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Abstract. We present in this paper a novel framework for the defini-
tion of formal software component models, called the Hypercell frame-
work. Models in this framework (hypercell models) allow the definition of
dynamic software architectures featuring shared components, and differ-
ent forms of encapsulation policies. Encapsulation policies in an hypercell
model are enforced by means of runtime checks that prevent a compo-
nent, in a given context, to evolve in violation of these policies. We
present the main elements of the framework, its operational semantics
and the first elements of its behavioral theory. We give some results con-
cerning its ability to express different forms of composition, and show by
means of examples its ability to deal with sharing and different forms of
encapsulation.

1 Introduction

Motivations. How do we formally model dynamic software architectures featur-
ing both encapsulation and sharing? Can we define an operational semantics
and behavioral theory for these architectures? These are the questions we deal
with in this paper. By dynamic software architectures, we understand struc-
tured collections of software components and their inter-relations [3], that can
evolve over time, either spontaneously, for instance to adapt to changing oper-
ating conditions, or following external intervention, for instance for purposes of
fault correction or functional update. By encapsulation, we understand forms
of confinement and isolation between components, typically coupled with infor-
mation hiding and abstraction, that ensure capabilities offered, and information
maintained by a component, can only be accessed through designated interaction
points or interfaces. Examples include the many forms of encapsulation that have
been studied under the topic of aliasing control and ownership types in object-
oriented programming [14]. By architectures with sharing, we understand archi-
tectures where components can take part in different ensembles, compositions
or aggregations, possibly with different attendant properties, e.g. in terms of
encapsulation, lifetime and existential dependencies [2]. Examples include archi-
tectures featuring common services, such as databases or logs, that can be used
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Fig. 1. Architecture with sharing: shared log service

by software components at different levels in a software structure, and architec-
tures featuring shared resources such as virtual machines or operating system
processes.

An example can illustrate the questions we are concerned with. Consider the
architecture depicted in Fig. 1. In the figure, a composite component C has two
subcomponents, C1 and C2, equipped with private log subcomponents L1 and L2,
that are provided as client-specific logs by a composite log service component L
(in the picture, components are depicted as circles, and an arrow from component
X to component Y can be read as X contains Y , or Y is a subcomponent of
X). The log service L is shared among the two subcomponents C1 and C2.
One can argue that each private log component Li (i = 1, 2) is participating to
three different ensembles, Ci, C and L. Ci, because Li is existentially dependent
on Ci, and is partially encapsulated in Ci as only updates originating from
Ci are possible (it is a partial encapsulation because not all communication
between a component Li and its environment is mediated or controlled by Ci).
C because each Ci is a subcomponent of C, and C is supposed to encapsulate
its subcomponents. L, because Li is existentially dependent on L, has the same
lifetime as L (if L is deleted so are L1 and L2), and relies on private functions (e.g.
data storage) provided by L. These ensembles also correspond to encapsulation
scopes, whose meaning is, roughly, that no communication outside the scope
is possible without explicitly passing through the top component of each scope
(C,L,C1 or C2), except for the communications between Ci and Li.

Related Work. Over the past three decades, an abundant literature has devel-
oped that aims at formally modeling distributed, component-based, dynamic and
adaptive software architectures, systems and services. One can cite notably: pro-
cess calculi for distributed systems, such as π-calculi with localities [12,22,31],
Ambient Calculi and their variants [10,11], and Milner’s bigraphs [28,35]; process
calculi and formal models for service-oriented computing and adaptive systems
[9,17,19,20,37]; formal software component models such as BIP [6], Ptolemy [18],
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Reo [23], Community [40], and several others [24,25]; formal software architec-
ture description languages [26,32]. However, to the best of our knowledge, none
of these previous works provide satisfactory support to model architectures fea-
turing a combination of dynamicity, sharing and encapsulation. Synchronized
Hyperedge Replacement (SHR) systems and location graphs constitute a direct
inspiration for the work in this paper, but they do not allow the definition of
encapsulation scopes with sharing. Ownership types allow the enforcement of
encapsulation scopes in object-oriented programs, typically at the expense of
restrictions in inter-object communication, but do not allow overlapping encap-
sulation scopes. Bigraphs with sharing [35] support the definition of nodes with
overlapping containment scopes, but, as far as we are aware, it is not possible to
use bigraph nodes to enforce the encapsulation policies considered in this paper.
The Fractal component model [8] is one of the rare software component models
that allows the description of component configurations with sharing, and that
has been formally defined [27]. The architecture in Fig. 1 can readily be described
in Fractal, with encapsulation scopes captured by Fractal composites. But we do
not have a formal operational semantics for Fractal that would allow us to define
the exact semantics of these scopes, nor do we have a proper behavioral theory
for Fractal architectures. Interesting approaches to enforcing encapsulation poli-
cies are works that rely on dynamic access protection instead of aliasing control.
These include notably the Siaam actor abstract machine [15], which relies on
runtime checks to enforce actor encapsulation in a Java virtual machine, and
access contracts [39] which provide dynamic access protection to Java objects
that can support a wide range of encapsulation policies, including encapsulation
policies with sharing as in the small architecture depicted in Fig. 1. However,
Siaam and access contracts do not come with a formal behavioral theory, and
the question of program equivalence in concurrent languages with Siaam-like or
access contracts-like access protection mechanisms remains open.

