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Abstract. Foot and Knee pain have been associated with numerous
orthopedic pathologies and injuries of the lower limbs. From street run-
ning to CrossFit functional training, these common injuries correlate
highly with unevenly distributed plantar pressure and knee positioning
during long-term physical practice and can lead to severe orthopedic
injuries if the movement pattern is not amended. Therefore, the moni-
toring of foot plantar pressure distribution and the spatial and temporal
characteristics of foot and knee positioning abnormalities is of utmost
importance for injury prevention. This work proposes a wearable plat-
form to provide real-time feedback of functional exercises, aiming to help
users and physical educators to mitigate the probability of injuries during
training. We conducted an experiment with 12 diverse volunteers to build
a Human Activity Recognition (HAR) classifier that achieved about 87%
overall classification accuracy, and a second experiment to validate our
physical evaluation model. Finally, we performed a semi-structured inter-
view to evaluate usability and user experience issues regarding the pro-
posed platform.

Keywords: Human Activity Recognition · Health and ergonomics ·
Wearable computing and sensing

1 Introduction

Over the last 10 years, functional training exercises became a popular method
to improve muscular and cardiovascular fitness, and many studies, such as [5]
and [9], point out the benefits of this type of training regimen - while also sug-
gesting that functional training practitioners have increased risk of foot, knee and
lower back pain and related injuries. Nevertheless, works such as [17] and [14]
point out a twofold increase of the prevalence of knee pain injuries, whereas
works such as [8] show a threefold increase of the prevalence of lower back pain
and injuries. Foot and Knee pain have been associated with numerous orthopedic
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pathologies and injuries of the lower limbs. From high intensity functional train-
ing (HIFT), such as CrossFit, to Extreme Conditioning Programs, lower limb
injuries correlate highly with unevenly distributed plantar pressure and knee
positioning during long-term physical practice and can lead to severe orthopedic
injuries if the movement pattern is not amended. Therefore, the monitoring of
foot plantar pressure distribution and the spatial and temporal characteristics
of foot and knee positioning abnormalities is of utmost importance for injury
prevention. Common methods employed by physical educators for the diagno-
sis of plantar pressure and knee positioning abnormalities are based on human
observational approach, predominantly subjective, which is neither reliable nor
scalable to a large group of individuals.

Human Activity Recognition (HAR) research on posture and movement
information has seen an intense growth during the last ten years, drawing atten-
tion of fields such as mobile healthcare and ergonomics. Researchers investigate
the recognition of human movement patterns and behaviors to better under-
stand our actions and their context, to detect misguided action and to help
people perform better in their daily life or professional activities. Traditionally,
the equipment used to track and process these movements patterns were inva-
sive, expensive and unsuited for outdoor experiments, but the development of
Internet of Things (IoT) wearable technologies allowed researchers to investigate
HAR related questions without the constrains of a laboratory environment.

This work presents a study for foot and knee movement and posture analysis
of individuals to help them assess and correct their movements during training,
aiming to mitigate the probability of repetitive strain injuries (RSI). Our solution
employs an IoT wearable device with a novel sensor array and a machine learning
HAR activity classifier for movement pattern recognition. The wearable device
comprises three components: an US men’s size 8 insole that houses the plantar
pressure sensors, an external protective case that houses the microcontroller and
the foot sensors and a knee band that houses the knee sensors. It is equipped
with a set of 16 sensors and can collect detailed foot and knee movement and
posture information every 20 ms, providing a feature-rich stream of data for local
processing at the microcontroller or remote processing at an application server.
The machine learning HAR activity classifier employs an individually tailored
decision tree algorithm, when processing data locally, or a Random Forest, when
processing data at the server, to recognize, within a set of 13 activities, whether
the movement pattern is correct or inaccurate. The experimental results show
that the HAR classifier achieves an overall accuracy of 87.08% for local process-
ing. After classification, the IoT wearable device uses a component that provides
haptic feedback to the user to warn whenever an inaccurate movement pattern
is performed.

