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Abstract. Unfolding-based Dynamic Partial Order Reduction
(UDPOR) is a recent technique mixing Dynamic Partial Order Reduc-
tion (DPOR) with concepts of concurrency such as unfoldings to effi-
ciently mitigate state space explosion in model-checking of concurrent
programs. It is optimal in the sense that each Mazurkiewicz trace, i.e. a
class of interleavings equivalent by commuting independent actions, is
explored exactly once. This paper shows that UDPOR can be extended
to verify asynchronous distributed applications, where processes both
communicate by messages and synchronize on shared resources. To do
so, a general model of asynchronous distributed programs is formalized in
TLA+. This allows to define an independence relation, a main ingredient
of the unfolding semantics. Then, the adaptation of UDPOR, involving
the construction of an unfolding, is made efficient by a precise analysis of
dependencies. A prototype implementation gives promising experimental
results.

Keywords: Partial order · Unfolding · Distributed program ·
Asynchronous

1 Introduction

Developing distributed applications that run on parallel computers and commu-
nicate by message passing is hard due to their size, heterogeneity, asynchronicity
and dynamicity. Besides performance, their correction is crucial but very chal-
lenging due to the complex interactions of parallel components.

Model-checking (see e.g. [4]) is a set of techniques allowing to verify automat-
ically and effectively some properties on models of such systems. The principle
is usually to explore all possible behaviors (states and transitions) of the system
model. However, state spaces increase exponentially with the number of concur-
rent processes. Unfoldings and Partial order reduction (POR) are two candidate
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alternative techniques born in the 90’s to mitigate this state space explosion and
scale to large applications.

Unfoldings (see e.g. [6]) is a concept of concurrency theory providing a repre-
sentation of the behaviors of a model in the form of an event structure aggregat-
ing causal dependencies or concurrency between events (occurrence of actions),
and conflicts that indicate choices in the evolution of the program. This repre-
sentation may be exponentially more compact than an interleaving semantics,
while still allowing to verify some properties, such as safety.

POR comprises a set of exploration techniques (see e.g. [8]), sharing the idea
that, to detect deadlocks (and, by extension, for checking safety properties) it is
sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent
by commutation of consecutive independent actions. This state space reduction
is obtained by choosing at each state, based on the independence of actions, only
a subset of actions to explore (ample, stubborn or persistent sets, depending on
the method), or to avoid (sleep set). Dynamic partial order reduction (DPOR) [7]
was later introduced to combat state space explosion for stateless model-checking
of software. In this context, while POR relies on a statically defined and impre-
cise independence relation, DPOR may be much more efficient by dynamically
collecting it at run-time. Nevertheless, redundant explorations, named sleep-set
blocked (SSB) [1], may still exist that would lead to an already visited interleav-
ing, and detected by using sleep sets.

In the last few years, two research directions were investigated to improve
DPOR. The first one tries to refine the independence relation: the more precise,
the less Mazurkiewicz traces exist, thus the more efficient could be DPOR. For
example [2] proposes to consider conditional independence relations where com-
mutations are specified by constraints, while in [3] independence is built lazily,
conditionally to future actions called observers. The other direction proposes
alternatives to persistent sets, in order to minimize the number of explored inter-
leavings. Optimality is obtained when exactly one interleaving per Mazurkiewicz
trace is built. In [1] authors propose source sets that outperform DPOR, but
optimality requires expensive computations of wake-up trees to avoid SSB explo-
rations. In [16] the authors propose unfolding-based DPOR (UDPOR), an opti-
mal DPOR method combining the strengths of PORs and unfoldings with the
notion of alternatives. The approach is generalized [13] with a notion of k-partial
alternative allowing to balance between optimal DPOR and sometimes more effi-
cient sub-optimal DPOR.

Some approaches already try to use DPOR techniques for the verification of
asynchronous distributed applications, such as MPI programs (Message Passing
Interface). In the absence of model, determining global states of the system and
checking equality [15] are already challenging. In [14], an approach is taken that
is tight to MPI. A significant subset of MPI primitives is considered, formally
specified in order to define the dependency relation, and then to use the DPOR
technique of [7]. In [18], the efficiency is improved by focusing on particular
deadlocks, but at the price of incompleteness.
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We propose first steps to adapt UDPOR for asynchronous distributed appli-
cations. In [17] authors proposed an abstract model of distributed applications
with a small set of primitives, sufficient to express most communication actions.
We revise and extend this model with synchronization primitives and formally
specify it in TLA+ [11]. A clear advantage of this model is its abstraction: it
remains concise, but its generality allows e.g. the encoding of MPI primitives.
Already defining a correct independence relation from this formal model is dif-
ficult, due to the variety and complex semantics of actions. In addition, making
UDPOR and in particular the computation of unfoldings and extensions effi-
cient cannot directly rely on solutions of [13], which are tuned for concurrent
programs with only mutexes, thus clever algorithms need to be designed. For
now we prototyped our solutions in a simplified context, but we target the Sim-
Grid tool which allows to run HPC code (in particular MPI) in a simulation
environment [5]. The paper is organized as follows. Section 2 recalls notions of
interleaving and concurrency semantics, and how a transition system is unfolded
into an event structure with respect to an independence relation. In Sect. 3 the
programming model is presented together with a sketch of the independence
relation. Section 4 presents the UDPOR algorithm, its adaptation to our pro-
gramming model, and how to make it efficient. Finally we present a prototype
implementation and its experimental evaluation.

