
Identifying Users in the Bridging Service
Between Two Different Chat Services

Using User Icons

Ko Miyazaki1(B) and Haruaki Tamada2(B)

1 Division of Frontier Informatics, Graduate School of Kyoto Sangyo University,
Motoyama, Kamigamo, Kita-ku, Kyoto, Kyoto Prefecture, Japan

i1888123@cc.kyoto-su.ac.jp
2 Faculty of Information Science and Engineering, Kyoto Sangyo University,

Motoyama, Kamigamo, Kita-ku, Kyoto, Kyoto Prefecture, Japan

Abstract. There are many chat services in the world, such as Slack
(https://slack.com/), Skype (https://www.skype.com/en/), gitter.im
(https://gitter.im/), etc. Generally, we cannot send messages over the
different chat services, since there are no route to send messages between
them. To solve the problem, we propose the bridge system, named CiB-
ridge, to exchange messages between different two chat services. By using
the CiBridge, users in each chat service can send messages to other
chat service by using the ordinary chat service. However, one problem
arises in use of CiBridge. The problem is on the bridged messages which
are posted from another chat service. The bridged messages are posted
by CiBot, therefore, the original user of the message are concealed. Of
course, the body of bridged messages shows the user names of origi-
nal messages. However, the text information does not clarify the origi-
nal user of the messages. Generally, the users distinguish each user by
their avatar icons rather than the user names. For example, GitHub
(https://github.com/) supports the user distinguishes each developer by
the user icon. If the user does not specify his/her own user icon, GitHub
gives the default user icon by Identicon (https://blog.github.com/2013-
08-14-identicons/). That is, the visualization strongly helps the instinc-
tive understandings. Therefore, the user icons are important information
in the chat system to distinguish each user. This paper tries for embed-
ding the original user icons to the bridged messages.

1 Introduction

Today, the development teams usually use some chat services to exchange mes-
sages among the members. For example, Oracle corporation employs Slack as a
chat service for their daily use1. In such teams, a bot in the chat service solves
simple but bothersome works, e.g., reserving the meeting rooms, automatically

1 https://slack.com/enterprise.

c© Springer Nature Switzerland AG 2019
V. G. Duffy (Ed.): HCII 2019, LNCS 11582, pp. 380–390, 2019.
https://doi.org/10.1007/978-3-030-22219-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22219-2_29&domain=pdf
https://slack.com/
https://www.skype.com/en/
https://gitter.im/
https://github.com/
https://blog.github.com/2013-08-14-identicons/
https://blog.github.com/2013-08-14-identicons/
https://slack.com/enterprise
https://doi.org/10.1007/978-3-030-22219-2_29


Identifying Users in the Bridging Service 381

deployment, and so on. It is called ChatOps to solve the work by the bot like
above. For instance, Netflix manages the incidents on their chat service2.

Fig. 1. Issues of the paper

However, the problems arise in the case of collaborating members over the
teams. Let consider the case of building the new team X from existing team
A and B, shown in Fig. 1. Besides, the members in X remains in the former
teams. Additionally, the team A and B employ another chat services Ca and Cb,
respectively. In the case, the members of X have to use two or more different
chat services. Because, they need to use the chat services corresponding to the
members in X, A, B and switching the chat services requires a slight overhead.
Of course, the overhead of this case is quite low; however, the overhead gradually
gains by joining many teams.

The following four items are the categories of cost by using several chat
services.

(1) the searching cost for contact subjects,
(2) the switching cost of chat service.
(3) the registration cost, and
(4) the login cost.

