness of the approach. Section 5 discusses related work; and
finally Sect. 6 concludes the paper.

2 Preliminaries

This section brings some important background for the paper.

2.1 Generative Adversarial Networks.

GANs (Generative Adversarial Networks) are one of the most popular type of
generative models, being already defined as the most interesting idea in the last
10 years in machine learning1, moreover, a lot of attention has been given to
the development of new variations [3,11,14]. Given an initial dataset, a GAN
is able to mimic its data distribution, for that, a GAN employs two different
networks: a generator and a discriminator. The architecture of the two networks

1 “GAN and the variations that are now being proposed is the most interesting idea
in the last 10 years in ML, in my opinion”, Yann LeCun.
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is separate from the definition of GAN; depending on the application, different
network configurations can be used. The role of the generator is to map random
noise into new data instances capturing the original data distribution. On the
opposite side, the discriminator tries to distinguish the generated samples from
the real ones estimating the probability that a sample comes from the training
data rather than the generator. In this way, after each iteration, the generator
becomes better at generating realistic samples, while the discriminator becomes
increasingly able to tell apart the original data from the generated ones. Since
the two networks play against each other, the two losses will not converge to a
minimum like in a normal training process but this minmax game has its solution
in the Nash equilibrium. Nevertheless, the vanilla GAN [9] suffers from several
issues that make it hardly usable especially for discrete data. A new definition of
the loss function, Wasserstein generative adversarial network (WGAN) [2] and
Improved Training of Wasserstein GANs [10] partially solved this problem. We
are going to use this latest loss function to train our dp-GAN models.

2.2 Differential Privacy

The state of the art anonymization technique is differential privacy. This con-
cept ensures that approximately nothing can be learned about an individual
whether she participates or not in a database. Differential Privacy defines a con-
straint on the processing of data so that the output of two adjacent databases
is approximately the same. More formally: A randomized algorithm M gives
(ε, δ)-differential privacy if, for all databases d and d′, differing on at most one
element and all S ∈ Range(M),

Pr[M(d) ∈ S] ≤ exp(ε) × Pr[M(d′) ∈ S] + δ. (1)

This condition encapsulates the crucial notion of indistinguishability of the
results of a database manipulation by introducing the so-called privacy budget
ε. It represents the confidence that a record was involved in a manipulation of
the database. Note that the smaller ε is, the more private the output of the
mechanism. According to [6] the optimal value of δ is less than the inverse
of any polynomial in the size of the database. Any function M that satisfies
the Differential Privacy condition can be used to generate data that guarantees
the privacy of the individuals in the database. In the non-interactive setting, a
mechanism M is a function that maps a dataset in another one. The definition
states that the probability of obtaining the same output dataset from M is
similar, using either d or d′ as input for the mechanism. Composability is an
interesting property of Differential Privacy. If M and M ′ are ε and ε′-differential
private respectively, their composition M ◦ M ′ is (ε + ε′)-differentially private
[5]. This property allows to craft a variety of mechanisms and combinations of
such mechanisms to achieve differential privacy in innovative ways.

Concerning deep learning, Abadi et al. [1] developed a method to train a
deep learning network involving differential privacy. This method requires the
addition of a random noise, drawn from a normal distribution, to the computed
gradients, to obfuscate the influence that an input data can have on the final
model.
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As for any anonymization methods, one must assess the likelihood of member-
ship inference attacks. This kind of attack evaluates how much a model behaves
differently when an input sample is part of the training set rather than the vali-
dation set. Given a machine learning model, a membership inference attack uses
the trained model to determine if a record was part of the training set or not. In
the case of generative models such as the one of GAN, a high attack accuracy
means that the network has been able to model only the probability distribution
of the training set and not the one of the entire population. This kind of attack
has been proven to be effective especially when overfitting is relevant [17].

3 The Framework

In our framework proposed we assume a trusted curator interested in releasing a
new open dataset with privacy guarantees to the users present in it. Outside the
trusted boundary, an analyst can use the generator model, result of our algo-
rithm, to perform an indefinite number of queries over the data the generator
produces. Such outputs can be eventually released as open data. Even by com-
bining the generated data with other external information, without ever having
access to the original training data, the analyst would not be able to violate the
privacy of the information, thanks to the mathematical properties of differential
privacy.