2 Interleaving and Unfolding Semantics

The behaviors of a distributed program can be described in an interleaving
semantics by a labelled transition system, or in a true concurrency semantics
by an event structure. An LTS equipped with an independence relation can be
unfolded into an event structure [16]. This is a main step for UDPOR.

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a tuple T = 〈S , s0, Σ,→〉 where S is the set of states, s0 ∈ S the initial
state, Σ is the alphabet of actions, and →⊆ S ×Σ ×S is the transition relation.

We note s a−→ s ′ when (s, a, s ′) ∈ → and extend the notation to execution
sequences: s a1·a2···an−−−−−−→ s ′ if ∃s0 = s, s1, . . . sn = s ′ with si−1

a−→i si for i ∈ [1,n].
For a state s in S , we denote by enabled(s) = {a ∈ Σ : ∃s ′ ∈ S , s a−→ s ′} the set
of actions enabled at s.

Independence is a key notion in both POR techniques and unfoldings, linked
to the possibility to commute actions:

Definition 2 (Commutation and independence). Two actions a1, a2 of an
LTS T = 〈S , s0, Σ,→〉 commute in a state s if they satisfy the two conditions:

– executing one action does not enable nor disable the other one:

a1 ∈ enabled(s) ∧ s a1−→ s ′ =⇒ (a2 ∈ enabled(s) ⇔ a2 ∈ enabled(s ′)) (1)
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– their execution order does not change the overall result:

a1, a2 ∈ enabled(s) =⇒ (s a1·a2−−−→ s ′ ∧ s a2·a1−−−→ s ′′ =⇒ s ′ = s ′′) (2)

A relation I ⊆ Σ × Σ is a valid independence relation if it under-approximates
commutation, i.e. ∀a1, a2, I (a1, a2) implies that a1 and a2 commute in all states.
Conversely a1 and a2 are dependent and we note D(a1, a2) when ¬(I (a1, a2)).

A Mazurkiewicz trace is an equivalence class of executions (or interleavings) of
an LTS T obtained by commuting adjacent independent actions. By the second
item of Definition 2, all these interleavings reach a unique state. The principle
of all DPOR approaches is precisely to reduce the state space exploration while
covering at least one execution per Mazurkiewicz trace. If a deadlock exists, a
Mazurkiewicz trace leads to it and will be discovered. More generally, safety
properties are preserved.

The UDPOR technique that we consider also uses concurrency notions. A
classical model of true concurrency is prime event structures:

Definition 3 (Prime event structure). Given an alphabet of actions Σ, a
Σ-prime event structure (Σ-PES) is a tuple E = 〈E , <,#, λ〉 where E is a set of
events, < is a partial order relation on E, called the causality relation, λ : E →
Σ is a function labelling each event e with an action λ(e), # is an irreflexive
and symmetric relation called the conflict relation such that, the set of causal
predecessors or history of any event e, �e = {e ′ ∈ E : e ′ < e} is finite, and
conflicts are inherited by causality: ∀e, e ′, e ′′ ∈ E , e#e ′ ∧ e ′ < e ′′ =⇒ e#e ′′.

Intuitively, e < e ′ means that e must happen before e ′, and e#e ′ that
those two events cannot belong to the same execution. Two distinct events that
are neither causally ordered nor in conflict are said concurrent. The set [e] :=
�e ∪ {e} is called the local configuration of e. An event e can be characterized
by a pair < λ(e),H > where λ(e) is its action, and H = �e its history.

We note conf (E ) the set of configurations of E , where a configuration is a set
of events C ⊆ E that is both causally closed (e ∈ C =⇒ �e ⊆ C ) and conflict
free (e, e ′ ∈ C =⇒ ¬(e#e ′)). A configuration C is characterized by its causally
maximal events maxEvents(C ) = {e ∈ C : �e ′ ∈ C , e < e ′}, since it is exactly
the union of local configurations of these events: C =

⋃
e ∈ maxEvents(C )[e]; con-

versely a conflict free set K of incomparable events for < defines a configuration
config(K ) and C = config(maxEvents(C )).

A configuration C , together with the causal and independence relations
defines a Mazurkiewicz trace: all interleavings are obtained by causally order-
ing all events in the configuration C but commuting concurrent ones. The state
of a configuration C denoted by state(C ) is the state in T reached by any of
these executions, and it is unique as discussed above. We write enab(C ) =
enabled(state(C )) ⊆ Σ for the set of actions enabled at state(C ), while
actions(C ) denotes the set of actions labelling events in C , i.e. actions(C ) =
{λ(e) : e ∈ C}.

The set of extensions of C is ex (C ) = {e ∈ E \ C : �e ⊆ C}, i.e. the
set of events not in C but whose causal predecessors are all in C . When
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appending an extension to C , only resulting conflict-free sets of events are
indeed configurations. These extensions constitute the set of enabled events
en(C ) = {e ∈ ex (C ) : �e ′ ∈ C , e#e ′} while the other ones are conflicting exten-
sions cex (C ) := ex (C ) \ en(C ).

Parametric Unfolding Semantics. Given an LTS T and an independence relation
I , one can build a prime event structure E such that each linearization of a max-
imal (for inclusion) configuration represents an execution in T , and conversely,
to each Mazurkiewicz trace in T corresponds a configuration in E [13].