We conducted an experiment to build our machine learning HAR activity
classifier, employing twelve volunteers carefully selected for their diverse charac-
teristics, since a common limitation of the surveyed works that is the prevalence
of homogeneous participants. We employed participants from both genders and
diverse age categories, some of which with disabilities, such as class II obesity,
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severe knee injury and blindness. Each participant performed 3 sessions of 30 min
of functional training supervised by a certified physical educator, following a rou-
tine consisting of the 13 activities of our activity model. We conducted a second
experiment with the same participants to validate our HAR classifier, consisting
of a 30-min session followed by a semi-structured interview to evaluate usability
and user experience questions. Our experiment demonstrates the feasibility of
our real-time feedback system and the supporting role it can perform for early
intervention and prevention of orthopedic injuries, by providing a mobile, easy
to use and affordable long-term monitoring of individuals.

2 Literature Review

This section presents a literature review about wearable-based research projects
using feet and knee information for the detection of exercise execution errors. We
conducted the literature review in four steps: (i) definition of a research question
and its sub questions, (ii) formulation of a search query string, (iii) definition
of exclusion criteria and (iv) completion of a quantitative and qualitative data
analysis. The research question posed in this work is: What are the wearable-
based research projects conducted in recognition of exercise execution to help
prevent or treat sport-related injuries? This research question was broken down
into four sub-questions:

– How the incorrect execution of exercises was addressed?
– How the activity model was structured?
– What activity classifier was built?
– What hardware and software setting types, quantities and locations of the

sensors were assembled?

The surveyed works may be grouped into three distinct research categories:
(i) user feedback and performance assessment, (ii) activity recognition and (iii)
prevention or treatment of injuries and diseases.

2.1 User Feedback and Performance Assessment

The study presented in [13] uses off-the-shelf devices, such as the Microsoft
Kinect, to evaluate posture and analyze users movement in order to help them
assess and correct their movements during a CrossFit training session. Although
the experiment focused on only one exercise within a restricted context, the
study suggests that the proposed application provides a coach-like feedback use-
ful in the absence of such an expert. The works proposed by [6] and [2] use
upper and lower body accelerometer data to provide, respectively, feedback to
swimmers and rowers. In [6], a sensor system is used to extract lap times and
stroke counts for each lap of the pool, achieving good overall results. However, in
[2], even though the experiment was successfully conducted by providing users
with immediate feedback, no improvements were found for performance-related
parameters. One other work focused on rowers collects femur and lower back
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kinematic data through an accelerometer-based body sensor network (BSN) [10].
The proposed system was used, alongside optical tracking, to distinguish between
good and poor rowing techniques. Also, in [4], an experiment was conducted with
professional swimmers to help improve their performance. The researchers used
acceleration sensors to monitor relevant swimming parameters for a continuous
performance evaluation, while also offering visual, audio and haptic feedback to
swimmers. After testing four feedback modes, visual signs were chosen for their
fastest reaction time. In the ongoing work presented by [43], an experiment was
conducted with professional skiers aiming at improving the trainer-athlete rela-
tionship. Through the usage of wearable sensors and visualization software, par-
ticipants were able to share their observations and impressions. Another work
aiming at benefiting athletes with immediate feedback during training is pre-
sented by [19]. The researchers propose feedback systems for rowing, table tennis
and biathlon professional athletes, providing detailed hardware information.

