
Towards Verified Blockchain
Architectures: A Case Study on

Interactive Architecture Verification

Diego Marmsoler(B)

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. With the emergence of cryptocurrencies, Blockchain archi-
tectures have become more and more important. In such architectures,
components maintain and exchange a list of records in a way which
makes the entries persistent, i.e., resistant to modifications. Thereby, the
architecture is dynamic in the sense that components may join or leave
the network and connections between them may change over time. The
dynamic nature of Blockchain architectures makes their verification a
challenge, since it involves reasoning about potentially unbounded num-
ber of components. To this end, we developed FACTum, an approach
for the specification and interactive verification of dynamic architectures
based on the interactive theorem prover Isabelle. In this paper we report
on the outcome of applying the approach to formally specify a version
of Blockchain architectures and verify that the list entries of such archi-
tectures are indeed persistent.

Keywords: Blockchain · Interactive theorem proving ·
Dynamic architectures · Factum · Isabelle

1 Introduction

The concept of Blockchain was first introduced with the invention of the Bitcoin
cryptocurrency by a person (or group) known as Nakamoto in 2008 [1]. Since
then, the technology found several other applications, especially in the domain
of cryptocurrencies [2]. However, the technology seems promising also for other
domains, such as the medical [3], land management [4], business process man-
agement [5], or even identity management [6]. Usually, the term “blockchain”
refers to a list of records, so-called blocks, which contain actual data elements.
A Blockchain architecture, on the other hand, consists of a network of so-called
nodes, in which every node maintains a copy of the blockchain and continu-
ously exchanges its copy with other nodes. Thereby, blockchains are required to
be persistent, i.e., entries should be resistant to modifications. To achieve this,
nodes are required to follow a certain protocol consisting of several, so-called,
consensus rules.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 204–223, 2019.
https://doi.org/10.1007/978-3-030-21759-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_12

Towards Verified Blockchain Architectures 205

Blockchain architectures are an instance of a more general class of architec-
tures called dynamic architectures [7]. In such architectures, components may
join or leave the architecture and connections between components can change
over time. This dynamics makes the verification of such architectures a challenge,
since it involves reasoning about an unbounded number of components.

In an attempt to address this problem, we developed FACTum [8], an app-
roach for the specification and verification of such architectures. A FACTum
specification consists of three main parts:

– A specification of the involved data types in terms of abstract datatypes.
– A specification of the involved types of components in terms of interfaces and

corresponding assertions about the behavior of components of a certain type.
– A set of architectural assertions to specify component activation and recon-

figuration of connections between components.

A FACTum specification can be systematically transferred to a corresponding
Isabelle [9] theory where it is subject to interactive verification.

While the general FACTum approach was already introduced in [8], the focus
of [8] was the presentation and discussion of the specification techniques and the
algorithm to map a FACTum specification to a corresponding Isabelle locale.
To this end, we demonstrated the algorithm by means of three simple examples:
a Singleton architecture, a Publisher-Subscriber architecture, and a Blackboard
architecture, amounting up to 500 lines of Isabelle code. With this paper, we
build on the work described in [8] and evaluate the approach on a larger case
study. To this end, we applied the approach to specify Blockchain architectures
based on the description provided in [1] and verify persistency of confirmed
blocks. With this paper, we report on the outcome of applying FACTum for the
specification and verification of Blockchain architectures according to [1]. Thus,
the contribution of the paper is twofold:

– It describes a case study for FACTum, which reveals important insights about
the use of FACTum for the verification of dynamic architectures.

– It provides a formal specification of Blockchain architectures, which is guar-
anteed to resist double spend attacks.

In total, the specification consists of 12 assumptions for Blockchain architectures
and verification required roughly 3500 lines of Isabelle/HOL code.

In the next section, we provide some background on Blockchains (Sect. 2)
and the FACTum approach (Sect. 3). We then present a possible specification
of Blockchain architectures (Sect. 4) and describe our formalization and verifica-
tion of the persistence property for blockchain entries (Sect. 5). We continue with
a discussion of related work (Sect. 7) in the area of formalizations of blockchain-
related concepts and verification of consensus algorithms. We conclude our pre-
sentation with a summary of major results and a discussion of its implications
as well as directions for future work (Sect. 8).