The dp-GAN model is constituted by two networks, a generator and a dis-
criminator, that can be modelled based on the application domain. We adopted
Long Short Term Memories (LSTM) inside the generator to model streaming
data and multilayer perceptron (MLP) to model discrete data. In addition, to
manage discrete data, we also used a trick that does not influence the training
algorithm but it changes the architecture of the generator network. Specifically,
an output is created for each possible value that a variable can assume and a
softmax layer is added for each variable. The result of the softmax layer becomes
the input of the discriminator network. Indeed, each output represents the prob-
ability of each variable instance; the discriminator compares these probabilities
with the one-hot encoding of the real dataset. On the contrary, the output nodes
associated with continuous variables are kept unchanged.

At the end of the training, the generator network can be publicly released;
in this way, the analyst can generate new datasets as needed. Moreover, since
the generator only maps noise into new data the process is really fast and data
can be generated on the fly when a new analysis is required.

We used the differentially private Stochastic Gradient Descent (dp-SGD)
proposed by [1] to train the discriminator network and the Adam optimizer to
train the generator. The dp-GAN implementation relies on a traditional training
in which the gradients computed for the discriminator are altered. This due to
the fact that we want to limit the influence that each sample has on the model.
On the contrary, the training of the generator remains unaltered; indeed, this
network bases its training only on the loss of the discriminator without accessing
directly the data.
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The approach is independent from the chosen loss and therefore can be
applied to the vanilla GAN implementation [9] but also to the improved WGAN
one. The dp-SGD works as follows: once the gradients are calculated, it clips
them by a threshold C and alter them by the addition of a random noise with
variance proportional to C. Each time an iteration is performed, the privacy cost
increases and the objective is to find a good balance between data utility and
privacy costs.

Our implementation is an extension to the improved WGAN framework com-
bining it with the dp-SGD. Therefore, the loss functions are calculated as in a
normal WGAN implementation, except that the computed gradients are altered
to guarantee privacy. Moreover, for the first time up to our knowledge, the dp-
GAN concept is adapted to handle discrete data. Algorithm 1 describes our
training procedure.

Algorithm 1. Algorithm for training a GAN in a differentially private manner
Input: Samples from x1 to xN , group size L, number of samples N , clipping param-
eter C, noise scale σ, privacy target ε, number of iterations of the discriminator per
each iteration of the generator Ndisc, batch size b, Wasserstein distance L, learning
rate η, number of discriminator’ s parameters m, clipping decay Cdecay.
Output: differentially private Generator G
Initialize weights randomly both for the Generator θG(0) and the discriminator θD(0)

Convert discrete variables into their One-Hot encodings
while (While privacy cost ≤ ε ) do

for t = 0 to Ndisc do
for j = 0 to b do

sample Lt with sample probability L/N = q
For each xi in Lt, compute gt(xi) ← ∇θL(θt, xi) � Compute gradient
gt(xi) ← gt(xi)/max(1, ‖gt(xi)‖ /C) � Clip gradient

gt ← 1
L

(
L∑

i=0

gt(xi) + N(0, (σ ∗ C)2I)) � Add noise

θD(t+1) ← θD(t) − η ∗ gt � Gradient descent
end for

end for
C *= Cdecay � Clipping decay
Update the overall privacy cost ε � Moment accountant
Sample m values zi ∼ Random noise � Sample random noise