2.2 Activity Recognition

Many works, such as [21,23,25,35] and [22], rely on plantar FSR pressure sen-
sors to classify user activity according to a previously elaborated activity model.
Other works, such as [28,42] and [23], rely on inertial motion units (IMUs)
located on user’s feet for that purpose. Sensor fusion - FSRs and IMUs - is
employed by works such as [32,49,53] and [39], achieving good overall results.
Only a few of the surveyed works used sensors other than ground contact force
(GCF) sensors and IMUs, such as infrared sensors [36] or capacitive sensing
technology [29] and [41]. Henceforth, the main difference being these works is
the machine learning algorithms applied and the context of the experiments.
Differently, [54] proposes a novel approach using ultrasonic sensors in a wear-
able platform to monitor lower limb movements and patterns. Although it is
an ongoing work, the results show that ultrasonic systems may be successfully
used for gait analysis in running and jogging. The researchers in [16] use in-
shoe Ground Contact Force (GCF) sensors to evaluate patients with postural
instability making use of a posturography. The wearable-based sensor technology
used in their experiment allowed for static and dynamic posturography in clin-
ical and home environments an important assessment for orthopedic diagnosis.
There is evidence showing a strong correlation between dynamic in-shoe sensor
data acquisition and static pressure plate data acquisition.

The work in [15] presents an extensive research using wearable sensors to
understand the best signal processing, sensors and classification methods for
classifying health-enhancing physical activities such as walking, running and
cycling. It discusses how each activity is best characterized and what sensors
should be used to recognize them. Likewise, in the work proposed by [7], activity
recognition using wearable sensors provides lifestyle feedback regarding health-
enhancing physical activities. However, contrary to the previous study, this one
focuses on non-lab activities and sports in unsupervised settings. Considering
the proposed activity model, results showed that using both unsupervised and
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supervised data for machine learning yields similar results to using only super-
vised data. The work in [37] proposes an optimal sensor set for gait identification
of patients with dropped foot for clinical evaluation. This sensor set consists of
three IMUs capable of six degrees of freedom, placed onto users thigh, shank and
foot of the impaired leg. The study identifies the best sensor orientations and
attachment positions, whilst accurately identifying gait events. Finally, it sug-
gests that the system could be used to analyze other walking conditions during
daily activities.

Some other shoe-based wireless sensor platforms, such as the SmartStep [34],
were used by many different healthcare-related works. In [33], the former plat-
form was used to develop an Android application to capture data from the wear-
able device and provide real time recognition of a small set of activities. In [48]
and [50], the SmartShoe platform is used for energy expenditure estimation after
the classification of the activities performed by the user, and in [51] it is further
used to predict body weight. The same platform is then used by [27] and [26] to
identify activity levels and steps in people with stroke.

Many of the surveyed studies that were conducted in the recognition of activ-
ities were related to healthcare and well-being, such as (i) the research presented
in [38], that aims at recognizing caregiver’s patient handling activities (PHA) and
movement activities to help prevent overexertion injuries, (ii) the work presented
in [55], that measures activity in people with stroke, (iii) the work presented
in [24], that recognizes activities and postures to provide behavioral feedback
to patients recovering from a stroke, and (iv) the research proposed by [44], in
which researchers present a pair of shoes that offer low-cost balance monitor-
ing outside of laboratory environments and uses features identified by geriatric
motion study experts. This lightweight smart shoes platform is based on the
MicroLEAP wireless sensor platform [18], and uses an IMU and FSR pressure
sensors embedded inside each insole for data acquisition.

2.3 Prevention and Treatment of Injuries and Diseases

The prevention and treatment of injuries and diseases is the most prevalent
theme of research found in this literature review. The research presented in [11]
and [12] recognizes that the first step to reduce caregivers risk of overexertion
injuries is to identify patient handling activities [PHA]. It proposes an eTextile
fabric with 48 plantar pressure sensors and an IMU capable of nine degrees of
freedom motion sensing to detect user activity and identify awkward postures
that might lead to injuries. Despite the complexities of the interaction between
users and loads (e.g., patients and instruments), both studies show promising
results.

