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Abstract. The Mercalli scale of quake damages is based on perceived
effects and it has a strong dependence on observers. Recently, we pro-
posed a method for ground shaking intensity estimation based on lexical
features extracted from tweets, showing good performance in terms of
mean absolute error (MAE). One of the flaws of that method is the
detection of the region of interest, i.e., the area of a country where the
quake was felt. Our previous results showed enough recall in terms of
municipality recovery but a poor performance in terms of accuracy. One
of the reasons that help to explain this effect is the presence of data
noise as many people comment or confirm a quake in areas where the
event was unperceived. This happens because people get awareness of an
event by watching news or by word-of-mouth propagation. To alleviate
this problem in our earthquake detection system we study how propaga-
tion features behave in a region of interest estimation task. The intuition
behind our study is that the patterns that characterize a word-of-mouth
propagation differ from the patterns that characterize a perceived event.
If this intuition is true, we expect to separate both kinds of propagation
modes. We do this by computing a number of features to represent prop-
agation trees. Then, we trained a learning algorithm using our features
in the specific task of region of interest estimation. Our results show
that propagation features behave well in this task, outperforming lexical
features in terms of accuracy.

Keywords: Social networks · Disaster management ·
Mercalli intensity · Social media during emergencies · Propagation trees

1 Introduction

Richter and Mercalli scales measure the level of impact of an earthquake in a
given region. Whilst Richter measures the energy released during an earthquake,
Mercalli represents the level of damages produced during an earthquake. Both
scales are related but may differ due to several factors as the quality of the
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buildings, the type of ground where the quake happens or the depth of the
epicenter, i.e., the distance of the epicenter to the ground surface.

Mercalli reports are prepared by observers who record the effects of an earth-
quake on humans and man-made structures. However, these reports may be
released even hours or days after an earthquake, as the strong dependence on
local observers makes difficult to provide fresh information. Recently we pro-
posed a method for fast estimation of Mercalli intensities using social media
[9]. Our method is based on the observation of Twitter and it computes lex-
ical features on a set of messages related to the event. We showed that there
are lexical features that are useful for Mercalli intensity estimation. However,
one of the difficulties found during the study was the estimation of the ground
shaking region. As many people get awareness of an event watching news or by
word-of-mouth, these comments are mixed with comments of observers who are
placed in the region of interest, introducing noise during the region of interest
estimation step of our method. With a good recall but a poor accuracy in the
region estimation step, our method shows enough room for improvement.

In this paper we study how propagation features can be used to mitigate
the effect of noise during the region of interest estimation process. We extend
our method providing better features for ground shaking region estimation. To
do this we compute eight propagation features showing how useful they are to
alleviate the effect of noise in our system.

Main Contribution of the Paper : In this paper we address the problem of ground
shaking region estimation using social media propagation features. Our method
starts extracting propagation trees from propagation graphs, detecting seeds
and measuring a number of features that characterize spreading patterns. To
the best of our knowledge, this is the first work that addresses the problem
of ground shaking region estimation using propagation network features. Our
intuition indicates that there are measurable differences in propagation patterns
between perceived and unperceived events. We sustain this intuition in our pre-
vious findings on rumor detection [8]. The intuition behind our study is that the
patterns that characterize a word-of-mouth propagation differ from the patterns
that characterize a perceived event. If this intuition is true, we expect to separate
both kinds of propagation modes. To study this hypothesis we compute a num-
ber of features to represent propagation trees. We will show that our features are
useful for ground shaking region estimation, giving support to our hypothesis.

This paper is organized as follows. Related work is discussed in Sect. 2.
Preliminaries are discussed in Sect. 3. Ground shaking region estimation based
on propagation features is introduced in Sect. 4. Experiments are discussed in
Sect. 5. Finally, we conclude in Sect. 6.

2 Related Work

The relation between physical events and its correspondence in Twitter has
been an active research area during the last years [6]. These efforts have shown
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interesting results. For instance, a research found that during the Tohoku earth-
quake in 2011 there were a number of high correlations between the amount of
tweets and the intensity of the disaster in some locations [4]. Recently, Poblete
et al. [10] provided a system for the early detection of earthquakes using social
media features. The system dubbed “Twicalli”1 detects worldwide earthquakes
in real time, illustrating the consonance between physical events and social media
trends.