θG(t+1) ← Adam(∇θ
1
m

m∑

i=0

−D(G(zi))) � Update Generator

end while
return G

3.1 Clipping Decay

The role of the clipping parameter is to limit the influence that a single sample
can have on the computed gradients and, consequently, on the model. Indeed,
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this parameter does not influence the amount of privacy used. A big clipping
parameter allows big gradients to be preserved at the cost of a noise addition with
a proportionally high variance. On the contrary, a small clipping parameter limits
the range of values of the gradients, but it keeps the variance of the noise small.
The bigger the clipping parameter the bigger the gradients’ variance. Similarly
to what it is done with the learning rate, it is possible to introduce a clipping
parameter decay. In this way, the gradients not only tend to descend over time
to better reach a minimum but, in addition, they mimic the descending trend
of the gradients allowing to clip the correct amount at each step. In fact, when
the model tends to converge to the solution, the gradients decrease. Therefore,
the noise may hide the gradients if its variance is kept constant. By reducing the
clipping parameter over time, it is possible to reduce the variance in the noise
in parallel with the decrease of the gradients, thus improving the convergence of
the model. This without influencing the overall privacy costs that are not altered
by the clipping parameter but only by the amount of noise added.

3.2 Moment Accountant

A key component of the dp-GAN is the moment accountant. It is a method that
allows to compute the overall privacy costs by calculating the cost of a single
iteration of the algorithm and cumulating it with the other iterations. Indeed,
thanks to the composability property of differential privacy it is possible to
cumulate the privacy costs of each step to compute the overall privacy cost. Given
a correct value of σ and thanks to weights clipping and the addition of noise,
Algorithm 1 is (O(ε, δ))-DP with respect to the lot. Since each lot is sampled
with probability q = L/N , each iteration is (O(qε, qδ))-DP. In the formula, q
represents the sampling probability (the number of samples inside a lot divided
by the total number of samples present in the dataset). The clipping decay
optimization has no influence on the moment accountant. Indeed, it alterates
only the clipping parameter and not the variance of the noise that is the variable
that influences the cost of a single iteration by changing the value of ε. Each time
a new iteration is performed the privacy costs increase. However, thanks to the
definition of moment accountant, these costs do not increase linearly. Indeed, by
cumulating the privacy costs for each iteration, an overall level of (O(qε

√
T ), δ)-

DP is achieved where T represents the number of steps (the number of epochs
divided by q).

The moment accountant is based on the assumption that the composition of
Gaussian mechanisms is being used. Assessing that a mechanism M is (O(ε, δ))-
DP is equivalent to a certain tail bound on M ′s privacy loss random variable.
The moment accountant keeps track of a bound on the moments of the privacy
loss random variable defined as:

c(o;M,aux, d, d′) = log
Pr[M(aux, d) = o]
Pr[M(aux, d′) = o]

(2)

In (2) d and d′ represent two neighbouring databases, M the mechanism used,
aux an auxiliary input and o an outcome. What we are computing are the log
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moments of the privacy loss random variable that can be cumulated linearly. In
order to bound this variable, since the approach is the sequential application of
the same privacy mechanism we can define the λth moment αM(λ, aux, d, d′) as
the log of the moment generating function evaluated at the value λ :

M(λ, aux, d, d′) = logEo∼M(aux,d)[exp(λc(o,M, aux, d, d′))]. (3)

And consequently we can bind all possible αM(λ, aux, d, d′). We define

αM(λ) = maxaux,d,d′αM(λ, aux, d, d′) (4)

Theorem 1. Using the definition (4) then αM(λ) has the following character-
istics: given a set of k consecutive mechanisms, for each λ:

αM (λ) ≤
k∑

i=1

αMi(λ)

for any ε > 0, a mechanism M is (ε, δ)-differentially private for

δ = minλexp(αM (λ) − λ ∗ ε)

Proof (Proof of Theorem 1). A detailed proof of Theorem 1 can be found in [1].

Theorem 2. Algorithm 1 is (O(qε
√

T ), δ)-differentially private for appropri-
ately2 chosen settings of the noise scale and the clipping threshold.