In works such as [1] and [3], researchers propose an accelerometer-based wear-
able framework for recognizing athletes activities in outdoor training environ-
ments. They aim at identifying (i) potential injury or performance determining
factors, (ii) users in the early stages of a developing injury and (iii) a predis-
position to injury based on movement patterns. In this work, the researchers
performed an experiment to monitor thigh and shank movement and posture
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during jogging, achieving good overall results. In [44], the researchers present a
pair of shoes that offer low-cost balance monitoring non-lab environments. The
shoes use features identified by geriatric motion study experts to monitor bal-
ance and predict fall risk, demonstrating the feasibility of a model of instability
assessment. They are based on a wireless sensor platform using IMU and FSR
pressure sensors embedded inside each insole for data acquisition.

3 Building the HAR Classifier

On this Section, we describe the stages followed to develop the HAR classifier: (i)
prototyping the wearable IoT Device, (ii) conducting the experiment to acquire
use data, (iii) processing the acquired data, (iv) extracting and selecting features,
(v) building models and (vi) validating the selected model.

3.1 Wearable IoT Device Prototype

On this section, we present the wearable device prototype used to collect func-
tional training data. To allow for the reproduction of this research, we provide
detailed hardware information - types, quantities and models for each compo-
nent.

Aiming at a user base as diverse as possible, we followed the prototyping
principles discussed in [46] and [47]. To reach this goal, we (i) developed a low
power consumption easy-to-use wearable IoT device with only a power button
and (i) that required only one functional foot to collect and analyse user data.
This allowed for extended operation and ease operation during the experiments.
The use of only one foot to collect user data was discussed in [46] and does no
incur any significant loss of accuracy, reduces prototyping costs and broadens our
user base. The wearable device comprises three components: (i) an US men’s size
8.5 insole that houses the plantar pressure sensors, (ii) an external protective case
that houses the microcontroller and the foot sensor array and (iii) an external
protective case that houses the knee sensor array.

The insole employs six GCF sensors following the literature’s recommenda-
tions for placing discussed in [45,52] and [40], in addition to the lessons learned
from the prototypes presented in [46] and [47]. We used the FSR 402, by Inter-
link Electronics - a PTF (Polymer Thick Film) device that exhibits a decrease
in resistance as the force applied to its active surface increases - and Amphenol
FCI Clincher Connectors to avoid melting or distorting the silver traces of each
sensor. As in [47], to create a variable voltage for the microcontroller’s Analog
to Digital Converter (ADC) inputs of each sensor, we embedded six 10 kΩ 1

4 W
static resistors inside the insole next to them.

The main component of the foot external protective case is the Electron,
a 3G-enabled microcontroller from Particle.io that collects data from the foot
sensor array and transmits the data to the remote database. For the accelerom-
eter, gyroscope and magnetometer sensors responsible for monitoring the feet
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posture, we used the SparkFun 9DoF IMU LSM9DS1 Breakout, a system-in-
package component that houses a 3-axis accelerometer, 3-axis gyroscope, and
3-axis magnetometer sensor array that is capable of digital communication with
the Electron microcontroller. The barometer selected for the experiment is the
MPL3115A2, by Freescale Semiconductor, a low power, high-precision altitude
and pressure. For the range finder sensor we used two of the RFD77402 3D ToF
(Time of Flight) by Simblee, a low-cost accurate sensor that allows millimeter
readings up to two meters. The RFD77402 uses an infrared VCSEL (Vertical
Cavity Surface Emitting Laser) module to measure the amount of time the
emitted light takes to bounce off a target.

The Electron microcontroller and its board, along with the MPL3115A2 and
RFD77402 sensors mentioned above, were positioned in the ABS 3D printed
external protective case. The prototype is powered by a 2,200 mAh lithium ion
battery pack by Sparkfun Electronics, allowing for an easier, faster replacement
and improved usability. We did not take any measures to address the sensor drift
over time of this prototype, as discussed in [47].

The knee external protective case houses a second SparkFun 9DoF IMU
LSM9DS1 Breakout and is connected to the foot external protective case by a
flexible cable.