There are more quake alert systems based on social media around the world.
Systems as the ones placed in Australia [11] or Italy [1] use burst detection
algorithms to report earthquakes, where a burst is defined as a large number
of occurrences of tweets within a short time window [13]. In addition to the
detection of an event, the estimation of the intensity of a quake has also aroused
interest. Sakaki et al. [12] showed that it is possible to estimate the epicen-
ter of an earthquake event using only information recovered from Twitter as
tweets counts and tweets rates. Burks et al. [2] proposed an approach to esti-
mate the Mercalli intensity of an earthquake performing a cross match between
seismological recording stations and tweets that mention the word ‘earthquake’.
Computing a number of lexical features in each areal disc centered around each
seismograph, the authors studied the correlation of these features with the Mer-
calli intensity. Using linear regression models, the authors showed good results
in terms of accuracy for Mercalli intensity estimation tasks.

The estimation of the maximum intensity of an earthquake using Twitter was
studied by Cresci et al. [3]. Using linear regression models over a huge collection
of aggregated features (45 features were tested in that proposal), the authors
showed that Twitter has enough predictive power to infer the maximum intensity
of an earthquake in the Mercalli scale. Recently, we showed that it is possible
to provide an early estimation of the maximum intensity of an earthquake (just
30 min after the event) using only 12 lexical features, performing well in this
specific task [9]. However, one of the limitations of that work relies on the poor
accuracy achieved during the estimation of the ground shaking region. As many
people get awareness of an event watching news or by word-of-mouth, these
comments are mixed with comments of observers who are placed in the region
of interest, introducing noise during the estimation process.

To alleviate the effect of noise during the ground shaking estimation process,
we study the effectiveness of eight features that characterize the propagation of
the event across the network. Propagation features has succeeded in predictive
tasks as rumor detection [8] and research output forecasting [7]. The intuition
behind this study is to check if there is a consonance between the impact of a
perceived event and propagation traces. If this intuition is true, we expect to
measure and use the correspondence of the event in the network improving the
accuracy on the region of interest estimation task.

The estimation of the ground shaking region of an earthquake using social
media has gained attention in last years. Systems based on crowd-sourcing tools2

1 http://www.twicalli.cl.
2 “Did you feel it?” website located at https://earthquake.usgs.gov/data/dyfi/.

http://www.twicalli.cl
https://earthquake.usgs.gov/data/dyfi/
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or based on geolocated tweets as TwiFelt [5], have revealed the interest of govern-
ment agencies as the US Geological Survey (USGS) on the use of social media
for these tasks. In this paper we will show that propagation features are key
event descriptors of earthquakes to address this challenging task.

3 Preliminaries

We proposed a method for the early estimation of the intensity of an earth-
quake in the Mercalli scale [9]. In that method, we used information gathered
from Twitter. Our method works in a tandem with Twicalli [10], the system
for detection of earthquakes based on Twitter. Once an earthquake is detected
by Twicalli, the event is characterized at municipality level, the finer level of
geolocation considered in our system. Then we conduct a regression process to
infer the region of interest of a given earthquake. Finally, our method takes the
collection of point estimates to infer the maximum intensity in the Mercalli scale
for a given quake.

In our system, posts are collected to extract features of the event that char-
acterize the social perception of the earthquake. Each perceived event is charac-
terized at a level of aggregation that describes the perception of the earthquake
in a municipality. For each municipality batch, a set of features is computed to
describe the earthquake.

Municipality batches are built as follows. After each earthquake, a set of
tweets that matches the keywords “quake”, “earthquake” or “seismic” are
retrieved from Twitter. The time considered to collect the data is a parame-
ter of our system, with a window length of 30 min by default. Shorter windows
can be considered but at the cost of less accurate Mercalli predictions. Tweets
that are mapped to municipalities are aggregated into municipality batches.