Proof (Proof of Theorem 2). By Theorem 1, it suffices to compute, or bound,
αMi(λ) at each step and sum them to bound the moments of the mechanism
overall. Then, starting from the tail bound we can come back to the (ε, δ)-
differential privacy guarantee. The last challenge missing is to bind the val-
ues αMt(λ) for every single step. Let μ0 denote the Probability Density Func-
tion (PDF) of N(0, σ2), and μ1 denote the PDF of N(1, σ2). Let μ be the
mixture of two Gaussians μ = (1 − q)μ0 + qμ1. Then we need to compute
α(λ) = log(max(E1, E2)) where

E1 = Ez[(μ0(z)/μ(z))λ] (5)
E2 = Ez[(μ(z)/μ0(z))λ] (6)

In the implementation of the moment accountant, we carry out numerical inte-
gration to compute α(λ). In addition, we can show the asymptotic bound

α(λ) ≤ q2λ(λ + 1)/(1 − q)σ2 + O(q3/σ3)

This inequation together with Theorem 1 implies Theorem 2. ��

2 The appropriate values for the noise scale and for the threshold will depend on the
desired privacy cost and on the size of the dataset.



158 L. Frigerio et al.

4 Experiments

In this section, we evaluate empirically our framework. The experiments are
designed to assess the quality of the generated data, measure the privacy of the
generated models and understand how differential privacy influences the output
dataset. Moreover, we evaluate the solidity of the different models against mem-
bership inference attacks. Since it is notoriously arduous to assess the results of
a GAN, we decided to combine qualitative and quantitative analysis to obtain a
reliable evaluation. Qualitative analysis allows us to graphically verify the quality
of the results and to observe the effects of differential privacy; while quantita-
tive analysis provides a most accurate evaluation of the results; in particular,
we measured some distance metrics to compare the generated data with the
real data. Finally, our process included evaluating our model on a classification
problem. This highlights the high utility of the data even when anonymization
is used. For all experiments, when differential privacy is used, δ is supposed to
be less than 10−5, a value that is generally considered safe [1] because it implies
that the definition of differential privacy is true with a probability of 99.999%.
Indeed δ is the probability that a single record is safe and not spoiled. We kept
the value of δ fixed to be able to evaluate the privacy of a mechanism with a
single value ε that summarizes in a clearer manner the privacy guarantees.

In the different settings we applied only minor changes to the dp-GAN archi-
tecture, since we proved that it adapts well to each of them. In particular, in
every case the discriminator is composed of a deep fully connected network. On
the other hand, the architecture of the generator is adapted to the different
datasets used. To generate time-series we used an LSTM which output becomes
the input of the discriminator. On the contrary, in the case of discrete datasets
we used a fully connected network which outputs the probability distribution
for each value that a variable can assume. The interested reader can find an
exhaustive explanation of the experiments, including additional datasets in the
following GIT repository: https://github.com/Lory94/dp-GAN.

4.1 Synthetic Dataset

In order to provide a first evaluation of the performances of the dp-GAN and
understand the effects of differential privacy, we conducted a first experiment
on a synthetic dataset. The dataset is constituted by samples coming from six
2D-gaussian distributions with the same variance, but with different centers.
The quality of the results using dp-GAN is similar in both marginals and joint
distributions.

Figure 1 plots the kernel density estimation of the data to visualize the bivari-
ate distribution. As expected, differential privacy introduces a small noise in the
results, thus increasing the variance of the six gaussian distributions, while at
the same time replicating faithfully the original distribution.

We use the Wasserstein distance to measure the distance between two distri-
butions, to ascertain the quality of the GAN models. Figure 2 plots the distance
values for the non-anonymized GAN, a dp-GAN, and a dp-GAN using clipping

https://github.com/Lory94/dp-GAN
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Fig. 1. Kernel estimation for: (a) the original points, (b) WGAN, and (c) dp-GAN

decay. Both the dp-GAN models have ε = 8. The different measures tend to con-
verge to similar results, especially when clipping decay is applied, demonstrating
the high quality of the results. Indeed, clipping decay allows the Wasserstein dis-
tance to drop to values comparable to those of the non-anonymized version in
the second half of the graph. The main difference resides in the higher number
of epochs necessary to reach the convergence, due to the noise addition.