Contributions. In this paper, we combine ideas from SHR systems [19], from
location graphs [36], as well as Siaam [15] and access contracts [39] dynamic
approaches to encapsulation enforcement, to define a formal operational frame-
work, called the Hypercell framework. This framework allows the definition of dif-
ferent software component models (hypercell models), that support the modelling
of dynamic component ensembles (hypercells) with sharing and encapsulation.
The Hypercell framework can be seen as a conservative extension and general-
ization of the BIP and Fractal components models [6,8]. A main contribution
of the Hypercell framework is how it handles encapsulation policies: to allow for
maximum flexibility, they are enforced by runtime checks (authorizations), that
prevent transitions of component ensembles that would violate the chosen poli-
cies. Defining a proper notion of authorization is not trivial however. In order
to obtain a proper component theory (e.g. in the sense of [4]), we need a notion
of hypercell equivalence that is a congruence for hypercell composition, and it is
not clear how such a result can be obtained in presence of authorizations. The
idea is to have authorizations operate only at the level of individual components
(cells): this allows us to define a notion of hypercell bisimilarity where we can
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decouple the contribution of authorizations from the classical bisimulation game,
which in turn allows us to obtain the required congruence result. However, this
local form of authorization raises another problem: encapsulation policies are
not local in nature, so how can we enforce them via such local checks, notably in
presence of evolving component ensembles? We show, by means of examples, how
this can be done via a combination of local but context-dependent authorization
predicates and dynamic component types (cell sorts).

Outline. The paper is organized as follows. Section 2 is a brief informal introduc-
tion to hypercells. Section 3 presents the hypercell framework, and preliminary
elements of a behavioral theory for hypercell models. Section 4 shows, by means
of examples, how to enforce different forms of encapsulation using sorts and
authorizations. Section 5 concludes the paper.

2 Informal Introduction

A hypercell is a finite set of cells. A cell has (we also say “offers”) roles (a term
we borrow from location graphs). A role is a point of attachment for cells, as well
as a point of interaction between cells. A hypercell, much like a SHR system,
constitutes a hypergraph, where the roles are vertices, and cells are the edges
of the hypergraph. A role corresponds to a point of attachment and interaction
between cells, and may be offered at most by two distinct cells. Hypercells are
thus limited forms of hypergraphs, where hyperedges can connect any number
of vertices, but a given vertex can only be connected by at most two edges.
As in standard software component model ontology [16], roles are classified as
provided or required : a provided role in a cell signals some service offered by the
cell, whereas a required role signals some expected service. When a role belongs
to two cells in a given hypercell (in required position in one cell, and in provided
position in the other cell), we say that the role is bound, and that it binds the
two cells that offer it. Otherwise, we say that the role is unbound.

A cell is a locus of computation, as are localities in process calculi such as the
Distributed π-calculus [31], and Klaim [29]. One can understand a cell as a basic
software component or as a connector, as in the component-and-connector view
of software architecture [3] and in software component models [16]. A hypercell
can be understood as a composite software component or component ensemble.
In this sense, the hypercell concepts align well with the standard concepts of
software component models [16] and software architecture, as present e.g. in the
ACME [21] and Fractal [8] component models (cells and hypercells correspond
to ACME and Fractal components, roles to ACME ports and Fractal interfaces,
bound roles to Fractal primitive bindings).

Figure 1 depicts a small hypercell with roles drawn as black dots (or arrows
when bound) and cells as ellipses. Interactions in a hypercell take the form of
simple point-to-point bidirectional interactions between pairs of cells bound by
some role. In Fig. 1, cells C1 and L1 can interact directly because they are bound,
but C2 cannot directly interact with C1, nor C with L. In the architecture
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depicted in Fig. 1, the scopes discussed in the introduction are manifested by
bound roles and the sorts adorning the different cells (hinted at by arrows).

The behavior of a hypercell is the result of the composition of the behavior
of its cells. A cell evolves by transforming into some hypercell, in the process
possibly interacting with, or removing, cells it is bound to. The evolution of a
hypercell corresponds to the parallel firing of a number of such cell transitions.
An interaction between two cells bound at a role r amounts to several binary
rendez-vous on communication channels succeeding at role r. An interaction will
typically result in the simultaneous exchange of values at each of the channels
participating in the interaction.

For instance, a client-server interaction at role r between a client cell C and
a server cell S, may, on the server side, take the form r : {op〈v, resp〉, resp〈w〉},
where r is the role which appears in provided position in the server (hence
the overline r), op is the channel on which the value v is sent, along with the
return channel resp, and w is the value which is (instantly) returned by the
server, in response to the request op〈v, resp〉, on the requested return chan-
nel resp. On the client side, the interaction would take the conjugate form
r : {op〈v, resp〉, resp〈w〉}. Notice that we use an early form for interactions:
this allows us, in the operational semantics of hypercell models, to abstract from
syntactic details such as a distinction between sent values and receiving param-
eters (the latter typically under the scope of some binding constructs). Our
operational semantics thus has no mention of substitution of values to formal
parameters, but we do distinguish with channels between originating side (e.g.
op, on the client side) and receiving side (e.g. op, on the server side).

Interactions between cells can be higher-order. In particular cells can be
exchanged as values on channels during interactions. This allows the removal or
passivation of cells as in the Kell calculus [34], which in turns allows to model
objective reconfigurations in software architectures, where certain components
can exercize explicit control over other ones.