We map tweets to municipalities using the user location field. We were forced
to use this field as only a very small fraction of the tweets in our country is geo-
located. In order to geolocate tweets we use the following steps: (1) if available,
we extract the exact GPS coordinates from the tweet’s location field, (2) if the
location field was not provided by the user in their tweet, we then process the
tweet’s textual content. This is, we analyze the message’s text (e.g., “Earthquake
in Valparaiso!!!”) to extract, using a fuzzy string matching procedure, any loca-
tion mentions, or (3) if all else fails, we apply the same procedure as in (2) but
this time on the text provided by the user in their profile information.

Our method starts detecting the region of interest from where municipality
data batches will be used to infer Mercalli intensities. This step of the method
separate municipalities into two classes. We do this using a 0/1 classifier trained
over municipality-seismic data batches pairs. These data batches were labeled
according to the actual Mercalli intensity reported into two disjoint classes. The
0 class represents an earthquake that was not perceived (not reported in the
Mercalli scale) and the 1 class represents an earthquake that was effectively
perceived by people with an intensity value in the Mercalli scale. Each data
batch is represented by a vector of features. Once the 0/1 classifier was trained,
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our method is ready to detect the region of interest on new earthquakes at county
level.

After the estimation of the region of interest, our method estimate the max-
imum intensity of the event. Further details of this process are provided in Men-
doza et al. [9].

4 Region Estimation Based on Propagation Features

4.1 Features

Eleven lexical features are considered at this level of aggregation as is shown in
Table 1. In addition, eight propagation features are computed for this task. We
also consider the inclusion of the municipality population as a feature. These
features are calculated in each municipality data batch, characterizing the set of
tweets mapped to each specific county for a given seism.

Table 1. Features used in our study.

Feature Description

LEXICAL NUMBER OF TWEETS Number of tweets in the data batch

TWEETS NORM Fraction of tweets over county population

AVERAGE WORDS Average length of tweets in number of words

AVERAGE LENGTH Average length of tweets in number of chars

QUESTION MARKS Fraction of tweets with question marks

EXCLAMATION MARKS Fraction of tweets with exclamation marks

UPPER WORDS Fraction of tweets with uppercase words

HASHTAG SYMBOLS Fraction of tweets containing the hashtag symbol

MENTION SYMBOLS Fraction of tweets containing the mention symbol

RT SYMBOLS Fraction of tweets containing the “RT” symbol

CONTAINS EARTHQUAKE Fraction of tweets containing the word earthquake

POPULATION Number of inhabitants in the county

PROPAGATION NUMBER OF SEEDS Number of seeds in the data batch

NUMBER OF TREES Number of trees in the data batch

AVG USERS IN TREES Average number of users across trees

AVG USERS IN TREES (NI) Average number of users across not isolated seeds

BIGGEST TREE SIZE (U) Size of the biggest tree in number of users

BIGGEST TREE SIZE (I) Size of the biggest tree in number of interactions

AVG TREE SIZE Average number of interactions across trees

AVG TREE SIZE (NI) Average number of interactions across ni seeds

To compute propagation features we need to process the propagation graph
recovered for each event. The propagation graph is a graph of message sharing
and replaying. In a propagation graph, each node represents a post. Each post
can be read by the followers of the post owner. If a follower decides to share
(to retweet in Twitter jargon), reply or mention a post, a new node is recorded
in the graph, linking both nodes with an arc. Original posts (posts that are
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not retweets, replies or mentions) are seeds of claims. If a seed post is shared
in the network, the propagation graph records an information cascade. As each
interaction with the original post produces a new message, the cascade is cycle-
free and it compounds a tree.

Fig. 1. How propagation features are computed. Graphs inside grey boxes represent
the original propagation graph. Each node represent a message. Black edges represent
RTs or mention posts. Grey edges represent inactive following links. Inferred trees are
depicted in green boxes. Seeds are depicted with pink nodes. At the top of the figure
we show the eight propagation features that correspond to this example. (Color figure
online)

We show in Fig. 1 how propagation features are computed. Black edges show
message sharing between posts. Gray edges show followers/followees relation-
ships that do now share a message during the claim. Note that the propagation
graph is a subgraph of the social network graph. Each propagation tree is boxed
by a grey shaded rectangle. Inferred propagation trees are bounded in green
boxes. The example shows eleven seeds (shaded in pink) and ten trees (note
that the example shows an isolated seed).