206 D. Marmsoler

2 Blockchain Architectures

Blockchain architectures were first introduced with the invention of the Bitcoin
cryptocurrency [1]. In cryptocurrencies, a digital coin is usually passed from one
owner to the next one by digitally signing an electronic transaction. To ensure
that coins are only spent once, a payee has to know whether a received coin
is already spent or not at the time he receives it. This problem is known as
the double spend problem and before the invention of Blockchain, it was solved
using a central, trusted identity, which knew every transaction of the system and
confirmed that a coin was not already spent. In an attempt to avoid such central
authorities, Bitcoin proposed a system called Blockchain to solve the double
spend problem in a distributed, peer-to-peer network. To this end, the network
stores a continuously growing list of persistent entries, which contain the actual
money transactions. The list is shared among all participants of the network and
by inspecting it, a node can independently verify that a coin was not already
spent. In this paper, we call such a network a Blockchain architecture and in the
following we summarize some basic concepts of such architectures. Thereby, we
follow the informal description provided in [1].

Blockchain. The term “blockchain” usually refers to the major data structure
involved in a Blockchain architecture: a list of records aka. blocks. Blocks, on the
other hand, contain the actual data elements, for example, money transactions
in cryptocurrency applications. Blocks can be added on top of the chain and ver-
ified by a process known as mining. In Bitcoin, for example, mining involves the
guessing of a random number (a so-called nonce), adding it to a candidate block
and checking whether the corresponding hash exhibits a certain form (starting
with a certain number of zeros). This makes mining of a new block computation-
ally expensive, since it usually requires many guesses (and subsequent hashings)
to find a number which produces the right hash. On the other hand, ensuring
that a given block was indeed successfully mined remains computationally cheap
(it only requires a single hashing).

Consensus. In a Blockchain architecture, every node maintains a local copy of
the blockchain, which it exchanges with its peers. Due to the distributed nature,
it may happen that two different blocks are added concurrently, resulting in two
different versions of the blockchain available in the network. In order to reach a
consensus on which version is the “right” one, a Blockchain architecture usually
comes with a strategy of how to select the right version from a set of competing
blockchains. This rule is applied by every honest node of the network and should
guarantee that the nodes eventually reach a consensus.

Consensus Rules. There are several different types of strategies used to reach
consensus, such as proof-of-work [1] or proof-of-stake [2]. In the proposed spec-
ification, we rely on the proof-of-work concept also used by Bitcoin and related
applications. It is based on the observation that the number of blocks in a
blockchain usually represents the amount of computing power involved to build

Towards Verified Blockchain Architectures 207

this chain. Thus, the largest chain from a set of competing blockchains must be
the one accepted by the majority of the network. Thus, if a honest node is facing
two versions of a blockchain, it is required to always choose the longer one.

Confirmation Blocks. In a proof-of-work network, every CPU gets one vote and
majority decisions can usually only be manipulated if one entity owns more than
50% of the computing power of the network. This might not be true, however,
for blocks added to the blockchain only recently. A single node may just be lucky
and guess the right nonce fast, without investing a lot of computational power.
To cope with such lucky guesses, one usually waits for some blocks to be mined
on top of the block containing a certain transaction, to accept this transaction
as completed. These blocks are called confirmation blocks and in Bitcoin, for
example, it is suggested to wait for at least six confirmation blocks to accept a
transaction as completed [10].

3 Factum

FACTum [8] is an approach for the formal specification and interactive verifica-
tion of dynamic architectures. It consists of a formal system model for dynamic
architectures, techniques to specify architectures over this model, an algorithm
to map the specification to a corresponding Isabelle theory, and an Isabelle-based
framework to support the interactive verification of architecture specifications.
FACTum is also implemented in terms of an Eclipse/EMF application called
FACTum Studio [11] which supports a user in the development of architecture
specifications.

3.1 System Model

In Factum, an architecture is modeled in terms of sets of so-called architecture
traces [7,12], i.e., streams [13] of architecture snapshots. Thereby, an architec-
ture snapshot consists of a set of (active) components with their ports valuated
by messages and connections between the ports of the components. Moreover,
components of a certain type may be parameterized by a set of messages.

c1o0M3

i0M4 o1

M5

o2 M1

c2〈q=M2〉i0M1

o0M6 i1

M5

i2 M3

c3〈p=M〉
i0 M2

o0 M1i1

M1

o1

M3

k0

,

c1o0M4

i0M3 o1

M1

o2 M2

c4i0M2
i1

M1

o0 M3

k1

,

c1o0
M3

i0M2 o1

M4

o2 M1

c4i0M6
i1

M1

o0 M2

c3〈p=M〉
i0 M5

o0 M4i1

M3

o1
M6

k2

,

Fig. 1. Architecture trace with its first three architecture snapshots.