Definition 4 (Unfolding). The unfolding of an LTS T under an independence
relation I is the Σ-PES E = 〈E , <,#, λ, 〉 incrementally constructed from the
initial Σ-PES 〈∅, ∅, ∅, ∅〉 by the following rules until no new event can be created:

– for any configuration C ∈ conf (E ), any action a ∈ enabled(state(C )), if for
any e ′ ∈ maxEvents(C ), ¬I (a, λ(e ′)), add a new event e = 〈a,C 〉 to E;

– for any such new event e = 〈a,C 〉, update <, # and λ as follows: λ(e) := a
and for every e ′ ∈ E \ {e}, consider three cases:
(i) if e ′ ∈ C then e ′ < e,
(ii) if e ′ /∈ C and ¬I (a, λ(e ′)), then e#e ′,
(iii) otherwise, i.e. if e ′ /∈ C and I (a, λ(e ′)), then e and e ′ are concurrent.

A0

A1

An-1

An

Mailbox0

Mailboxm

Mutex0

Mutexk

Action

Action

Action

Action

paired comm

paired com Commmunications

Synchronization 
 Subsystem 

Network
 Subsystem

Actors

Fig. 1. Main elements of the model: Actors, Network and Synchronization

3 Programming Model and Independence Relation

In this section we introduce the abstract model of asynchronous distributed
systems that we consider. While abstract, this model is sufficient to represent
concrete MPI programs, as it encompasses all building blocks of the SMPI imple-
mentation of the standard [5]. We formalized this model in the specification
language TLA+ [11], to later infer an independence relation (Fig. 1).
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3.1 Abstract Model

In our model an asynchronous distributed system P consists in a set of n
actors Actors = {A1,A2, ...An} that perform local actions, communicate asyn-
chronously with each others, and share some resources. We assume that the
program is terminating, which implies that all actions are terminating. All local
actions are abstracted into a unique one LocalComp. Communication actions
are of four types: AsyncSend , AsyncReceive, TestAny , and WaitAny . Actions
on shared resources called synchronizations are of four types: AsyncMutexLock ,
MutexUnlock, MutexTest and MutexWait.

At the semantics level, P is a tuple P = 〈Actors,Network,Synchronization〉
where Network and Synchronization respectively describe the abstract objects,
and the effects on these of the communication and synchronizations actions.
The Network subsystem provides facilities for the Actors to asynchronously com-
municate with each others, while the subsystem Synchronization allows the syn-
chronization of actors on access to shared resources.

Network Subsystem. The state of the Network subsystem is defined as a pair
〈Mailboxes,Communications〉, where Mailboxes is a set of mailboxes storing
unpaired communications, while Communications stores only paired ones. Each
communication c has a status in {send , receive, done}, ids of source and desti-
nation actors, data addresses for those. A mailbox is a rendez-vous point where
send and receive communications meet. It is modelled as an unbounded FIFO
queue that is either empty, or stores communications with all same send or
receive status, waiting for a matching opposite communication. When match-
ing occurs, this paired communication gets a done status and is appended to the
set Communications. We now detail the effect in actor Ai of the communication
actions on Mailboxes and Communications:

– c = AsyncSend(m, data) drops an asynchronous send communication c to
the mailbox m. If pending receive communications exist in the mailbox, c is
paired with the oldest one c′ to form a communication with done status in
Communications, the receive communication is removed from m and the data
is copied from the source to the destination. Otherwise, a pending communi-
cation with send status is appended to m.

– c = AsyncReceive(m, d) drops an asynchronous receive communication to
mailbox m; the way a receive communication is processed is similar to send .
If pending send communications exist, c is paired with the oldest one c′ to
form a communication with done status in Communications, the send com-
munication is removed from m, and the data of the send is copied to d .
Otherwise, a pending communication with receive status is appended to m.

– TestAny(Com) tests a set of communications Com of Ai . It returns a boolean,
true if and only if some communication in Com with done status exists.

– WaitAny(Com) waits for a set of communications Com of Ai . The action is
blocking until at least one communication in Com has a done status.
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Synchronization Subsystem. The Synchronization subsystem consists in a pair
〈Mutexes,Requests〉 where Mutexes is a set of asynchronous mutexes used to
synchronize the actors, and Requests is a vector indexed by actors ids of sets
of requested mutexes. Each mutex mj is represented by a FIFO queue of
actors ids i who declared their interest on a mutex mj by executing the action
AsyncMutexLock(mj ). A mutex mj is free if its queue is empty, busy otherwise.
The owner is the actor whose id is the first in the queue. In actor Ai , the effect
of the synchronization actions on Mutexes and Requests is as follows:

– AsyncMutexLock(mj ) requests a mutex mj with the effect of appending the
actor id i to mj ’s queue and adding j to Requests[i ]. Ai is waiting until owning
mj but, unlike classical mutexes, waiting is not necessarily blocking.

– MutexUnlock(mj ) removes its interest to a mutex mj by deleting the actor id
i from the mj ’s queue and removing j from Requests[i ].

– MutexTest(M ) returns true if actor Ai owns some previously requested mutex
mj in M (i is first in FIFO mj ∈ M s.t. j in Requests[i ]).