Interactions between bound cells in a hypercell can be guarded by priorities.
Priorities are crucial for the expressive power of the framework and the definition
of different forms of composition operators as cells or hypercells. A priority
allows a cell to check for the presence or absence of a signal from another cell
it is bound to, in the form of the ability or inability to communicate on a given
channel. For instance the client side communication above could be guarded by
the absence of communication on channel sig on role s, which we would write
thus: 〈{s : ¬sig} · r : {op〈v, resp〉, resp〈w〉}〉. In effect, the possible emission of
signal sig on role s preempts (takes priority over) the emission of the request
op on role r.

Individual cell transitions are also guarded by authorizations. An authoriza-
tion is a runtime check that determines whether a cell transition is licit or not.
Authorizations rely on the hypercell context of an individual cell to make this
determination. For instance, a cell within an encapsulation scope can be pre-
vented from making a transition that would allow it to bind to a cell outside
this scope, whereas the same transition of the cell outside of such a scope can
be allowed to proceed.
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3 The Hypercell Framework

We define in this section our Hypercell framework. This framework can be instan-
tiated to yield different hypercell models. Each hypercell model must define the
following sets: a set P of processes; a set S of sorts; an infinite set R of roles; a
set V of values; an infinite set A of names; an infinite set Ch of channels; a set Tu

of unconstrained transitions; and an authorization predicate Auth. We require
R ⊂ A, Ch ⊂ A, and that the sets P, S, and A be mutually disjoint. Values
can comprise processes, sorts, and names as well as elements of other datatypes
(booleans, integers, etc). Values can be exchanged between cells on channels at
bound roles. We require that the set Ch contain the special channel rmv, which is
used in hypercell models with objective cell removal. We require the set of names
A to be equipped with an involution, called the conjugate operation, which sends
a name a to its conjugate a. By definition, we have a = a, and we write â to
denote a or its conjugate a.

We require that each of the sets above be equipped with an operation for
swapping names: for any element x of the above sets, (r s) · x yields an element
of the same set where names r and s have been permuted, i.e. where r is replaced
by s. (in the long version of this paper, we require the datatypes above to be
nominal sets [30], but for lack of space we do not go into details here). We also
require the existence of an operation supp that extracts from an element the set
of names it contains, and we write a#X for a �∈ supp(X).

Formally, a cell in a hypercell model is a 4-tuple of the form [P : s � p • r],
where P is the process of the cell, s is the sort of the cell, p and r are the sets
of provided and required roles of the cell, respectively. If C = [P : s � p • r],
we have C.process = P , C.sort = s, C.prov = p, and C.req = r. Any cell
C must meet the following constraints: C.prov ∩ C.req = ∅. The set of cells in
a hypercell model is noted C. The process of a cell embodies its behavior; the
fact that a process can be a value means that cells can potentially update their
behavior dynamically. The sort of a cell is a dynamic type associated with the
cell; sorts are used to enforce runtime constraints on cells, as is shown in Sect. 4.

A hypercell G is just a set of cells that meets the following constraints: for
any partition G1, G2 of G (G = G1 ∪ G2 and G1 ∩ G2 = ∅), one must have
G1.prov ∩ G2.prov = ∅ and G1.req ∩ G2.req = ∅, where the set G.prov of
provided roles of hypercell G is defined as

⋃

C∈G C.prov (and likewise for the
set G.req of required roles of G). We note 0 the empty hypercell, and H the set
of hypercells in a hypercell model. We define the set of roles, of bound roles and
unbound roles of a hypercell G:

G.roles
Δ= G.prov ∪ G.req G.bound

Δ= G.prov ∩ G.req

G.unbound
Δ= G.roles \ G.bound

When G and G′ are two disjoint hypercells, we write G ‖ G′ to denote G ∪
G′ when G ∪ G′ is indeed a hypercell (i.e. a set of cells meeting the above
constraints).
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3.1 Operational Semantics of a Hypercell Model

The operational semantics of a hypercell model is defined as a set T of labelled
(contextual) transitions. A transition is an element of T = E × H × ˜ × H,
where E is the set of environments, and ˜ is the set of labels. A transition
t = 〈Γ,G,Λ,G′〉 ∈ T is noted Γ � G

Λ−→ G′, with Γ ∈ E the environment t.env
of the transition, G ∈ H the initial hypercell t.init of the transition, Λ ∈ ˜
the label t.label of the transition, and G′ ∈ H the final hypercell t.final of
the transition. Intuitively, if Γ � G

Λ−→ G′, then hypercell G, when placed in
environment Γ , can evolve into hypercell G′ provided the synchronizations in
label Λ are met. The environment in a transition represents both the set of
known names prior to the transition, and the hypercell context in which the
initial hypercell of the transition is placed.

A label Λ is a pair 〈π ·σ〉, where π is a finite set of priorities, and σ is a finite
set of interactions. We note ε the empty set of priorities or interactions. and we
set 〈π · σ〉.prior = π, 〈π · σ〉.sync = σ.

An interaction corresponds to an exchange of a value V on a channel c at
a role r. An interaction takes the form r : ĉ〈V 〉 if the role r is provided, and
r : ĉ〈V 〉 if the role is required. An interaction r̂ : c〈V 〉 corresponds to a receipt
on channel c at role r of value V , whereas an interaction r̂ : c〈V 〉 corresponds to
the emission of value V on channel c at role r. An interaction r̂ : ĉ〈V 〉 succeeds
when matched with its conjugate interaction r̂ : ĉ〈V 〉. Notice that the value V
in a successful interaction must be the same on both emitter and receiver sides.
For this reason, our presentation of an hypercell model transition relation can
be said to follow an early style [33]. This allows us in the presentation of the
hypercell framework to abstract away from syntactic details of interactions in
hypercell models. We set (r : ĉ〈V 〉).prov = {r}, (r : ĉ〈V 〉).req = ∅, and the dual
for r : ĉ〈V 〉. We set (r̂ : ĉ〈V 〉).roles = {r} and (r̂ : ĉ〈V 〉).channels = {c}. The
set of interactions in a hypercell model is noted I.