4.2 Time-Series Data

To test our implementation on a real dataset we decided to use a set of data com-
ing from the IoT system of the City of Antibes, in France. This dataset is private
because it contains sensitive information about the water consumption and water
pipeline maintenance, obtained directly from sensors in each neighborhood. The
purpose is to support public administration in releasing highly relevant open
data, while hiding specific events in the time-series, and preventing individual
re-identification. With minor adjustments, the solution can constitute a valid
framework applicable to other purposes, such as electricity consumption and
waste management.

The dataset is an extract of one month of measurements, where each sample
is a time-series containing 96 values (one every 15 min). Each sample is labelled
with the name of the neighborhood. The data has been normalized before the
training. The goal is to generate a new time-series that contains the same number
of records and the same distribution as the original dataset, while providing
differential privacy guarantees, that is, each sample does not influence whatever
analyses more than a certain threshold. In this way, anomalous situations such
as maintenance works, a failure in a water pipe or an unexpected water usage
by a person living in a certain area are protected and kept private.

Figure 3 compares real samples and generated ones, using non-anonymized-
GAN and a dp-GAN with ε = 6. We plot the sensor values for a generated
sample and the closest sample coming from the original data, in terms of the
dynamic time warping distance. The distribution of the original time series is
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Fig. 2. Wasserstein distance
using anonymized and non
anonymized GANs

Fig. 3. Generated sample from a non-anonymized GAN
(a) and dp-GAN (b), in blue. In orange, the closest sam-
ple present in the dataset, in terms of dynamic time
warping (Color figure online)

kept, but in the dp-GAN samples, the curves tend to be smoother, hiding some
of the variability of the original data.

For time-series data, the quality assessment for GANs represents a challenge.
While for images the inception score [13] has become the standard measure to
evaluate the performance of a GAN, there is no counterpart for the assessment
of time series. We believe that this represents an interesting area of research for
the future.

4.3 Discrete Data

We analyzed the performances of our model on the UCI adult dataset: this
dataset is an extract of the US census and contains information about working
adults, distributed across 14 features. A classification task on it is a reliable
benchmark, because of its widespread use in several studies. Records are clas-
sified depending on whether the individual earns more or less than 50k dollars
each year.

To use accuracy as an evaluation metric, we decided to sample the training
and test data in such a way that both classes would be balanced. We built a
random forest classifier on the dataset generated by the dp-GAN. We evaluated
the accuracy on the test set and compared it with the one of the model built on
the real non-anonymized dataset. If the dp-GAN model behaves correctly, all the
correlations between the different features should be preserved. Therefore, the
final accuracy should be similar to what was achieved by using the real training
set. We also tracked the privacy costs to verify that the generated data were
correctly anonymized. Finally, we examined how much membership inference
attacks can influence our model and compared it to a non-anonymized GAN
model.

Table 1 evaluates the degradation of the performances when differential pri-
vacy is adopted. The target accuracy of 77.2% was reached by using the real
training set to train the random forest classifier. As expected, a non-anonymized
GAN is able to produce high quality data: its accuracy loss is very low, 0.5%,
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Table 1. Classification accuracy for train-
ing sets generated by different models

Method Epsilon Accuracy

Real dataset Infinite 77.2%

GAN Infinite 76.7%

dp-GAN 3 73.7%

dp-GAN clipping decay 3 75.3%

dp-GAN 7 75.0%

dp-GAN clipping decay 7 76.0%

Fig. 4. Classification accuracy average
for 5 runs for different noise values

Fig. 5. Membership inference attack
accuracy for non-anonymized GAN,
dp-GAN with σ = 1 and σ = 5

Fig. 6. ROC curves for membership
inference attacks for GAN and dp-
GAN using generated samples of dif-
ferent size

compared to the target. Interestingly, even when we adopted the dp-GAN frame-
work the accuracy remained high. Using ε = 7 and clipping decay, we obtained
results similar to the ones without anonymization. In addition, Table. 1 points
out the positive effect of clipping decay, that it is able to increase the accuracy
of about 1%.

Figure 4 highlights the effects on the classification accuracy when dp-GAN
is adopted using different amounts of noise. The main effect is to slow down
the training process, but not to significantly impact accuracy. Indeed, the added
noise requires more epochs to reach convergence, which is amplified by σ. In most
of the use cases, this is a minor drawback, considering the classification accuracy.
Moreover, the dp-GAN is trained once; then the generator can be released to
produce samples on demand.