– MutexWait(M ) blocks until Ai owns some mutex mj in M . Note that Mutex-
Test (resp. MutexWait) are similar to TestAny (resp. WaitAny) and could be
merged. We keep them separate here for simplicity of explanations.

Beside those actions, a program can have local computations named Local-
Comp actions. Such actions do not intervene with shared objects (Mailboxes,
Mutexes and Communications), and they can be responsible for I/O tasks.

We specified our model of asynchronous distributed systems in the formal
language TLA+ [11]. Our TLA+ model1 focuses on how actions transform the
global state of the system. An instance P of a program is described by a set of
actors and their actions (representing their source code). Following the semantics
of TLA+, and since programs are terminating, the interleaving semantics of a
program P can be described by an acyclic LTS representing all its behaviors.
Formally, the LTS of P is a tuple TP = 〈S , s0, Σ,→〉 where Σ represent the
actions of P ; a state s =< l , g > in S consists of the local state l of all actors
(i.e. local variables, Requests) and g the state of all shared objects including
Mutexes, Mailboxes and Communications; in the initial state s0 all actors are in
their initial local state, sets and FIFO queues are empty; a transition s a−→ s ′ is
defined if, according to the TLA+ model, the action encoded by a is enabled at
s and executing a transforms the state from s to s ′.

Notice that when verifying a real program, we only observe its actions and
assume that they respect the proposed TLA+ model and the independence rela-
tion discussed below. These assumptions are necessary to suppose that the LTS
correctly models the actual program behaviors.

3.2 Additional Property of the Model

The model presented in the previous section may appear unusual, because the
lock action on mutexes is split into an AsyncMutexLock and a MutexWait while
1 https://github.com/pham-theanh/simixNetworks.

https://github.com/pham-theanh/simixNetworks
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most works in the literature consider atomic locks. Our model does not induce
any loss of generality, since synchronous locks can trivially be simulated with
asynchronous locks. One reason to introduce this specificity is that this entails
the following lemma, that is the key to the efficiency of UDPOR in our model.

Lemma 1 (Persistence). Let u be a prefix of an execution v of a program in
our model. If an action a is enabled after u, it is either executed in v or still
enabled after v.

Intuitively, persistence says that once enabled, actions are never disabled by
any subsequent action, thus remain enabled until executed. Persistence does not
hold for classical synchronous locks, as some enabled lock(m) action of an actor
may become disabled by the lock(m) of another actor. This persistence property
has been early introduced by Karp and Miller [9], and later studied for Petri
Nets [12]. It should not be confused with the notion of persistent set used in
DPOR2. Persistent sets are linked to independence, while persistence is not.

Proof. When a is a LocalComp, AsyncSend , AsyncReceive, TestAny , AsyncMutex-
Lock, MutexUnlock, or MutexTest action, a cannot be disabled by any new action.
Indeed, these actions are never blocking (e.g. AsyncMutexLock comes down to
the addition of an element in a FIFO, which is always enabled) and only depend
on the execution of the action right before them by the same actor.

WaitAny and MutexWait may seem more complex. If a is a WaitAny , being
enabled after u means that one communication it refers to was paired. Similarly,
if a is a MutexWait, being enabled after u means that the corresponding actor
is first in the FIFO of a mutex it refers to. In both cases these facts cannot be
modified by any subsequent action, so a remains enabled until executed.

3.3 Independence Theorems

In order to use DPOR algorithms for our model of distributed programs, and in
particular UDPOR that is based on the unfolding semantics, we need to define
a valid independence relation for this model. Intuitively, two actions in distinct
actors are independent when they do not compete on shared objects, namely
Mailboxes, Communications, or Mutexes. This relation is formally expressed in
TLA+ as so-called “independence theorems”. We use the term “theorem” since
the validity of the independence relation with respect to commutation should
be proved. We proved them manually and implemented them as rules in the
model-checker. These independence theorems are as follows3:

2 A set of transitions T is called persistent in a state s if all transitions not in T
and, either enabled in T or enabled in a state reachable by transitions not in T , are
independent with all transitions in T . As a consequence, exploring only transitions
in persistent sets is sufficient to detect all deadlocks.

3 Some independence theorems could be enlarged but we give these ones for simplicity.
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1. A LocalComp is independent with any other action of another actor.
2. Any synchronization action is independent of any communication action of

a distinct actor.
3. Any pair of communication actions in distinct actors concerning distinct

mailboxes are independent.
4. An AsyncSend is independent of an AsyncReceive of another actor.
5. Any pair of actions in {TestAny ,WaitAny} in distinct actors is independent.
6. Any action in {TestAny(Com),WaitAny(Com)} is independent with any

action of another actor in {AsyncSend ,AsyncReceive} as soon as they do not
both concern the first paired communication in the set Com4.

7. Any pair of synchronization actions of distinct actors concerning distinct
mutexes are independent.

8. An AsyncMutexLock is independent with a MutexUnlock of another actor.
9. Any pair of actions in {MutexWait,MutexTest} of distinct actors is indepen-

dent.
10. A MutexUnlock is independent of a MutexWait or MutexTest of another

actor, except if the same mutex is involved and one of the two actors owns
it.