A priority takes the following form: r̂ : ¬c, where r is a role and c is a channel.
Intuitively, a contraint r̂ : ¬c stipulates that the cell bound at role r is not ready
to perform an interaction on channel c. The set of priorities is noted ˝. Priorities
are inherited from location graphs and provide hypercell models with significant
expressive power (see Proposition 1 below). We set (r̂ : ¬c).roles = {r}.

An environment Γ is a pair Δ ·Σ comprising a set of known names (roles or
channels) Δ ⊆ A = R∪Ch, and a skeleton hypercell (or skeleton, for brevity) Σ.
For Γ = Δ·Σ we define Γ.names = Δ and Γ.graph = Σ. The set of known names
in an environment corresponds intuitively to the set of already generated names
during a hypercell execution. New names created in a transition are names that
do not belong to this set. The skeleton in an environment gathers information
about the hypercell that surrounds the initial hypercell in a transition. It is used
in determining authorizations for individual cell transitions (see rule Trans
below). A skeleton cell is a triplet [s � p • r]. The set of skeleton cells in a
hypercell model is noted Cs. The set of skeleton hypercells in a hypercell model
is noted Hs. Essentially, a skeleton is a hypercell where one has erased all the



Encapsulation and Sharing in Dynamic Software Architectures 249

Trans
Γ.names · 0 Λ

G Σ(C) ∈ Γ.graph Auth(Γ, C, Λ, G)

Γ C
Λ

G

(Comp)

Γ G1
π1·σ1

G1

Γ G2
π2·σ2

G2 CondP (s, π, π1, π2, Γ, C1, C2)
CondI(σ, σ1, σ2, G1 G2) Cond(Γ, G1 G2)

Γ G1 G2
π·σ

G1 G2

(Ctx)

Γ G
·σ

G
IndP ( ) IndI(σ, E) Cond(Γ, G E, G E)

Γ G E
π·σ

G E

Fig. 2. Transition rules for a hypercell model

processes. The skeleton Σ(G) of a hypercell G is defined inductively as follows:

Σ(0) = 0 Σ([P : s � p • r]) = [s � p • r] Σ(G1 ∪ G2) = Σ(G1) ∪ Σ(G2)

We denote by 0 the empty skeleton, and by E the set of environments in a
hypercell model. We define Δ1 · Σ1 ⊆ Δ2 · Σ2

Δ= Δ1 ⊆ Δ2 ∧ Σ1 ⊆ Σ2, and
Δ1 · Σ1 ∪ Δ2 · Σ2

Δ= Δ1 ∪ Δ2 · Σ1 ∪ Σ2.
An hypercell model must define the set Tu of unconstrained transitions of its

individual cells, i.e. transitions that do not rely on any knowledge of the execution
context of individual cells. This fits with the idea that software components can
be reused in different contexts (in our case, hypercells), and that their behavior
should be defined as independently as possible from their context of use. We write
Γ 
C

Λ−→ G for Γ, C, Λ, G Tu . Environments in unconstrained transitions are
of the form Δ · 0. An unconstrained transition Δ · 0 
 C

Λ−→ G for an individual
cell C must obey the following conditions: (i) names in the support of C must be
known names, i.e. names in Δ: supp(C) ⊆ Δ; (ii) interactions and priorities in
Λ = 〈π · σ〉 must be offered at roles from C: σ.prov ⊆ C.prov ∧ σ.req ⊆ C.req
and π.roles ⊆ C.roles. In addition, we require Tu to be insensitive to name

changes, namely: ∀t ∈ Tu, n, m ∈ , (n m) · t ∈ Tu. An hypercell model can
define cells that allow their removal by other cells they are bound to. A cell C
that allows its removal on some role r must provide an unconstrained transition

of the form Δ · 0 
 C
〈ε·{r̂:rmv〈C〉}〉−−−−−−−−−→ 0.

A hypercell model must define an authorization predicate Auth. Predicate
Auth ⊆ E × C × ˜ × H determines whether an individual cell transition is pos-
sible in a given context (a surrounding hypercell). We require Auth to be name
insensitive, namely: for all n,m ∈ A, and cell transition t ∈ E × C × ˜ × H, we
have Auth(t) ⇐⇒ Auth((n m) · t).
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Using terminology from [38], the operational semantics of a hypercell model
is defined as the set of transitions that is the least well-suported model of
the rules in Fig. 2.

Rule Trans turns an unconstrained transition into a regular transition, pro-
vided that it be authorized in the current context.