The software model used in this work is based on the model proposed in
[46] and [47], comprising two components: (i) the embedded software running on
the microcontroller, responsible for acquiring, structuring and transmitting raw
sensor data over 3G to the application server, and (ii) the application server
itself, responsible for processing and logging the streamed data to Firebase
NOSQL database - tasks not suitable for the embedded microcontroller due to its
hardware limitations. The authors made available the complete and commented
source code of the application server in [46].

3.2 The First Experiment

The first experiment, aimed at building the HAR classifier, was conducted with
twelve volunteers carefully selected for their diverse characteristics. One pre-
vailing limitation of the surveyed the works is the employment of homogeneous
participants in their experiments. This study tries to circumvent this problem
with the participation of people with disabilities and mature adults. Table 1
below summarizes participants information.

Since the insole and shoes are US men’s size 8.5, we selected participants
in the 7.5 to 9.0 shoe size range. We collected 18 h of activity data - 90 min
of feet and knee posture and movement data from each volunteer. The number
of subjects in our study is not that different from the surveyed works others,
considering the median of 6 found in the literature. However, the number of
samples in our study - over 1.2 million - is significantly higher than the median
number of samples - around 50,000 - found on the surveyed works.

The activity model we developed for the experiment comprises 13 activi-
ties: walking straight (2 km/h), slow jogging (6 km/h), hopping, ascending stairs,
descending stairs, standing, Basic Squat, Sumo Squat, Squat Hold, Basic Step
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Table 1. Experiment 1 participant profiles.

Participant Age Gender Height Weight Observations

Participant 1 35 Male 1.85 m 136 kg Class II Obesity; Lesion:
Right Knee

Participant 2 28 Male 1.74 m 73 kg Attention Deficit
Hyperactivity Disorder

Participant 3 29 Male 1.76 m 72 kg -

Participant 4 32 Male 1.81 m 81 kg -

Participant 5 27 Female 1.77 m 61 kg Lesion: Left Knee/Left Ankle

Participant 6 45 Female 1.64 m 87 kg Class II Obesity

Participant 7 62 Male 1.93 m 110 kg Overweight

Participant 8 28 Male 1.74 m 70 kg -

Participant 9 37 Female 1.67 m 59 kg Professional Runner

Participant 10 35 Male 1.54 m 65 kg Overweight

Participant 11 34 Male 1.89 m 90 kg Professional Skater

Participant 12 33 Female 1.61 m 52 kg -

Up, Front Lunge, Side Lunge and sitting. The experiment was conducted in
3 distinct 30-min sessions, where participants performed a set of the planned
activities supervised by a certified physical education professional. Following the
advice of the physical educator, no participant performed more than 1 session
per day and sessions were spaced by at least 48 h. All sessions were performed
in a personal training studio.

At each session, participants performed 6 cycles of 5-min routines. In the
first session, participants were required to interweave walking, jogging, hopping,
ascending stairs, descending stairs, standing and the execution of the Basic Step
Up functional exercise. In the second session, participants were required to inter-
weave walking, standing, sitting and the execution of the Basic Squat, Sumo
Squat and Squat Hold functional exercises. In the third session, participants
were required to interweave walking, standing, sitting and the execution of the
Front Lunge and Side Lunge functional exercises. Subjects were free to perform
the activities - the wearable prototype did not restrict in any sense their move-
ment. All routines were developed jointly with the certified physical education
professional, who provided clear instructions of how the activities were to be
performed during the experiment. We focused on the time that each participant
should spend performing the proposed activities, rather than the number of
repetitions, as the physical conditioning of each participant varied significantly.
Table 2 below details the performed activities:

Since the classifier proposed in [46] performed well, achieving 93.34% overall
accuracy, we were confident to extend the original activity model of 6 activities
to the current activity model of 13 activities for this experiment. The results
showed a drop of 6.26% in the overall accuracy, when compared to the first
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Table 2. Experiment session routines.