208 D. Marmsoler

Example 1 (Architecture trace). Assuming that M1, M2, . . . are sets of messages.
Figure 1 depicts an architecture trace t with corresponding architecture snap-
shots t(0) = k0, t(1) = k1, and t(2) = k2. Architecture snapshot k0, for example,
consists of three active components: c1, c2, and c3. Component c3 is parameter-
ized with a parameter p with value M. It has two input ports i0 and i1, valuated
with messages M2 and M1, respectively. Moreover, it has two output ports o0 and
o1, valuated with messages M1 and M3, respectively. ��

Note that the model allows components to be valuated by a set of messages,
rather than just a single message, at each point in time. Moreover, components
can be activated and deactivated and connections between them may change over
time. The model of architecture traces is also implemented by a corresponding
Isabelle/HOL theory, which is described in [14].

3.2 Specifying Dynamic Architectures

FACTum provides several techniques to support the formal specification of
dynamic architectures [8]:

– First, the data types involved in an architecture are specified in terms of
algebraic specifications [15].

– Then, a set of interfaces is specified graphically using architecture diagrams.
– Component types are then created by adding constraints about component

behavior to the corresponding interfaces.
– Finally, a set of architectural assertions is added to specify constraints about

component activation and deactivation as well as interconnection.

A FACTum specification comes with a formal semantics in a denotational style,
which is described in [16]. To this end, each specification is interpreted by a
corresponding set of architecture traces.

Constraints about component behavior are specified in terms of behavior
trace assertions, i.e., first order linear temporal logic formulæ using ports of the
interfaces as free variables. Architectural constraints are specified in terms of
architecture trace assertions. These are also a type of first order linear temporal
logic formulæ, with variables denoting components and some special terms and
predicates:

– With c.p, for example, we denote the valuation of port p of a component c.
– With c we denote that component c is currently active.
– With c.o � c′.i we denote that output port o of component c is connected to

input port i of component c′.

Architecture diagrams are a graphical formalism to specify interfaces for com-
ponent types. To this end, component types are represented by rectangles with
their ports denoted by empty (input) and filled (output) circles. Architecture
diagrams may be annotated to easily express common architectural constraints:

Towards Verified Blockchain Architectures 209

Activation annotations can be added to component types, to specify upper
and lower bounds for the number of active components of the corresponding
type.

Connection annotations are expressed in terms of annotated lines between the
ports of component types, to express upper and lower bounds for connections
between the ports of corresponding components.

Note that activation and connection annotations are actually just synonyms for
certain architectural assertions and may also be expressed using architecture
trace assertions described above.

3.3 Verifying Dynamic Architectures

FACTum comes with an algorithm to map a given specification to a corre-
sponding Isabelle theory, where it is subject to formal verification. To support
the verification, FACTum provides a framework for the interactive verification of
architecture specifications in Isabelle/HOL [14]. Among other things, the frame-
work implements a calculus to support reasoning about component behavior in
a dynamic environment [17].

4 Formalizing Blockchain Architectures

In the following, we present our formalization of Blockchain architectures in
FACTum.

4.1 Data Types and Ports

As described in Sect. 2, a key data type for Blockchain architectures is the
blockchain itself. In the following, we first formalize a blockchain data struc-
ture by means of algebraic datatypes. Then, we specify two types of ports to
send and receive blockchains, respectively.

Blockchains. A blockchain is modeled as a parametric list, in which the nature
of the list entries (the blocks) depends on the concrete application context of the
pattern. In cryptocurrency applications, for example, a block is usually a set of
transactions. In other applications, however, blocks could be of a different type.

Figure 2a depicts a specification of blockchains by means of an abstract data
type specification. First, a parametric sort 〈B〉BC is introduced as a synonym for
a corresponding list. Thereby, the type of blocks is denoted with type param-
eter B. In addition, we specify a function symbol MAX for blockchains, which
takes a set of blockchains, and returns a blockchain with maximal length. Thus,
we require two characteristic properties for MAX : Eq. (1) requires that a max-
imal blockchain of a set of blockchains BC is part of BC itself. In addition,
Eq. (2) requires that MAX is indeed maximal, i.e., that the length of every
other blockchain of the corresponding set BC is less or equal to the length of
MAX . Note that MAX (BC) is guaranteed to exist, whenever BC �= ∅ and BC
is finite.