The predicates Cond, CondI , IndI in the premises of rules Comp and Ctx are
defined as follows:

Cond(Γ, G)
Δ
= supp(G) · Σ(G) ⊆ Γ

CondI(σ, σ1, σ2, G)
Δ
= σ = seval(σ1 ∪ σ2) ∧ σ.roles ⊆ G.unbound

IndI(σ, E)
Δ
= σ.roles ∩ E.roles = ∅

seval(σ) = if σ = {r̂ : ĉ〈V 〉, r̂ : ĉ〈V 〉} ∪ σ′ then seval(σ′) else σ

If C is a hypercell with r ∈ C.roles, such that there is a single cell L ∈ C
with r ∈ L.roles, then we note �C�s

r the hypercell (s r) · C. For ρ = r̂ : ¬a, we
define ρ.r = r. We say that hypercell C, in environment Γ , satisfies the priority
constraint ρ = r̂ : ¬a, noted C |=Γ ρ, if the following conditions hold:

Σ(C) ⊆ Γ.graph ∧ r ∈ C.unbound

¬(∃D ∈ H, V ∈ V, Λ ∈ ˜, Γ � C
Λ−→ D ∧ r̂ : â〈V 〉 ∈ Λ.sync)

The predicates CondP and IndP in the premises of the rules Comp and Ctx
are defined as follows:

CondP (s, π, π1, π2, Γ, C1, C2)
Δ
= s#Γ.names

∧ π = {ρ ∈ π1 ∪ π2 | ρ.r ∈ (C1 ‖ C2).unbound}
∧

∧

ρ∈π1\π

�C1�s
ρ.r ‖ C2 |=Γ ρ ∧

∧

ρ∈π2\π

C1 ‖ �C2�s
ρ.r |=Γ ρ

IndP (s, π, �, Γ, C, E)
Δ
= s#Γ.names

∧ π = {ρ ∈ � | ρ.r ∈ (C ‖ E).unbound}
∧

∧

ρ∈�\π

�C�s
ρ.r ‖ E |=Γ ρ

The predicate CondP expresses the fact that priorities that appear on roles
that bind the hypercells C1 and C2 together must be verified. Priorities on
roles that bind hypercells C1 and C2 are exactly those constraints ρ in the set
(π1 \ π) ∪ (π2 \ π), where π is the set of priorities that appear on roles not
bound in C1 ‖ C2 (since priorities that appear in a transition of a hypercell C
are expected to adorn unbound roles in C). To check whether a priority ρ is
satisfied, one considers a variant of configuration C1 ‖ C2 where the role ρ.r, in
the hypercell from which the priority originates, is replaced by a fresh role. In
effect, this replacement amounts to severing the binding ρ.r between C1 and C2.

Remark 1. The definition of satisfaction for a priority by a hypercell is not
entirely trivial because of cycles of constraints that may occur. As a sanity
check, consider the two following examples, depicted in Fig. 3.
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L

M N

A B
p : ¬a q

p : ¬a

q : ¬b

Fig. 3. Two hypercells with priorities

On the left, we are considering a hypercell M ‖ L ‖ N , and a transition from

L of the form Γ � L
〈p:¬a·q:b〉−−−−−−→ C, where L can interact with N on channel b,

provided M is not able to interact on a. Verifying the satisfaction of the priority
on role p consists in checking whether M ‖ �L�s

p ‖ N , where s is fresh, can
interact on channel a on role p, which amounts to check that M can interact on
channel a on role p.

On the right, we are considering a hypercell A ‖ B, with the following tran-
sitions:

tA = Γ � A
〈q:¬b·{p:c,q:c}〉−−−−−−−−−−→ A′ t′A = Γ � A

〈ε·p:a〉−−−−→ A′

tB = Γ � B
〈p:¬a·{p:c,q:c}〉−−−−−−−−−−→ B′ t′B = Γ � B

〈ε·q:b〉−−−−→ B′

In other terms, A can interact on channel c on roles p and q, provided B
cannot interact on channel b on role q, and B can interact on channel c on roles
p and q, provided A cannot interact on a on role p. To verify the satisfaction
of the priority from A on role q, we have to check whether the graph �A�s

q ‖ B,
where s is fresh, can interact on channel b on role q, which amounts to check
that B can interact on channel b on role q. This is the case because of transition
t′B. The priority from A on role q is thus not verified, and transition tA cannot
fire in this configuration. Likewise, the priority from B on role p is not satisfied
and transition tB cannot fire in this configuration.

In both examples, our rules give results that match the intuition: in the first
case, we expect the priority on p to be satisfied merely if M cannot interact on
channel a on role p, and in the second case we expect the hypercell A ‖ B to
deadlock.

Rule Comp stipulates that a hypercell G1 ‖ G2 can evolve by combining a
transition from G1 and a transition from G2. The combination involves synchro-
nizing interactions on roles that bind G1 and G2 (condition CondI) and verifying
priorities on the roles that bind G1 and G2 (condition CondP ). Rule Ctx stip-
ulates that in a hypercell G ‖ E, hypercell G can evolve independently of E,
provided G’s interactions and priorities do not involve roles from E (conditions
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IndI , IndP ). Notice that both rules Comp and Ctx require the results of the
transitions in their conclusion (G′

1 ‖ G′
2 and G′ ‖ E) to be hypercells. Note that

both rules are stratified by the number of bound roles in a hypercell: the number
of bound roles in C1 ‖ C2 is one less than in �C1�

s
ρ.r ‖ C2.

Notice that, in contrast to other process calculi frameworks such as the ψ-
calculus [5] and SHR systems [19], hypercell models do not have a restriction
operator á la π-calculus. In hypercells, events taking place at a role binding two
cells are not visible outside of the two cells. This hiding provided by bound roles
is actually enough to encode restriction as in the π-calculus. Our handling of
name creation via environments is also unusual, again compared to the use of a
restriction operator á la π-calculus. It is related to the nominal presentation of
the π-calculus in [13], but relies on name insensitivity instead of α-conversion.
This is no way a limitation on the expressive power of the hypercell framework
for the restriction operator, as well as any other composition operator definable
by means of GSOS rules, i.e. structured operational semantics rules obeying
the general format defined in [7]. More generally we can prove that any GSOS
language (as defined in [7]) can be encoded as a hypercell model:

Proposition 1. For any GSOS language L, there exists a hypercell model and
an encoding , such that for any P,Q ∈ L, a ∈ A, u ∈ R,
we have P

a−→ Q if and only if there exist Δ ⊆ A, Λ ∈ ˜ with u : a ∈ Λ.sync,
C ∈ �P �u, and D ∈ �Q�u, such that Δ � C

Λ−→ D.