Session Cycle Routine

1 1 1 min walking, 2 min ascending stairs, 1 min walking, 1 min standing

1 2 1 min walking, 2 min descending stairs, 1 min walking, 1 min standing

1 3 1 min walking, 2 min Basic Step Up, 1 min walking, 1 min standing

1 4 1 min walking, 2 min Jogging, 1 min walking, 1 min standing

1 5 1 min walking, 2 min Hopping, 1 min walking, 1 min standing

1 6 1 min walking, 2 min Basic Step Up, 1 min walking, 1 min standing

2 1 1 min walking, 2 min Basic Squat, 1 min standing, 1 min sitting

2 2 1 min walking, 2 min Sumo Squat, 1 min standing, 1 min sitting

2 3 1 min walking, 2 min Squat Hold, 1 min standing, 1 min sitting

2 4 1 min walking, 2 min Basic Squat, 1 min standing, 1 min sitting

2 5 1 min walking, 2 min Sumo Squat, 1 min standing, 1 min sitting

2 6 1 min walking, 2 min Squat Hold, 1 min standing, 1 min sitting

3 1 1 min walking, 2 min Front Lunge, 1 min standing, 1 min sitting

3 2 1 min walking, 2 min Side Lunge, 1 min standing, 1 min sitting

3 3 1 min walking, 2 min Front Lunge, 1 min standing, 1 min sitting

3 4 1 min walking, 2 min Side Lunge, 1 min standing, 1 min sitting

3 5 1 min walking, 2 min Front Lunge, 1 min standing, 1 min sitting

3 6 1 min walking, 2 min Side Lunge, 1 min standing, 1 min sitting

activity model. We accompanied all participants during the sessions to monitor
the wearable IoT device data collection and for logging any unusual occurrence.
Hypoallergenic socks were used to avoid skin allergies.

3.3 Data Acquisition

During the data acquisition stage, a stream of unprocessed sensor signals is
built from the combination of the insole’s sensors and the knee’s sensors, and it
is stored in the microcontroller in JSON format. This raw data combines two
accelerometers, two gyroscopes, two magnetometers, six FSR sensors, altitude,
pressure and two range finder sensor signals, resulting in 28-feature set entries
to the dataset. We used a 20 Hz sampling rate to recognize between similar
activities and subtle variations in execution style [31]. The JSON formatted
data was periodically sent to the application server in small packages of 200 KB
to reduce energy and data usage.

3.4 Data Processing, Feature Extraction and Selection

A data processing pipeline of two steps, similar to the one proposed in [46] and [47],
was employed. No experiment data is discarded, given that the prototype starts
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collecting feet movement and posture information immediately after it is powered.
First, the dataset is labelled for supervised learning, and activity class information
is appended to each entry according to the activity performed in the experiment.
Finally, all sensor data is normalized to make their scales equivalent for the model
building.

In the feature extraction stage, we used descriptive statistics - standard devi-
ation, variance, minimum, maximum and average values - to generate derived
features from each of the 28 original features:

– Six FSR sensor readings;
– Six gyroscope axis data;
– Six magnetometer axis data;
– Six accelerometer axis data;
– Six accelerometer axis data;
– Altitude reading;
– Pressure reading; and,
– Two range finder sensors reading.

Moreover, (i) the cumulative difference between samples for each feature and
(ii) the Euler angles of pitch, roll and yaw are also used to generate additional
derived features, for a total of over 200 features for selection.

As in [46] and [47], we employed Hall’s algorithm [30] based on correlation for
feature selection, using its default “Best Fit” backtracking greedy strategy con-
figuration. In total, 22 features were utilized to build the classifier: 2 axis of the
foot gyroscope, 2 axis of the foot magnetometer, 1 axis of the foot accelerometer,
4 FSRs, 2 Euler angles of the foot, 3 axis of the knee gyroscope, 2 axis of the knee
magnetometer, 2 axis of the knee accelerometer and the maximum and minimum
of the two range finder sensors. Based on the surveyed related works, we already
expected to see accelerometer, gyroscope, magnetometer, Euler angles and FSR
features showing high correlation and being used in the building of the classi-
fier. However, as in [36,46] and [47], the range finder sensors were successfully
employed and improved the average accuracy of our results. Unlike the classifier
proposed in [46] the altimeter was not employed by the classifier.