4.2 Estimation of a Region of Interest

The next stage of our approach is estimating which municipalities were affected
by the earthquake. We refer to these municipalities as the region of interest or
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ground shaking region of an earthquake. To estimate the geographical subdivi-
sions that were affected by the seismic event, we use a supervised classification
model. This model separates municipalities into two classes: unaffected by the
earthquake and affected by the earthquake.

To create this model we used a 0/1 classification algorithm, which we trained
using municipality-level data modeled as feature vectors (using the features
shown in Table 1). The labels that we used for each municipality were class
“0” if the earthquake was not perceived by the population (i.e., the munici-
pality had no official Mercalli intensity value associated to it), and class “1” if
the earthquake was perceived by the population (i.e., the municipality had an
official Mercalli value associated to it). The Mercalli intensity values that we
used to label the municipality-level data corresponded to values in official earth-
quake reports. More details on the technical and empirical aspects of the model
creation are presented in Sect. 5.

5 Experiments

5.1 Dataset

A collection of 825310 tweets was retrieved from Twitter. These tweets were
collected using keywords as “quake”, “earthquake” and “seismic movement” (in
Spanish). The collection comprises a year and a half of Twitter data, matching
the keywords during 2016 and the first semester of 2017. From these tweets, only
2200 include the geolocation field, representing only the 0.26% of the data. The
collection was posted by 309749 users where 207015 records a location field in
their profiles, representing the 66.8% of the users recorded in the data. From the
set of 207015 users with user location in our dataset, 57546 matched Chile in the
country field. Then we used approximate matching to associate this field with
a Chilean municipality using Fuzzy wuzzy3. Using an 80% of fuzzy confidence
level, a total of 41885 Chilean users were mapped to Chilean counties. These
users record in the dataset a total of 190249 tweets mapped to the 345 different
counties in Chile.

We used data collected by the National Seismological Center of Chile, com-
prising 331 records of earthquakes in Chile during the observation period, rang-
ing magnitudes in Richter from 2.2 Mw to 7.6 Mw. The cross match between
our tweet collection and the Mercalli earthquake records was conducted over
the municipality field. Only municipality batches that record tweets until 30 min
after an earthquake were studied, accounting for a total of 6790 municipality-
Mercalli pairs with Twitter activity. A total amount of 6548 municipality batches
unmatched a Mercalli report, indicating the presence of tweets that men-
tion earthquake keywords in counties where it was unperceived. In summary,
our Twitter-Mercalli dataset comprises 331 earthquakes with 187317 tweets

3 Fuzzy wuzzy is a Python string matching library that uses the Levenshtein Distance
to calculate differences between string sequences. It is available in: https://github.
com/seatgeek/fuzzywuzzy.

https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
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distributed over 345 Chilean counties during 18 months of Twitter activity,
with county-earthquake pairs separated into 6790/6548 perceived/not-perceived
earthquake data batches.

From the total amount of 331 earthquakes, 264 were selected for train-
ing and exploratory issues, reserving the remaining 68 earthquakes for test-
ing and validation tasks, representing a training/testing split of 80/20%. The
training/testing splitting process was conducted using stratified sampling over
earthquakes according to each Mercalli level. Training/testing proportions of
instances according to the maximum Mercalli intensity report of each earth-
quake are shown in Table 2. Data and its description are available at https://
doi.org/10.6084/m9.figshare.c.4206689.

Table 2. Training/testing instance partitions according to the maximum Mercalli
intensity of each quake

Partition II III IV V VI VII

Training 11 105 103 39 4 2

Testing 3 26 26 10 2 1

Overall 14 131 129 49 6 3

5.2 Exploratory Analysis

We first performed a data exploration process to analyze the relationship between
municipality-level features and Mercalli values. We studied the existence of cor-
relations, which are shown in Table 3.