Similarly, we can prove that the π-calculus can be encoded as a hypercell model.

3.2 Behavioral Equivalence for Hypercell Models

We define in this section a strong notion of behavioral equivalence for hypercell
models, in the form of a bisimilarity relation.

Definition 1 (Environment equivalence). Two environments Γ, Γ ′ are said
to be equivalent, noted Γ � Γ ′, if for all Υ ∈ E such that Γ ∪ Υ ∈ E and
Γ ′ ∪ Υ ∈ E, for all C ∈ C, Λ ∈ ˜, G ∈ H, we have Auth(Γ ∪ Υ,C,Λ,G) =
Auth(Γ ′ ∪ Υ,C,Λ,G). Two hypercells G and F are said to be environmentally
equivalent, also noted G � F , if supp(G) · Σ(G) � supp(F ) · Σ(F ).

Definition 2 (Strong simulation). A name insensitive binary relation on
hypercells R ⊆ H×H is a strong simulation if, for all 〈G,F 〉 ∈ R, G′′ ∈ H, Λ ∈ ˜,
the following properties hold:

1. G � F and the unbound provided (resp. required) roles of G and F coincide.
2. For all Γ ∈ E such that Γ ∪Σ(G) ∈ E, Γ ∪Σ(F ) ∈ E, if Γ ∪Σ(G) � G

Λ−→ G′,
then there exists F ′ ∈ H such that Γ ∪ Σ(F ) � D

Λ−→ F ′ with 〈G′, F ′〉 ∈ R.

The main difference compared to the usual notion of strong simulation on
labelled transition systems is the quantification on environments, which is nec-
essary to take into account the effect of authorization functions. Note also that



Encapsulation and Sharing in Dynamic Software Architectures 253

we require that a transition be simulated by a transition with the exact same
label. This is a strong requirement but which can only be relaxed if one knows
more about actions hypercells can take on values (e.g. if processes can only be
exchanged and run – placed in a cell –, one may require only that they be similar,
as in higher-order simulations).

Definition 3 (Strong bisimulation and bisimilarity). A binary relation
R ⊆ H2 is a strong bisimulation if both it and its inverse relation R−1 are
strong simulations.

Strong bisimilarity, noted ∼, is defined by ∼ Δ=
⋃

R∈S R, where is
the set of all strong bisimulations.

Crucially, in any hypercell model strong bisimilarity is a congruence (meaning
our notion of bisimilarity is a reasonable notion of behavioral equivalence for
hypercells):

Theorem 1. In any hypercell model, for all G,F ∈ H, if G ∼ F , then for all
E ∈ H such that G ‖ E ∈ H and F ‖ E ∈ H, we have G ‖ E ∼ F ‖ E.

The proof of this is left out for lack of space but it proceeds by showing, by
induction on the maximum number of bound names in G ‖ E and F ‖ E, that
the relation R = {(G ‖ E,F ‖ E | G ∼ F )} is a strong bisimulation.

4 Encapsulation Policies

We show in this section how to enforce different encapsulation policies in hyper-
cell models. Specifically, we present a form of strict encapsulation, inspired by
owner-as-dominator policies studied in ownership types [14], and a weaker vari-
ant that allows software architectures with overlapping encapsulation scopes
as in Fig. 1. The challenge is of course to enforce these policies in the highly
dynamic and concurrent setting of hypercell evolutions. Some notations first.
For L,M ∈ C ∪ Cs, we write L � M to mean L and M are bound, i.e.
(L.prov ∩ M.req) ∪ (L.req ∩ M.prov) �= ∅. For F,G ∈ H ∪ Hs, we write F � G
to mean F.roles ∩ G.roles = ∅.

4.1 Strict Encapsulation

In this form of encapsulation, cells come in three disjoint categories: owner cells,
owned cells, and free cells. Owner cells can be understood as composite compo-
nents. The cells they own – their owned cells – are their subcomponents. Free
cells are neither owner nor owned. The encapsulation policy we consider here
takes the form of a structural invariant which ensures an owned cell cannot
directly interact with cells which do not belong to its owner’s group - made by
this owner cell and all its owned cells. For simplicity, we have only a single level
of ownership (owner cells cannot be owned). It is relatively straightforward to
extend this policy to allow multiple levels of ownerhsip.



254 J.-B. Stefani and M. Vassor

To capture this, we consider a hypercell model (actually a class of models)
with sorts that take the form of 4-tuples 〈k,p,o, r〉, where k ∈ {�,⊥} is a
flag and . We set: s.flag = k, s.fprov = p, s.owned = o,
s.freq = r, and write C.fprov for C.sort.fprov, C.owned for C.sort.owned,
C.freq for C.sort.freq, C.flag for C.sort.flag. Flags in sorts are used to
avoid race conditions in the parallel evolution of owner and owned cells in a
owner group, which would break the global structural invariant (for instance
two owned cells being bound, while their owner is splitting itself in two).