3.5 Classification and Validation

We experimented different strategies to build the HAR classifier model, as in [46]
and [47], and once more the Random Forest Algorithm achieved better results -
with an overall classification accuracy of about 87%. To validate the model, we
applied the Leave-one-out Cross Validation in attempt to increase the robustness
of the model - since this method guarantees that both training and test splits
does not share any example data. The individual validation results for each of
the 12 examples were: 81.11%, 79.26%, 94.33%, 92.21%, 84.18%, 82.72%, 87.51%,
90.12%, 96.44%, 74.71%, 89.49% and 92.90%.

We experimented several time window sizes to build the classifier and decided
to use a 3-s window based on our model validation results. Although [20] recom-
mends window sizes within the 0.25 s–0.50 s range for single activity recognition,
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our activity model consists of complex single activities, and smaller window sizes
did not achieve good overall classification accuracy.

4 Validating the HAR Classifier

On this Section, we describe the stages followed to validate the HAR classifier:
performing a second experiment and a semi-structured interview to evaluate
usability and user experience.

4.1 The Second Experiment

During the second experiment we employed 9 of the 12 original first experiment
volunteers - three of them were not available at the time it was conducted.
Table 3 below summarizes participants information.

Table 3. Experiment 1 participant profiles.

Participant Age Gender Height Weight Observations

Participant 1 35 Male 1.85 m 136 kg Class II Obesity; Lesion: Right Knee

Participant 2 28 Male 1.74 m 73 kg Attention Deficit Hyperactivity Disorder

Participant 3 29 Male 1.76 m 72 kg -

Participant 6 45 Female 1.64 m 87 kg Class II Obesity

Participant 7 62 Male 1.93 m 110 kg Overweight

Participant 8 28 Male 1.74 m 70 kg -

Participant 9 37 Female 1.67 m 59 kg Professional Runner

Participant 10 35 Male 1.54 m 65 kg Overweight

Participant 12 33 Female 1.61 m 52 kg -

The goal of the second experiment was to validate the HAR classifier and
its capability to assess if the movement pattern of a particular functional train-
ing exercise was performed correctly by the user. To achieve that goal, we used
the same wearable IoT device employed to build the model with two modifi-
cations: (i) we added a SparkFun Haptic Motor Driver with the DRV2605L by
Texas Instruments, together with a vibration motor, and (ii) we altered the
embedded code to send packages of the collected data to the application server
for data processing and waiting for a return code that indicated if the activ-
ity was performed correctly. The second experiment was conducted in a 30-min
session, where participants performed a set of the planned activities supervised
by the physical educator responsible for the first experiment. This session was
performed at the same personal training studio used for the first experiment. No
data was collected during the second experiment.
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At the session, each participant performed 6 cycles of 5-min routines. The rou-
tines consisted of all 13 activities of our activity model, and were also developed
jointly with the certified physical education professional, who did not provide
instructions of how the activities were to be performed during the experiment.
A few participants that were performing correctly every activity of the proposed
routines were asked to alter the movement pattern to replicate the most common
execution errors found during a functional exercise practice. This was done for no
more than 3 repetitions for each activity - since the repetitions were performed
without extra weights on foam mat floor tiles, the physical educator ensured that
no harm would befall those participants. Once more, we focused on the time that
each participant should spend performing the proposed activities, rather than
the number of repetitions, as the physical conditioning of each participant still
varied significantly. Table 4 below details the performed activities:

Table 4. Experiment session routines.