In (1), by using many chat services, the user must remember the contact
address and corresponding chat service. This searching cost is generally concealed,
however quite high. In (2), the user pays some cost of switching the chat services.
The one switching cost is quite slight; however, the cost gradually increases in
proportion to the switching count. Next (3), the user should conduct user regis-
tration to use the new chat service. This registration cost is mandatory once at
first. However, some recent services do not allow multiple accounts; therefore, the
user must register cell phone numbers. This restriction is quite bothersome for
the user. Finally, in (4), the user tries to communicate with a particular chat ser-
vice, then the chat service requires authentication. The authentication is generally
quite significant; however, this case is also bothersome.
2 https://www.usenix.org/conference/srecon16/program/presentation/tobey.

https://www.usenix.org/conference/srecon16/program/presentation/tobey


382 K. Miyazaki and H. Tamada

To solve the above problems, we propose the bridging service between two
chat services, called CiBridge. CiBridge installs the bot, called CiBot into the
target chat services. Then, CiBot reacts to a posted message from the user,
and send it to another CiBot. CiBridge manages the pair of CiBots. Also,
sameroom.io3 is the one of bridging chat service. However, the icon of the posted
messages through sameroom.io is default user icons, since the bot conducts the
post. Generally, the users distinguish each user by their avatar icons rather
than the usernames [1,2]. Therefore, sameroom.io solves problems by bridging
chat services, however, it causes another problem. Therefore, CiBridge supports
avatar icons in the messages posted by CiBots.

The remainder of the paper shows the proposed method (Sect. 2). Next,
it describes the implementation of the proposed method (Sect. 3). Afterward,
Sect. 4 shows the case studies of the proposed method. Finally, Sect. 5 discusses
the related works, and then, we summarize the paper in Sect. 6.

2 The Proposed Method

2.1 The Chat Services

In the paper, we define the chat services as follows. Figure 2 shows the class
diagram of a chat service. From the Fig. 2, the message has a user who post it.

Fig. 2. The class diagram of the chat services for the paper

For illustrating a practical chat service, we choose Slack and Skype. Slack
and Skype are popular chat services. The Slack has many teams and organizes
users by the teams. Then, a team has several rooms, users in a room joined
freely, and the user has conversations on each room.

On the other hand, Skype has only one team, and the team has all of the
users in the world. The user managing the room can invite other users to join
the room.

In both chat service, the content of a message is the same in the definition of
this paper. The message has a posted user and content. Besides, the content of

3 https://sameroom.io/.

https://sameroom.io/


Identifying Users in the Bridging Service 383

the message is typically string format. However, the content might be a binary
format, such as images, videos, audios, and other formats. The proposed method
allows any format.

In almost chat service, the users can specify own icons. The user icon is
affected to distinguish other users [1–3]. Therefore, the user icon is quite signif-
icant even in the bridge services.

2.2 The Proposed Method

To bridge the two chat service, we prepare the one relay server and two chatbots.
Figure 3 illustrates the proposed method. At first, we install chatbots into both
chat services. The chatbots resident on a particular room, and react the post
from the user on the room. The user posts a message (Fig. 3a); then the chatbots
send the content of the message to the relay server (Fig. 3b). When the relay
server receives the message, it finds corresponding chatbot (Fig. 3c) from the
database. Next, the relay server sends the content of the message to the found
chatbot (Fig. 3d). Finally, the chatbot receives the message from the relay server,
and it posts the message instead of the original user (Fig. 3e).

Fig. 3. The procedures of the proposed method.

The received data on the relay server contains the message itself, and chatbot
and posted user information. The relay server manages the pairs of chatbots
using the database. Each chatbot is identified by their ids. Also, the user is
distinguished by the URL of the team, and the user id. Besides, the user would
identify each user by icons, therefore, this paper assumes that almost users set
their icons.



384 K. Miyazaki and H. Tamada

2.3 Formulation of the Proposed Method

This section gives the formulation of the proposed method. Let be two teams
X and Y , and each team uses different chat services Cx and Cy. Also, the
members of each team are shown as m(X) = {x1, x2, ..., xnx

}, and m(Y ) =
{y1, y2, ..., yny

}. The new team Z are built by arbitrarily selecting the members
of X and Y (m(X) ∩ m(Y ) �= φ). The both chat services Cx and Cy introduce
the new rooms rx→y and ry→x, respectively, for connecting both rooms. The
messages posted on rx→y are automatically share to ry→x by the relay server
Br, and vice versa.