A cell C in this model is assumed to maintain the following invariant:

C.prov = C.fprov ∧ C.req = C.owned ∪ C.freq ∧ C.owned ∩ C.freq = ∅ (1)

We also require to identify in a transition label Λ the roles that are sent by the
initial cell in the transition. We note Λ.sent the set of sent roles in Λ.

We define the following (these definitions apply to skeletons as well). For
L,M ∈ C, we write L � M for L.owned∩ M.prov �= ∅ (intuitively, L owns M),
and M.upL for L.owned ∩ M.prov when L � M . If G ∈ H, we write L � G to
mean that, for all M ∈ G, L � M . For G ∈ H, L ∈ C, we define scopeG(L) =
{M ∈ G | L � M} (the set of cells owned by L), and groupG(L) = {L} ∪
scopeG(L). We write scopeΓ (L) for scopeΓ.graph(L). We drop the subscript G
to write scope(L) and group(L) when the hypercell or skeleton context G is
clear. An owner is a cell L such that L.owned �= ∅ and we write L owner. We
define: G.owners

Δ= {M ∈ G | M.owned �= ∅}. An owned cell L in a hypercell
G is a cell such that there exists M ∈ G with M � L. A free cell in a hypercell
G is a cell which is neither owner nor owned.

The structural properties we expect are defined as follows. For any G∈H∪Hs:

∀L, M ∈ G, L �= M =⇒ scopeG(L) � scopeG(M) ∧ L.owned ∩ M.owned = ∅ (2)
∀L, M ∈ G, L � M =⇒ M.owned = ∅ (3)
∀L, M, N ∈ G, L � M ∧ M � N =⇒ L � M ∨ L = N (4)

Property (2) states that the encapsulation scopes of two owners L and M in the
same hypercell are necessarily distinct and they are bound by no role. Prop-
erty (3) states that there is only a single level of ownership: an owner cannot be
owned. Property (4) states that cells in the encapsulation scope of an owner can
only be bound to cells in the same scope or to the owner itself. We write Inv(G)
if properties (2), (3), and (4) hold for G (hypercell or skeleton).

We assume the existence of a predicate with
the following properties (New can be defined constructively but we eschew this
definition here for lack of space):

New(Δ,A,B) =⇒ B ∩ (Δ ∪ A) = ∅
New(Δ,A,B) ∧ New(Δ,A′, B′) ∧ A �= A′ =⇒ B ∩ B′ = ∅

We define the following predicates, which are used in the definition of the
authorization predicate. Predicate Safe ⊆ E×C×H is such that Safe(Γ,M,G)
holds if roles of G are new roles or are roles already used in the scope of M in
the context Γ . It is defined as follows:
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Predicate Incl ⊆ Hs × Cs is such that Incl(G,M) holds if M shares a role
with a skeleton cell in G. It is defined as follows:

Incl(G,M) Δ= M.prov ∩ G.prov �= ∅ ∨ M.req ∩ G.req �= ∅

We now define the authorization predicate for our class of hypercell models
with strict encapsulation. Predicate Auth is defined as follows. Auth(Γ,L,Λ,G)
is true exactly in the cases below:

1. If ∃M ∈ Γ, M � Σ(L) ∧ M.flag = �, G.owned = ∅ ∧ M � Σ(G) ∧
Safe(Γ,M,G), and Λ.sent ⊆ supp(L). If the flag of its owner is up, an
owned cell can reconfigure into an hypercell G provided all the cells in G
remain owned by the same owner, and the roles of G are either existing roles
of cells in the owner scope, or brand new ones. If a cell is owned, the only
constraint on its transitions labels is that sent roles in a label be roles already
known by L (i.e. new roles created during a transition cannot be immediately
sent).

2. If L owner ∧ L.flag = ⊥, Inv(H(Γ,L,G)) ∧ Osafe(Γ,L,G) with:

H(Γ,L,G) Δ= Σ(G) ∪ (scopeΓ (L) \ {M ∈ scopeΓ (L) | Incl(Σ(G),M)})

Osafe(Γ,L,G) Δ=
∧

K∈G.owners

Safe(Γ,L, scopeH(Γ,L,G)(K))

and Λ.sent ⊆ supp(L) ∧ rmv �∈ Λ.sync.channels. If its flag is down, an
owner L can reconfigure into an hypercell G, provided G and the cells in L’s
scope remaining after the transition (those such that incl(Σ(G),M) have
been removed) respect the global invariant Inv, and the roles in the scope of
owners in G are either ones already in its scope, or brand new ones. If a cell
is an owner, the same constraint as above on sent roles apply, but in addition
it cannot be removed by any other cell.

3. If L owner ∧ L.flag = �, L.owned ⊆ G.owned, G ∈ C, and Λ.sent ⊆
supp(L) ∧ rmv �∈ Λ.sync.channels. If its flag is up, an owner can only
change into a single owner cell, not losing any owned role, possibly adding
some (e.g. to allow the reconfiguration of cells it owns).

4. If L free, Inv(G) ∧ Fsafe(Γ,L,G) where:

Fsafe(Γ,G) Δ= G.roles ∩ Γ.owned = ∅ ∧
∧

K∈G.owners

Safe(Γ,L, scopeG(K))

and Λ.sent ⊆ supp(L). A free cell can reconfigure into a hypercell G provided
it respects the global invariant Inv, it does not insert new cells in the scope
of existing owners, and the roles of cells in the scope of new owners in G
are safe. Also, since it is not an owner, new roles created during a transition
cannot be immediately sent.
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Note that, with the above definition of Auth, in an environment Γ where cell
L is owned and the flag of its owner M is down, i.e. ∃M ∈ Γ, M � L∧M.flag =
⊥, then L cannot evolve in environment Γ .