Table 3 shows correlations in terms of the Spearman coefficient, as the vari-
ables studied are skew. All the coefficients found are statistically significant
with p-values equal to 2.2e−16. The correlation between propagation features
is strong. Note that the correlation between MERCALLI and the other variables
is not as strong. The table shows a strong correlation between size features.
Interestingly, the correlation between NUMBER OF SEEDS and NUMBER OF TREES
is not as strong, showing that there are a number of isolated seeds that do no
achieve a spread in the network.

A strong correlation was also detected between some lexical features as
NUMBER OF TWEETS and TWEETS NORM, AVERAGE WORDS and AVERAGE LENGTH
and MENTION SYMBOLS and RT SYMBOLS. In general, the correlation between lex-
ical features was weak, except for the indicated cases. A more detailed analysis
of the correlation between lexical features can be checked in [9].

5.3 Estimating the Region of Interest

Training/testing municipality data batches accounts for 10491/2847 instances at
municipality level. To study the problem of perceived/not-perceived earthquakes

https://doi.org/10.6084/m9.figshare.c.4206689
https://doi.org/10.6084/m9.figshare.c.4206689
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Table 3. Spearman ranked correlation coefficient of the propagation features consid-
ered in our study.
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ρ 0.15 0.18 0.21 0.21 0.20 0.21 0.21 0.21
ρ 0.55 0.50 0.56 0.56 0.56 0.51 0.55
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ρ 0.99 0.98 0.99 0.99 0.99
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at county level, we train a 0/1 classifier. In the training fold 5021 instances
accounts of the 0 class (unreported Mercalli) and 5470 for the 1 class (reported
Mercalli). Training was conducted using 5 folds cross validation, using an SVM of
C-SVC type for classification with a radial basis function as a kernel implemented
in Weka 3.7. As the focus of the problem is the detection of the 1 class, we used
cost sensitive learning, penalizing false negatives in the 1 class to maximize the
recall, at the cost of a high FP rate. More learning algorithms were tested among
them naive Bayes or a Multilayer Perceptron but SVM was the one with the best
results. The detailed accuracy by class using lexical features is shown in Tables 4
and 5 for training and testing partitions, respectively. Tables 6 and 7 show the
results achieved using propagation features. The results achieved using the whole
set of features considered in this study are shown in Tables 8 and 9 for training
and testing partitions, respectively.

Table 4. Training accuracy by class using lexical features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.189 0.736 0.575 0.646 0.693

1 (reported) 0.425 0.675 0.811 0.737 0.693

Weighted avg. 0.312 0.705 0.698 0.693 0.693
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Table 5. Testing accuracy by class using lexical features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.184 0.765 0.517 0.617 0.666

1 (reported) 0.483 0.593 0.816 0.687 0.666

Weighted avg. 0.323 0.685 0.655 0.649 0.666

Tables 4 and 5 show a good performance in terms of recall for the class of
interest but a poor performance in terms of precision. Accordingly, the F-measure
has a performance around 68% for the class of interest on testing data, achieving
a ROC value around 0.666.

Table 6. Training accuracy by class using propagation features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.195 0.763 0.683 0.721 0.744

1 (reported) 0.317 0.734 0.805 0.768 0.744

Weighted avg. 0.259 0.748 0.746 0.745 0.744

Table 7. Testing accuracy by class using propagation features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.207 0.771 0.603 0.677 0.698

1 (reported) 0.397 0.633 0.793 0.704 0.698

Weighted avg. 0.295 0.707 0.691 0.690 0.698

The classifier based on propagation features performs better than the one
based on lexical features, as it is shown in Tables 6 and 7. These results show
that the classifier achieves a precision around 63% on testing data and a F-
measure over the 70%, as well as a ROC value near 0.7. These improvements
show that the use of propagation features is helpful for this task.

When lexical and propagation features are combined in a single classifier,
the results get worse. As Tables 8 and 9 show, the 0/1 classifier increases the
presence of false positives, and as a consequence, it decreases its performance
in terms of precision and F-measure. These results show that it is better to
address this specific task using propagation features, confirming the intuition
behind the consonance between propagation patterns and the physical coverage
of earthquakes.