For this, we install the bridging system CiBridge for connecting Cx and Cy

through rx→y and ry→x. CiBridge composes of several chatbots bi ∈ Bb and
one relay server Br. For connecting rx→y and ry→x, a user xi ∈ m(X) setups
Cx (1 ≤ i ≤ nx). xi selects the suitable chatbot bx from a chatbots set Bb

of CiBridge. The API of each chat service is generally different. The suitable
chatbot means that the bot uses the API of a specific chat service. Then, xi

installs bx to Cx by authorizing to react the message post and to post messages
to rx→y. The installed chatbot represents as βx→y The each βi is identified by
its id (id(βi)). The relay server Br manages the relationship between βx→y and
βy→x. That is, if a chatbot is specified, Br can find the corresponding chatbot.
Similarly, yi ∈ m(Y ) setups Cy for installing by, the messages posted on rx→y

are automatically transferred to ry→x, and vice versa.
Next, we formulate the messages on the CiBridge. When a user xk posts a

message e on a room rx→y, a chatbot βx→y activates for bridging the message.
The message e contains the message body o and information of the user xk, the
room rx→y and the chatbot βx→y (e = {o, xk, rx→y, βx→y}). The message body
o is typically plain text message. The information of xk is the name of xk and
icon.

3 Implementation

3.1 Overview

For the proposed method, we chose Slack and Rocket.Chat4 as the target chat
services Cx and Cy. Ideally, CiBridge should support every chat services. How-
ever, each chat service has generally different API, and sometimes it is exten-
sively different. Therefore, we develop the chatbot for each chat service step by
steps. To support the above two chat services is the first step of the proposed
method.

We implemented the relay server Br as a REST service [4] written in the
Java language. Also, we applied Hubot5 for implementing CiBots. Br and each
CiBot run at each Amazon EC2 server on AWS6. We used the following libraries
for the Br and CiBots.
4 https://rocket.chat/.
5 https://hubot.github.com.
6 https://aws.amazon.com.

https://rocket.chat/
https://hubot.github.com
https://aws.amazon.com


Identifying Users in the Bridging Service 385

Table 1. The endpoints of Br

Endpoints HTTP method Description

/api/relay/messages POST Exchange posted messages to corresponding chatbot

/api/relay/pairs GET Returns the corresponding chatbot with given room id

POST Register the room pair for bridging the messages

DELETE Delete the room pair

– The relay server Br

– Java 10
– Jersey 2.0.1
– Jetty 9.4.11
– SQLite 3.27.17

– CiBot(Slack)
– Hubot
– hubot-slack adapter 4.6.08

– CiBot(Rocket.Chat)
– Hubot
– hubot-rocketchat adapter 1.0.129

3.2 The Relay Server Br

Br was built as a REST service for message bridging. Br has two endpoints,
/api/relay/messages and /api/relay/pairs. Table 1 shows the available
HTTP methods for the endpoints. Besides, the format of the message e is JSON,
and the authorization token of CiBridge includes in the HTTP header. Br per-
forms two features, relaying the message, and managing the pairs.

3.2.1 Relaying the Message
At first, it explains the relaying the message. The relaying the message feature
is activated by receiving the message through /api/relay/messages by POST
method, and performed the following stages.

1. extracts the room id id(βx→y) from the received message e.
2. finds the corresponding chatbot βy→x by the extracted chatbot id id(βx→y).
3. converts the messages e to clarify the bridged message e′ (e′ = {o′, x′

k, rx→y,
βx→y}).

4. sends the converted message e′ to the corresponding chatbot βy→x.