The authorization predicate is quite permissive in the kinds of evolutions
owner cells can perform. Notice in particular that owner cells may split or dis-
solve during execution, allowing e.g. for the transfer of owned cells from one
owner to another. Likewise, owned cells can be freed by their owner and become
owner cells later on. The dynamicity and concurrency in the class of hypercell
models obeying strict encapsulation is much bigger than that allowed in the
computational models underlying ownership types (either strictly sequential or
actor like).

Predicate Inv is indeed an invariant for the class of hypercell models equipped
with these sorts and authorization functions:

Proposition 2 (Inv is an invariant). For all Γ ∈ E, G,G′ ∈ H, Λ ∈ ˜, if
Inv(Γ ), Inv(G) and Γ � G

Λ−→ G′, then Inv(G′).

4.2 Selective Encapsulation

We extend the strict encapsulation policy of the previous section with a notion of
weak ownership. Briefly, owner scopes of strict encapsulation are now allowed to
include weakly owned cells. A cell may belong to only one owner, as previously,
but may also belong to several weak owners. A cell can be weakly owned only if
it has identified specific provided roles for this purpose (wprov roles below).

We extend sorts to 6-tuples 〈k,p,o, r,q,w〉 with . We set
s.wowned = w and s.wprov = q. We write

C.wowned for C.sort.wowned, and C.wprov for C.sort.wprov. C.wowned are
required roles for binding to a weakly owned cell. C.wprov are provided roles for
binding to a weak owner.

We adapt the invariant (1) as follows:

C.prov = C.fprov ∪ C.wprov ∧ C.fprov ∩ C.wprov = ∅
∧ C.req = C.owned ∪ C.wowned ∪ C.freq

∧ C.owned, C.wowned, C.freqmutually disjoint
(5)

For L,M ∈ C (or Cs), we write L ⇀ M for L.wowned ∩ M.wprov �= ∅.
Writing now G.(roles − wroles) for G.roles \ (G.wowned ∪ G.wprov), and
F � G for F.(roles− wroles) ∩ G.(roles− wroles) = ∅ he global structural

invariant is now the conjunction of the following properties:

∀L, M ∈ G, L �= M =⇒ scopeG(L) � scopeG(M) ∧ L.owned ∩ M.owned = ∅ (6)
∀L, M ∈ G, L � M =⇒ M.owned = ∅ (7)
∀L, M, N ∈ G, L � M ∧ M � N =⇒ L � N ∨ L = N ∨ M ⇀ N ∨ N ⇀ M (8)

Notice how the invariant (8) changes from the strict encapsulation policy. Cells
in an owner scope are now allowed to bind to cells they weakly own, i.e. the
weak ownership relation allows cells to bind roles across group boundaries.
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The authorization predicate for this new policy is defined as in the previous
section, with just a change in the definition of the Safe predicate. Safe is now
defined as follows:

Using this policy, we can describe the architecture described in Fig. 1 as a
hypercell with cells C,C1, C2, L, L1, L2, where C and L are owners of cells C1, C2

and L1, L2, respectively, and where C1 and C2 are weak owners of L1 and L2,
respectively.

As it is, the selective encapsulation policy just allows for specifically identi-
fied roles to break the encapsulation policy, and for weakly owned cells to act
as shared internal means of communication between different owner scopes. It is
possible, however, to enforce additional constraints on weak ownership to reflect
different aggregation semantics. For instance, one could enforce a lifetime depen-
dency between weak owner and weak owned cell, preventing the removal of a
weak owner if its weakly owned cells are still in place, or, one could ensure a cell
has a single weak owner. We do not present these examples here, but our two
examples in this section should provide a good taste of the possibilities offered.

5 Conclusion

We have presented the Hypercell framework for defining software component
models (hypercell models). The basic ontology of any hypercell model agrees with
the classical elements of software component models [16,21], but the combination
of dynamicity, sharing and encapsulation an hypercell model can offer is, to
the best of our knowledge, unique. The key points to retain are the following:
(i) this combination is made possible by the use of contextual transitions, cell
sorts and context dependent runtime checks that enforce encapsulation policies;
(ii) a proper notion of equivalence between hypercells is obtained thanks to
authorizations at the level of individual cells and a notion of bisimulation that
decouples the effect of authorizations from the classical bisimulation game.

Our runtime approach to enforcing encapsulation policies seems more per-
missive, and able to express more forms of policies and aggregations semantics
than possible with ownership types, as our examples suggest. However, we have
at this time no formal proof of this. Also, how our approach compares with those
combining static ownership discipline with dynamic ownership tests, as in the
Mezzo permission-based language [1], remains to be seen. It is worth pointing
out that in defining encapsulation policies in the Hypercell framework, we do
have a choice between imposing static constraints on unconstrained transitions,
and imposing dynamic constraints via authorization predicates. In this paper, we
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have opted in our examples for an approach that made maximal use of autho-
rization, but other options are available that combine both. For expressivity,
however, we believe some amount of run-time checking is inescapable.

A crucial question is of course whether our abstract Hypercell framework can
be efficiently implemented and supported. An implementation of an abstract
machine for object-based hypercells is currently under way, but is clear that
enforcing encapsulation constraints via runtime checks is a viable option, as
demonstrated by the work on Siaam [15]. This work showed, in the simpler
context of the actor model, that the overhead of such checks can largely be
mitigated by means of static analyses that can safely remove most unnecessary
ones.
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