11. An AsyncMutexLock is independent of any MutexWait and MutexTest of
another actor.

4 Adapting UDPOR

This section first recalls the UDPOR algorithm of [16] and then explains how it
may be adapted to our context, in particular how the computation of extensions,
a key operation, can be made efficient in our programming model.

4.1 The UDPOR Algorithm

Algorithm 1 presents the UDPOR exploration algorithm of [16]. Like other
DPOR algorithms, it explores only a part of the LTS of a given terminating
distributed program P according to an independence relation I , while ensur-
ing that the explored part is sufficient to detect all deadlocks. The particularity
of UDPOR is to use the concurrency semantics explicitly, namely unfoldings,
which makes it both complete and optimal: it explores exactly one interleaving
per Mazurkiewicz trace, never reaching any sleep-set blocked execution.

The algorithm works as follows. Executions are represented by configura-
tions, thus equivalent to their Mazurkiewicz traces. The set U , initially empty,
contains all events met so far in the exploration. The procedure Explore has
three parameters: a configuration C encoding the current execution; a set D
(for disabled) of events to avoid (playing a role similar to a sleep set in [8]), thus
preventing revisits of configurations; a set A (for add) of events conflicting with
4 Intuitively, WaitAny(Com) needs only one done communication (the first paired

(AsyncSend ,AsyncReceive)) in Com to become enabled. Similarly, the effect of
TestAny(Com) only depends on this first done communication.
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Algorithm 1. Unfolding-based POR exploration
1 Set U := ∅
2 call Explore(∅, ∅, ∅)
3 Procedure Explore(C ,D ,A)
4 Compute ex (C ), and add all events in ex (C ) to U
5 if en(C ) ⊆ D then
6 Return
7 if (A = ∅) then
8 chose e from en(C ) \ D
9 else

10 choose e from A ∩ en(C )
11 Explore(C ∪ {e},D ,A \ {e})
12 if ∃J ∈ Alt(C ,D ∪ {e}) then
13 Explore(C ,D ∪ {e}, J \ C )
14 U := U ∩ QC ,D

D and used to guide the search to events in conflicting configurations in cex (C )
to explore alternative executions.

First, all extensions of C are computed and added to U (line 4). The search
backtracks (line 6) in two cases: when C is maximal (en(C ) = ∅), i.e. a deadlock
(or the program end) is reached, or when all events enabled in C should be
avoided (en(C ) ⊆ D), which corresponds to a redundant call, thus a sleep-
set blocked execution. Otherwise, an enabled event e is chosen (line 7–10), in
A if this guiding information is non empty (line 10), and a “left” recursive
exploration Explore(C ∪ {e},D ,A \ {e}) is called (line 11) from this extended
configuration C ∪ {e}, it continues trying to avoid D , but e is removed from
A in the guiding information. When this call is completed, all configurations
containing C and e have been explored, thus it remains to explore those that
contain C but not e. In this aim alternatives are computed (line 12) with the
function call Alt(C ,D ∪ {e}). Alternatives play a role similar to “backtracking
sets” in the original DPOR algorithm, i.e. sets of actions that must be explored
from the current state. Formally, an alternative to D ′ = D ∪{e} after C in U is
a subset J of U that, does not intersect D ′, forms a configuration C ∪J after C ,
and such that all events in D ′ conflict with some event in J . If an Alternatives
J exists, a right “recursive” exploration is called Explore(C ,D ∪ {e}, J \C ): C
is still the configuration to extend, but e is now also to be avoided, thus added
to D , while events in J \ C are used as guides. Upon completion (line 14), U
is intersected with QC ,D which includes all events in C and D as well as every
event in U conflicting with some events in C ∪ D .

In order to avoid sleep-set blocked executions (SSB) and obtain the optimality
of DPOR, the function Alt(C ,D∪{e}) has to solve an NP-complete problem [13]:
find a subset J of U that can be used for backtracking, conflicts with all D ∪{e}
thus necessarily leading to a configuration C∪J that is not already visited. In this
case en(C ) ⊆ D can then be replaced by en(C ) = ∅ in line 5. Note that with a
different encoding, Optimal DPOR must solve the same problem [1] as explained
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in [13]. In [13], a variant of the algorithm is proposed for the function Alt that
computes k-partial alternatives rather than alternatives, i.e. sets of events J
conflicting with only k events in D , not necessarily all of them. Depending on
k , (e.g. k = ∞ (or k = |D | + 1) for alternatives, k = 1 for source sets of [1])
this variant allows to tune between an optimal or a quasi-optimal algorithm that
may be more efficient.

4.2 Computing Extensions Efficiently

Computing the extensions ex (C ) of a configuration C may be costly in general. It
is for example an NP-complete problem for Petri Nets since all sub-configurations
must be enumerated. Fortunately this algorithm can be specially tuned for sub-
classes. In particular for the programming model of [13,16] it is tuned in an
algorithm working in time O(n2log(n)), using the fact that events have a maxi-
mum of two causal predecessors, thus limiting the subsets to consider.

This section tunes the algorithm to our more complex model, using the fact
that the amount of causal predecessors of events is also bounded. Next section
shows how to incrementally compute ex (C ) to avoid recomputations. Figure 2
illustrates some aspects of an extension.

Fig. 2. A configuration C , extended by event e, its history H and maximal events K .