7 https://www.sqlite.org/index.html.
8 https://github.com/slackapi/hubot-slack.
9 https://github.com/RocketChat/hubot-rocketchat.

https://www.sqlite.org/index.html
https://github.com/slackapi/hubot-slack
https://github.com/RocketChat/hubot-rocketchat


386 K. Miyazaki and H. Tamada

The message e contains the message body o, information of user x, room
ri and the chatbot βi, described above (e = {o, x, ri, βi}). In CiBridge, the Br

converts the e to e′ by the following two steps. The first step converts the user
icon by putting CiBridge icon at the lower right of it. The second step adds the
original user name at the first of the message body, if the message body is plain
text.

Figure 4 shows an example of the original message e and the bridged mes-
sage e′. This example shows that the user Garry posts a message on the room
HCII2019, and we bridge between HCII2019 and the room PAPERS in another
chat service. Figure 4(a) is the view in the HCII2019, and (b) is the view in
the PAPERS. The CiBridge adds its icon to the original user icon, appends the
room name HCII2019 the username, and updates the message body to clarify
the bridged message.

Fig. 4. An example of the original and the bridged messages

3.2.2 Managing the Chatbot Pairs
To manage the chatbot pairs should perform CRUD tasks (create, read, update,
delete). However, we substitute the update task for the delete and create tasks.
Therefore, the endpoint of /api/relay/pairs accepts GET, POST, and DELETE
methods, and do not support UPDATE method. Similarly with the general REST
application, GET method returns the list of the registered pairs, POST method
register the posted pair, and DELETE method remove the pair from the list.

In the create task, Br inserts the pair of chatbots into the database. The
pair is specified in the request body of the HTTP request. The inserted data is
the chatbot id id(βi), its name, the corresponding chatbot id id(βj) and its url
url(βj).

Next, the read task finds the corresponding chatbots for requested id(βi).
The task was done for simply reading the database. Finally, the delete task is
also executed by the deleting the database entries.

3.3 CiBots

CiBot is a simple chatbot built with Hubot. CiBot has three features: detecting
the new post, posting message instead of the original user, and presenting various
information replying the request from a user. In the detecting the new post,
CiBot activates by posting from user except own. This feature are based on



Identifying Users in the Bridging Service 387

the Hubot hear method. When some user posts a message in the βi, CiBot
constructs message e, and send it to the relay server Br.

In the posting message, CiBot waits the message from the relay server Br.
For this, CiBot listens HTTP requests as a REST service. The endpoint of the
REST service on CiBot is /api/cibot/messages. This endpoint only accepts
HTTP POST method for bridging messages. When the endpoint accept a HTTP
request, CiBot parses the request body message e′, and posts the message o′ to
the specified room with updating CiBot ’s icon. The icon of CiBot are updated
by e′ from the relay server Br.

Finally, to bridge chat services conceal various information from the users,
e.g., joined members, connected rooms, and so on. Ordinary, the user can see
the joined members from the application view of the chat services. Therefore,
CiBot has the interface to answer such questions. In the implementation, CiBot
provides the interface to show the joined members and connected rooms.

4 Case Studies

This section shows the case study of our proposed system CiBridge. We assume
that Cx is Slack, and Cy is Rocket.Chat. Also, Table 2 shows the users in both
chat services and each room name. Note that, the users alice are the different
users with the same username. Then, the both alice install suitable CiBots
to rx→y and ry→x, respectively. The section shows the messages on each chat
services following the below scenarios.

Table 2. The users in each chat service

Chat service Room name User names

Cx Slack Meeting alice bob charlie dyran

Cy Rocket.Chat Briefing alice eric fred greg

1. bob posts the message in the rx→y,
2. alice in Cy posts the message in the ry→x, and
3. eric mentions to alice of Cx in ry→x.

4.1 Case Study 1: A Bridging a Message Example

This case study is a simple example of bridging the message between two chat
services. This case study shows the bridged messages in the practical environ-
ment. Figure 5 presents the screenshots of chat applications, Bob’s view, and
Fred’s view. In Fig. 5(a), Bob post a message “Let’s start meeting!”. Then, Fred
receives the message via CiBridge, shown in Fig. 5(b). Also, CiBridge bridges
the response message “I’m ready!” from Fred in both views.