Figure 5 shows the analysis of the accuracy of membership inference attacks
on the model using different training procedures with different levels of pri-
vacy guarantees. This analysis has been done at different epochs of the training
process. The accuracy of the model increases over time, however this makes
the model more subject to membership inference attacks. As can be seen from
Fig. 6, training the model with no anonymization rapidly increases the accuracy
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of attacks: this highlights the problems that still afflict many generative models
that cannot effectively generalize the training data. On the contrary, by increas-
ing the privacy level, the accuracy of the attacks tends to remain close to 50%.
This is obtained at the costs of losing about 1% of accuracy during the final
classification.

The size of the dataset is another important factor that influences signifi-
cantly the results, since GANs need a good amount of data to generalize effec-
tively. Figure 6 confirms the results obtained in [17], but at the same time it shows
how differential privacy works well even when the dataset is small. Indeed, the
dp-GAN provides random accuracy towards membership inference attacks inde-
pendently from the size of the dataset. It is interesting to notice that since the
dataset is small, the level of privacy ε is big compared to what it is commonly
used; however, the effects of differential privacy can be still perceived clearly.

5 Related Work

Differential Privacy on Machine Learning Models. In [16] it is proposed
an innovative approach for training a machine learning model in a differentially
private manner. On the contrary of the dp-SGD, they proved that it is possible to
reach differential privacy by transferring knowledge from some models to others
in a noisy way. A set of models, called teachers, are trained on the real dataset
and a student model learns in a private way what the teachers have grasped
during the training. However, it is still unclear how this implementation can be
extended to a non-interactive setting. [19] developed a dp-GAN based on the dp-
SGD providing some optimizations in order to improve performances focusing
on the generation of images. In contrast, our work highlights that dp-GAN can
be adapted to a variety of different use cases and in particular we developed a
variation dedicated to discrete data. In addition, we provide, also, an overview
of the effects that differential privacy has on membership inference attacks; [17]
pointed out how severe the risk of this kind of attack in a general machine
learning model can be. We have confirmed the issue while highlighting that the
noise introduced by differential privacy reduces overfitting and consequently the
accuracy of membership inference attacks.
Generative Adversarial Networks on Discrete Data. [20] developed Seq-
GAN, an approach dedicated to the generation of sequences of discrete data.
SeqGAN is based on a reinforcement learning training where the reward signal
is produced by the discriminator. However, it is not clear how this approach can
be extended to include differential privacy. On the contrary, [15] uses Cramer
GANs to combine discrete and continuous data. These recent works did not
address data privacy concerns.
Differential Privacy Without Deep Learning. Interesting results have been
also obtained through other types of generative models. In the context of non-
interactive anonymization, [21] developed a differentially private method for
releasing high-dimensional data through the usage of Bayesian networks. This
kind of network is able to learn the correlations present in the dataset and gen-
erate new samples. In particular, the distribution of the dataset is synthetized
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through a set of low dimensional marginals where noise is injected and from
which it is possible to generate the new samples. However, the approach suf-
fers from an extremely high complexity, thus being unpractical to anonymize
large datasets. We have also analysed the literature to prove that the amount
of privacy that dp-GAN guarantees is comparable to the one of the other most
common implementations. Although there is no specific value for which ε is con-
sidered safe, we obtained most often lower privacy costs compared to [4,7], which
are the two most relevant works dealing with real-life datasets. Similar privacy
costs have been used in the most recent literature in the differential privacy field
[1,16].

6 Conclusion

In this paper we extended the notion of dp-GANs to privacy-preserving data
publishing of continuous, time-series and discrete data. We introduced clipping
decay to preserve data utility while providing data privacy: it can be used for any
differentially private gradient descent on any neural network to improve learning
accuracy. We have shown how our implementation is resistant to membership
inference attacks, being suitable for open data releases. In the future, we will
work on the reduction of privacy costs and investigate the potential benefits of
transfer learning to data anonymization.
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