The results show that each region of interest is over-estimated as the low
precision for class 1 shows but achieving a good coverage of the actual region as
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Table 8. Training accuracy by class using lexical and propagation features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.187 0.744 0.591 0.659 0.702

1 (reported) 0.409 0.684 0.813 0.743 0.702

Weighted avg. 0.303 0.713 0.707 0.703 0.702

Table 9. Testing accuracy by class using lexical and propagation features

Class FP Rate Precision Recall F-measure ROC area

0 (unreported) 0.180 0.769 0.519 0.619 0.669

1 (reported) 0.481 0.595 0.820 0.690 0.669

Weighted avg. 0.320 0.689 0.658 0.652 0.669

its high recall shows. To better understand how the 0/1 classifier behaves, we
disaggregate matching/mismatching testing instances according to the actual
level of Mercalli intensity.

Table 10. Matching/mismatching instances according to the actual Mercalli intensity
using lexical features

Actual Predicted - I II III IV V VI VII

0 0 790 - - - - - - -

0 1 737 - - - - - - -

1 0 - 66 85 62 25 5 - -

1 1 - 130 234 351 198 65 95 4

Instances 1527 196 319 413 223 70 95 4

Error rate 0.48 0.33 0.26 0.15 0.11 0.07 - -

As Tables 10, 11 and 12 show, the false negative rate is very low, and as long as
the intensity of the earthquake increases, the error rate decreases. High intensity
earthquakes (V to up) show an almost perfect performance. The thick part of
this error occurs in low intensity earthquakes (III to down), which is natural
for this kind of phenomena as in this part of the Mercalli scale many people do
not recognize the event as an earthquake, being felt only under very favorable
conditions (for instance, on upper floors of buildings). When the classifier based
on propagation features is used for this task, the error in level IV events decreases
and it achieves a perfect performance in level V earthquakes. The global error
rate using propagation features goes to 0.39 points, almost 10 points below the
error rate achieved using lexical features. When both types of features are used,



Estimating Ground Shaking Regions 367

Table 11. Matching/mismatching instances according to the actual Mercalli intensity
using propagation features

Actual Predicted - I II III IV V VI VII

0 0 921 - - - - - - -

0 1 606 - - - - - - -

1 0 - 83 85 65 40 - - -

1 1 - 113 234 348 183 70 95 4

Instances 1527 196 319 413 223 70 95 4

Error rate 0.39 0.42 0.26 0.15 0.17 - - -

Table 12. Matching/mismatching instances according to the actual Mercalli intensity
using lexical and propagation features

Actual Predicted - I II III IV V VI VII

0 0 792 - - - - - - -

0 1 735 - - - - - - -

1 0 - 71 88 50 25 4 - -

1 1 - 125 231 363 198 66 95 4

Instances 1527 196 319 413 223 70 95 4

Error rate 0.48 0.36 0.27 0.12 0.11 0.05 - -

as it is shown in Table 12, the performance get worse, confirming that the use
of lexical features in this specific task introduces noise during the estimation
process.

6 Conclusion

In this paper we have studied the performance of propagation features in a
ground shaking region estimation task. Our results show that the use of prop-
agation features is useful for this task outperforming classifiers based on lexi-
cal features. The intuition behind this finding sustains that lexical features are
unable to hand noise during the inference process, as many observers comment
unperceived events getting awareness of earthquakes watching news of by word-
of-mouth propagation effects. The use of propagation features allows building
robust classifies for ground shaking region estimation tasks, corroborating the
presence of a consonance between how actual events spread in social media and
how physical events are perceived in the physical world.

Currently, we are extending our method to work with more features. The
inclusion of time-based features helps to characterize the tweet stream (e.g. tweet
interval rate), a valuable source of information for earthquake detection task. We
think that these features will also be helpful in the elaboration of spatial intensity
reports.
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At last but not least, the design of a system for early tracking of earthquake
damages is the next step of this project. How to efficiently use our method to
provide spatial real-time damage reports is one of our most challenging tasks in
the near future. The pursuit of this goal involves efforts in data integration and
visualization, among other challenging tasks for our group.
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