This section mandates some additional notations. Given a configuration C
and an extension with action a, let pre(a) denote the action right before a in the
same actor, while preEvt(a,C ) denotes the event in C associated with pre(a)
(formally e = preEvt(a,C ) ⇐⇒ e ∈ C , λ(e) = pre(a)). Given a set F of events
F ⊆ E , Depend(a,F ) means that a depends on all actions labeling events in F .

The definition of ex (C ) (set of extensions of a configuration C ) {e ∈ E \C :
�e ⊆ C} can be rewritten using the definitions of Sect. 2 as follows: {e =
〈a,H 〉 ∈ E \ C : a = λ(e) ∧ H = �e ∧ H ∈ 2C ∩ conf (E ) ∧ a ∈ enab(H )}.

Fortunately, it is not necessary to enumerate all subsets H of C , that are in
exponential numbers, to compute this set. According to the unfolding construc-
tion in Definition 4, an event e = 〈a,H 〉 only exists in ex (C ) if the action a
is dependant with the actions of all maximal events of H . This gives: ex (C ) =
{e = 〈a,H 〉 ∈ E \C : a = λ(e)∧H = �e∧H ∈ 2C ∩ conf (E )∧ a ∈ enab(H )∧
Depend(a,maxEvents(H ))}. Now ex (C ) can be simplified and decomposed by
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enumerating Σ, yielding to: ex (C ) =
⋃

a ∈ Σ{〈a,H 〉 : H ∈ Sa,C} \ C where
Sa,C = {H ∈ conf (E ) : H ⊆ C ∧ a ∈ enab(H ) ∧ Depend(a,maxEvents(H ))}.

The above formulation of ex (C ) iterates on all actions in Σ. However, inter-
preting the persistence property (Lemma 1) for configurations entails that for
two configurations H and C with H ⊆ C , an action a in enab(H ) is either in
actions(C ) or enab(C ).

Therefore, ex (C ) can be rewritten by restricting a to actions(C )∪enab(C ) :

ex (C ) = (
⋃

a ∈ actions(C )∪enab(C )

{〈a,H 〉 : H ∈ Sa,C}) \ C (3)

Now, instead of enumerating possible configurations H ∈ Sa,C , we can enu-
merate their maximal sets K = maxEvents(H ). Hence,

ex (C ) = (
⋃

a ∈ actions(C )∪enab(C )

{〈a, config(K )〉 : K ∈ Smax
a,C }) \ C (4)

with Smax
a,C = {K ∈ 2C : K is maximal ∧a ∈ enab(config(K ))∧Depend(a,K ))}

and K is maximal if (�e, e ′ ∈ K : e < e ′ ∨ e#e ′).
One can then specialize the computation of ex (C ) according to the type of

action a. Due to space limitations, we only detail the computation for AsyncSend
actions, the other ones being similar.

Computing Extensions for AsyncSend Actions. Let C be a configuration,
and a an action of type c = AsyncSend(m, ) of an actor Ai . We want to compute
the set Smax

a,C of sets K of maximal events from which a depends.
According to independence theorems (see Sect. 3.3), a only depends on the

following actions: pre(a), all AsyncSend(m, ) actions of distinct actors Aj which
concern the same mailbox m, and all WaitAny (resp. TestAny) actions that
wait (resp. test) a AsyncReceive which concerns the same communication c.
Considering this, we now examine the composition of maximal events sets K in
Smax
a,C .

First, two events labelled by AsyncSend(m, ) actions cannot co-exist in K ,
formally �e, e ′ ∈ K : λ(e), λ(e ′) in AsyncSend(m, ): indeed, if two such events
exist in a configuration, they are dependent but cannot conflict, thus are causal-
ity related and cannot be both maximal.

Second, if a WaitAny(Com) action concerns communication c, there are
two cases: (i) either c is not the first done communication in Com, then
WaitAny(Com) and the action a are independent. (ii) or c is the first done com-
munication in Com and WaitAny is enabled only after a. Thus the only possibility
for a maximal event to be labelled by a WaitAny is when pre(a) is a WaitAny of
the same actor. We can then write: �e ∈ K : λ(e) in WaitAny ∧λ(e) �= pre(a).

Third, all AsyncReceive events for the mailbox m are causally related in
configuration C , and c can only be paired with one of them, say c′. Thus a
can only depend on actions TestAny(Com ′) such that c′ ∈ Com ′ and c and c′

form the first done communication in Com ′, and all those TestAny events are
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ordered. Thus, there is at most one event e labelled by TestAny in K such that
λ(e) �= pre(a).

To conclude, K contains at most three events: preEvt(a,C ), some event
labelled with an action AsyncSend on the same mailbox, and some TestAny for
some matching AsyncReceive communication. There is thus only a cubic number
of such sets, which is the worse case among considered action types. Algorithm 2
generates all events in ex (C ) labelled by an AsyncSend action a.