Session Cycle Routine

1 1 1 min walking, 2 min Basic Step Up, 1 min standing, 1 min sitting

1 2 1 min walking, 2 min Basic Squat, 1 min standing, 1 min sitting

1 3 1 min walking, 2 min Sumo Squat, 1 min standing, 1 min sitting

1 4 1 min walking, 2 min Squat Hold, 1 min standing, 1 min sitting

1 5 1 min walking, 2 min Front Lunge, 1 min standing, 1 min sitting

1 6 1 min walking, 2 min Side Lunge, 1 min standing, 1 min sitting

During each cycle, participants performed only one of the 6 specific functional
exercises of our activity model. We configured the server application to assess
only the matching functional exercise each cycle, sending a return code of 0
if the movement pattern was performed correctly and 1 otherwise. A return
code of 1 activated the vibration motor, warning the user of the movement
pattern performed. After each session, we analyzed the application server log and
the physical educator notes - the classifier detected between 6 and 7 incorrect
executions out of every 10, per participant.

4.2 The Interview

After the second experiment, we performed a semi-structured interview to eval-
uate usability and user experience. We interviewed all 9 participants and the
physical educator. Below, the questions that were asked:

– Did the device or the haptic feedback hinder in any way the execution of the
activities?

– Do you perceive the haptic feedback as a help to perform the proposed activ-
ities?
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– Do you think that the physical assessment platform proposed is necessary or
adequate for your regular physical training program?

The participants did not consider that the device hindered the execution of
the activities, since it is lightweight and the flexible cable connecting the knee
band and the foot external protective case was well positioned and of adequate
length. However, 3 of the 9 respondents reported that they were over overzealous
with their movements to prevent any damage to the wearable IoT device, so
in their perception the device hindered their focus. Of those 3 respondents, 2
reported that the impaired focus may have been the cause of some execution
mistakes. The participants knew that there was only one prototype available
and that the research group did not receive any grant to fund the research.
The haptic feedback was perceived as a help factor to perform exercises more
correctly by 8 of the 9 respondents, although 6 of those respondents pointed out
that a human feedback is more helpful since it enables them to understand the
reason why an execution was performed incorrectly. All seven physically active
participants train without the individual supervision of a physical educator and
agreed that (i) a physical assessment platform is necessary and that (ii) the
proposed platform, after adjustments necessary for production, is adequate for
their training needs. The physical educator did not perceive the device or the
haptic feedback to hinder in any way the execution of the proposed activities
or the other common functional exercise activities he is used to supervise. The
haptic feedback was perceived as a very helpful feature, even considering the
real-life accuracy below 70%, since the key factor regarding RSI prevention is
the detection of repeated mistakes, not the detection of a single poor execution.
In addition to that, (i) a typical functional exercise class equipped with a physical
assessment platform could be supervised by only one physical educator, able to
make better use of his time helping the users instead of monitoring every aspect
of the execution and (ii) some aspects of the execution, such as plantar pressure
distribution, are not easily assessed by an observational approach.

5 Conclusion

This work proposes a platform for physical evaluation of functional exercise
activities with real-time feedback to help reduce injury risk. We conducted two
experiments: (i) the first with 12 volunteers, to build a HAR classifier of a 13-
classes activity model based on foot and knee movement and posture information
and (ii) the second with 9 volunteers, to validate the physical evaluation model
and investigate usability issues of the proposed wearable IoT device. The plat-
form was considered helpful by the experiment participants and the supervising
physical educator.

The main contributions are:

– A comprehensive literature review about wearable-based HAR research using
feet and knee movement and posture information for the detection of exercise
execution errors;
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– A platform and a model that can be used to assess the quality of execution
of different lower limb functional exercises; and,

– A wearable IoT device blueprint with a comprehensive and novel sensor fusion
selection that can be used for lower limb HAR.

Currently, we are evolving the proposed wearable IoT device prototype and
broadening the activity model of the HAR classifier to use it in two studies.
The first study aims at assessing collective engagement in Physical Education
and Sports programs at the high school education level. The second study is
an extension to this work and aims at reducing back and shoulder injury risk
during functional exercise sessions. Our goal is to progressively provide real time
feedback of the whole athlete’s body during the practice of functional exercises.
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