388 K. Miyazaki and H. Tamada

(a) The chat view of Bob

(b) The chat view of Fred

Fig. 5. The chat views of Bob and Fred

4.2 Case Study 2: The Same Name User in the Bridged Chat
Services

This case study shows how to distinguish the same name users in the bridged chat
services. From Table 2, alice is in Cx and Cy, and two alice are the different
users with the same username. The same usernames are usually not accepted,
however, in the environment of bridging two chat services, same usernames may
exist. Therefore, we should identify the two same name users by their icons.
Figure 6 shows the chat application views of Alice. We can identify two alice by
their icons, and we can see that two alices have a conversation through CiBridge.

4.3 Case Study 3: Mention to the Name Overlapped User Under
the Bridging Services

This case study presents how to mention to the overlapped usernames beyond
the chat services. In ry→x of Cy, eric mentions to alice of Cx. For this, eric
post a message “@cibot alice Please review #32”, to request a review the
issue #32 to alice in Cx, shown in Fig. 7. @cibot alice is the keyword of the
mention to alice in bridged chat services (Fig. 7(b)). CiBridge converts the
keyword to the general form and post the message, shown as Fig. 7(a).

5 Related Works

After all, the message bridging is just the action by trigger. There are two famous
trigger action frameworks, IFTTT10 and Zapier11. Both framework are support
10 https://ifttt.com/.
11 https://zapier.com/.

https://ifttt.com/
https://zapier.com/


Identifying Users in the Bridging Service 389

(a) The chat view of Alice in Cx

(b) The chat view of Alice in Cy

Fig. 6. The chat views of both Alice

(a) The chat view of Alice in Cx

(b) The chat view of Eric

Fig. 7. The chat views of Alice and Eric

quite many chat services as a trigger. We can solve the problems of the paper
using them. However, the trigger action framework cannot support the situation
such as overlapped usernames in the chat services, shown in the case study 2
and 3. Also, the users cannot identify the bridged users with their icons.



390 K. Miyazaki and H. Tamada

6 Conclusion

There are many chat services in the world such as Slack, Skype, gitter.im, etc.
Using the multiple services needs trivial, however, troublesome works, such as
switching services. For solving the problem, there is the exchanging service
among several chat services, such as sameroom.io. However, those services do
not support to identify the users by their icons.

We built a bridging service CiBridge between two chat services to hold the
original user icons under the bridging environment. For the proposed method,
the user can identify the users by not only their name but also the icons.

In our future works, we will conduct the experimental evaluation in the prac-
tical environment.

References

1. Mcdougall, S.J., Curry, M.B., de Bruijn, O.: Behavior research methods. Instrum.
Comput. 31(3), 487 (1999)

2. Ng, A.W., Chan, A.H.: Ind. Eng. Res. 4(1), 1 (2007)
3. Ng, A.W., Chan, A.H.: Proceedings of Interenational Multiconference Engineers and

Computer Scientists vol. 2, pp. 19–21 (2008)
4. Fielding, R.T.: Architectural styles and the design of network-based software archi-

tectures. Ph.D. thesis, University of California, Irvine (2000)


	Identifying Users in the Bridging Service Between Two Different Chat Services Using User Icons
	1 Introduction
	2 The Proposed Method
	2.1 The Chat Services
	2.2 The Proposed Method
	2.3 Formulation of the Proposed Method

	3 Implementation
	3.1 Overview
	3.2 The Relay Server Br
	3.3 CiBots

	4 Case Studies
	4.1 Case Study 1: A Bridging a Message Example
	4.2 Case Study 2: The Same Name User in the Bridged Chat Services
	4.3 Case Study 3: Mention to the Name Overlapped User Under the Bridging Services

	5 Related Works
	6 Conclusion
	References