Algorithm 2. createAsyncSendEvt(a, C )
1 create e ′ = < a, config(preEvt(a,C )) >, and ex (C ) := ex (C ) ∪ {e ′}
2 foreach e ∈ C s.t. λ(e) ∈ {AsyncSend(m, ),TestAny(Com)}
3 where Com contains a matching c′ = AsyncReceive(m, ) with a do
4 K := ∅
5 - if ¬(e < preEvt(a,C ) then K := K ∪ {e}
6 - if ¬(preEvt(a,C ) < e) then K := K ∪ {preEvt(a,C )}
7 if D(a, λ(e)) then
8 create e ′ = < a, config(K ) > and ex (C ) := ex (C ) ∪ {e ′}
9 foreach es ∈ C s.t. λ(es) = AsyncSend(m, ) do

10 foreach et ∈ C s.t. λ(et) = TestAny(Com)
11 where Com contains a matching c′ = AsyncReceive(m, ) with a do
12 K := ∅
13 - if ¬(es < preEvt(a,C )) and ¬(es < et) then K := K ∪ {es}
14 - if ¬(et < preEvt(a,C ) and ¬(et < es) then K := K ∪ {et}
15 - if ¬(preEvt(a,C ) < es) and ¬(preEvt(a,C ) < et) then

K := K ∪ {preEvt(a,C )}
16 if D(a, λ(et)) then
17 create e ′ = < a, config(K ) >, and ex (C ) := ex (C ) ∪ {e ′}

Example 1. We illustrate the Algorithm 2 by the example of Fig. 3. Suppose we
want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with a, the
action c2 = AsyncSend(m, ) of Actor2. First e6 =< AsyncSend , {2} > ∈ ex (C )
because preEvt(a,C ) = e2 (line 1). We then iterate on all AsyncSend events in
C , combining them with e2 to create maximal event sets K (lines 2–8). We only
have one AsyncSend event e3. Since ¬(e2 < e3) and ¬(e3 < e2), we form a first
set K = {e2, e3}, and add e7 =< AsyncSend , {e2, e3} > to ex (C ). Next all Test-
Any events that concern the mailbox m should be considered. Events e2 and e5
can be combined to form a new maximal event set K = {e2, e5}, but since a and
λ(e5) are not related to the same communication, D(a, λ(e5)) is not satisfied and
no event is created. Finally combinations of e2 with an AsyncSend event and a
TestAny event are examined (lines 9–17). We then get K = {e2, e5, e3}, and e8 is
added to ex (C ) since D(a, λ(e5)) holds in the configuration config({e2, e5, e3}).
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Fig. 3. The pseudo-code of a distributed program (left) and the configuration C .

4.3 Computing Extensions Incrementally

In the UDPOR exploration algorithm, after extending a configuration C ′ by
adding a new event e, one must compute the extensions of C = C ′ ∪ {e}, thus
resulting in redundant computations of events. The next theorem improves this
by providing an incremental computation of extensions.

Theorem 1. Suppose C = C ′ ∪{e} where e is the last event added to C by the
Algorithm 1. We can compute ex (C ) incrementally as follows:

ex (C ) = (ex (C ′) ∪
⋃

a ∈ enab(C )

{< a,H >: H ∈ Sa,C}) \ {e} (5)

where Sa,C = {H ∈ 2C ∩ conf (E ) : a ∈ enab(H ) ∧Depend(a,maxEvents(H ))}.

Proof. With the definition of Sa,C as above, recall that

ex (C ) = (
⋃

a ∈ actions(C )∪enab(C )

{〈a,H 〉 : H ∈ Sa,C}) \ C (6)

Applying the same Eq. (6) to C ′ we get:

ex (C ′) = (
⋃

a ∈ actions(C ′)∪enab(C ′)

{〈a,H ′〉 : H ′ ∈ Sa,C ′}) \ C ′

Now, exploring e from C ′ leads to C , which entails that λ(e) belongs to enab(C ′)
and actions(C ′) ∪ λ(e) = actions(C ), thus the range of a in ex (C ′) which is
actions(C ′) ∪ enab(C ′) can be rewritten actions(C ) ∪ (enab(C ′) \ λ(e)).

First, separating action(C ) from the rest in both ex (C ) and ex (C ′) we prove:
⋃

a ∈ actions(C )

{< a,H >: H ∈ Sa,C} =
⋃

a ∈ actions(C )

{< a,H ′ >: H ′ ∈ Sa,C ′}

(7)
(⊇) This inclusion is obvious since C ⊇ C ′, and thus Sa,C ⊇ Sa,C ′ .
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(⊆) Suppose there exists some event en =< a,H > belonging to the left but
not the right set. If a = λ(en) = λ(e), then H ∈ Sa,C∩Sa,C ′ , so en is in both sets,
resulting in a contradiction. If a = λ(en) �= λ(e), there are two cases: (i) either
e /∈ H then H ∈ Sa,C ′ and en belongs to the right set, a contradiction. (ii) or
e ∈ H , then λ(en) ∈ actions(C ) \ {λ(e)} = actions(C ′), thus there is another
event e ′ ∈ C ′ such that λ(e ′) = λ(en), then e ′ cannot belong to H (one action
a cannot appear twice in �en). Besides, e is the last event explored in C , thus
a depends on λ(e) by Definition 4. Then, e ′ conflicts with e, contradicting their
membership to the same configuration C . This proves (7).

Second, since C ′ ⊆ C , according to persistence of the programming model
(Lemma 1), (enab(C ′) \ {λ(e)}) ⊆ enab(C ). We thus have:

⋃

a ∈ enab(C ′)\{λ(e)}
{< a,H ′ >| H ′ ∈ Sa,C ′} ⊆

⋃

a ∈ enab(C )

{< a,H >| H ∈ Sa,C}

(8)
Now, using Eqs. (7) and (8), ex (C ) can be rewritten as follows:

ex (C ) = (
⋃

a ∈ actions(C )∪(enab(C ′)\λ(e))

{〈a,H ′〉 : H ′ ∈ Sa,C ′}

∪
⋃

a ∈ enab(C )

{〈a,H 〉 : H ∈ Sa,C}) \ (C ′ ∪ {e})
(9)

But since no event in
⋃

a ∈ enab(C ){〈a,H 〉 : H ∈ Sa,C} is in (C ′ ∪ {e}), Eq. (9)
can be rewritten as Eq. (5) in Theorem 1.

4.4 Experiments

We implemented the quasi-optimal version of UDPOR with k -partial alter-
natives [13] in a prototype adapted to the distributed programming model of
Sect. 3, i.e. with its independence relation. The computation of k -partial alter-
natives is essentially inspired by [13]. Recall the algorithm reaches optimality
when k = |D | + 1, while k = 1 corresponds to Source DPOR [1]. The prototype
is still limited, not connected to the SimGrid environment, thus can only be
experimented on simple examples.

We first compare optimal UDPOR with an exhaustive stateless search on
several benchmarks (see Table 1). The first five benchmarks come from Umpire
Tests5, while DTG and RMQ-receiving belong to [10] and [17], respectively.
The last benchmark is an implementation of a simple Master-Worker pattern.
We expressed them in our programming model and explored their state space
with our prototype. The experiments were performed on an HP computer, Intel
Core i7-6600U 2.60 GHz processors, 16 GB of RAM, and Ubuntu version 18.04.1.
Table 1 presents the number of explored traces and running time for both an
exhaustive search and optimal UDPOR. In all benchmarks UDPOR outperforms
the exhaustive search. For example, for RMQ-receiving with 4 processes, the

5 http://formalverification.cs.utah.edu/ISP-Tests/.

http://formalverification.cs.utah.edu/ISP-Tests/
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exhaustive search explores more than 20000 traces in around 8 s, while UDPOR
explores only 6 traces in 0.2 s. Besides, UDPOR is optimal, exploring only one
trace per Mazurkiewicz trace. For example in RMQ-receiving with 5 processes,
with only 4 AsyncSend actions that concern the same mailbox, UDPOR explores
exactly 24 (=4!) non-equivalent traces. Similarly, the DTG benchmark has only
two dependent AsyncSend actions, thus two non-equivalent traces. Furthermore,
deadlocks are also detected in the prototype.

We also tried to vary the value of k . When k is decreased, one gains in
efficiency in computing alternatives, but looses optimality by producing more
traces. It is then interesting to analyse, whether this can be globally more efficient
than optimal UDPOR. Similar to [13], we observed that in some cases, fixing
smaller values of k may improve the efficiency. For example with RMQ-receiving,
k = 7 is optimal, but reducing to k = 4 still produces 24 traces (thus is optimal)
a bit more quickly (2.3 s), while for k = 3 the number of traces and time diverge.
We have to analyse this more precisely on more examples in the future.

Note that with our simple prototype, we do not yet make experiments with
concrete programs (e.g. MPI programs), for which running time may somehow
diverge. We expect to make it in the next months and then experiment the algo-
rithms in more depth. However, we believe that the results are already significant
and that UDPOR is effective for asynchronous distributed programs.

Table 1. Comparing exhaustive exploration and UDPOR. TO: timeout after 30 min;
#P: number of processes; Deadlock: deadlock exists; #Traces: number of traces

Benchmarks #P Deadlock Exhaustive search UDPOR

#Traces Time (second) #Traces Time (second)

Wait-deadlock 2 Yes 2 <0.01 1 <0.01

Complex-deadlock 3 Yes 36 0.03 1 <0.01

Waitall-deadlock 3 Yes 1458 1.2 1 <0.01

No-error-wait-any src 3 No 21 0.02 1 0.01

Any-src-can-deadlock3 3 Yes 999 0.65 2 0.03

DTG 5 Yes - TO 2 0.07

RMQ-receiving 4 No 20064 8.15 6 0.2

5 No - TO 24 2.52

Master-worker 3 No 1356444 1038 2 0.2

4 No - TO 6 2.5

5 Conclusion and Future Work

The paper adapts the unfolding-based dynamic partial order reduction
(UDPOR) approach [16] to the verification of asynchronous distributed pro-
grams. The programming model we consider is generic enough to properly model
a large class of asynchronous distributed systems, including e.g. MPI applica-
tions, while exhibiting some interesting properties. From a formal specification of
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this model in TLA+, an independence relation is built, that is used by UDPOR
to partly build the unfolding semantics of programs. We show that, thanks to the
properties of our model, some usually expensive operations of UDPOR can be
made efficient. A prototype of UDPOR has been implemented and experimented
on some benchmarks, gaining promising first results.

In the future we aim at extending our model of asynchronous distributed
systems, while both preserving good properties, getting a more precise indepen-
dence relation, and implementing UDPOR in the SimGrid model-checker and
verify real MPI applications. Once done, we should experiment UDPOR more
deeply, and compare it with state of the art tools on more significant bench-
marks, get a more precise analysis about the efficiency of UDPOR compared to
simpler DPOR approaches, analyse the impact of quasi-optimality on efficiency.

Acknowledgement. We wish to thank the reviewers for their constructive comments
to improve the paper.
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