210 D. Marmsoler

Port Types. Figure 2b specifies two types of ports which can be used to
exchange blockchains: pin for input ports and pout for output ports. They will
be used later on for the specification of component type interfaces.

DTSpec Blockchain imports 〈B〉LIST as 〈B〉BC
MAX : ℘(〈B〉BC) 〈B〉BC
flex BC : ℘(〈B〉BC)

bc : BC

MAX (BC) ∈ BC (1)

∀bc ∈ BC : #bc ≤ #MAX (BC) (2)

(a) Data type specification.

PSpec BPort

pin : 〈B〉BC
pout : 〈B〉BC

(b) Port specification.

Fig. 2. Data types and ports for Blockchain architectures.

4.2 Component Types

As described in Sect. 2, the components involved in a Blockchain architecture are
called nodes. In the following, we first describe the syntactic interface of such
a node component. Then, we introduce some auxiliary definitions for nodes.
Finally, we provide a set of characteristic properties for a node’s behavior.

Interfaces. The architecture diagram depicted in Fig. 3 is parameterized by
a number of confirmation blocks cb and specifies the syntactic interface of
Blockchain nodes. Actually, the diagram also contains a graphical representation
of a connection constraint as well as the definition of three auxiliary definitions
for nodes. For now, we may just ignore these additional aspects and focus on the
description of the interface. We will, however, come back to the auxiliary defini-
tions in the next section and we will discuss the connection constraint later on
in Sect. 4.3.

Diagram Blockchain〈cb : NAT〉

Node〈honest : bool〉
bc : 〈B〉BC
mining : boolpin pout

�ndhn ,nd ′
hn′ : hn ∧ hn ′	 var hn : Node[honest]

dn : Node[¬honest]

PoW def= LEAST x : ∀hn : hn #hn.bc≤x

hmining def= ∃hn : hn ∧ hn.mining

dmining def= ∃dn : dn ∧ dn.mining

Fig. 3. Architecture diagram for Blockchain architectures.

Towards Verified Blockchain Architectures 211

Recall that a node in a Blockchain may either be honest or dishonest. Thus,
a node is parameterized by a boolean value honest , which means that every
component of type node is associated with a boolean value, which determines
its trustworthiness. In addition, a node has two state variables: variable bc keeps
a local copy of the blockchain and variable mining signals the mining of a new
block. Finally, a node may exchange blockchains via its input port pin and output
port pout .

Auxiliary Definitions. To support subsequent development, the right hand
side of Fig. 3 introduces three auxiliary definitions for nodes: honest proof-of-
work and honest/dishonest mining.

Honest Proof-of-Work. Honest proof-of-work (PoW) represents the maximal
proof-of-work, currently available in the honest community. Since proof-of-work
corresponds to the length of a blockchain (Sect. 2), honest proof-of-work is
defined as the least upper bound for the length of honest blockchains, i.e.
blockchains of active (hn) and honest (Node[honest]) nodes. Note the use of
the definite description operator LEAST to denote the least element x which
satisfies a certain condition.

Honest and Dishonest Mining. Honest mining (hmining) is a predicate to
denote the successful mining by some honest node. Similarly, dishonest mining
(dmining) signals the mining by some dishonest node. Both predicates are inter-
preted over an architecture state and require the existence of a honest/dishonest
node, which currently finished mining. Honest and dishonest mining play an
important role for the formalization of a fundamental assumption for Blockchain
architectures later on.

Behavior. The behavior of nodes is formalized in terms of behavior trace asser-
tions (described in Sect. 3).

Honest Nodes. The behavior of honest nodes is specified in Fig. 4 (with ©P and
�P we denote taht P is true in the next state or in all future states, respec-
tively). First, we introduce several variables to denote single blocks (b) and
blockchains (c and c′). Note the distinction between “flexible” and “rigid” vari-
ables: while “flexible” variables may be newly interpreted at each point in time,
“rigid” variables keep their value over time. Then, we require three assertions
for a honest node’s behavior: Eq. (3) requires that a new node is initialized by
the empty blockchain while Eq. (4) requires that every honest node always for-
wards a copy of its local blockchain to the network through its output port pout .
Equation (5) formalizes the consensus rule for honest nodes, which (according to
Sect. 2) requires that a honest node always takes the blockchain with maximal
proof-of-work as the current one, i.e, if a honest node receives a blockchain on
its input with more proof-of-work than its own blockchain, then it will accept

212 D. Marmsoler

that blockchain as the current one. Its formalization consists of two parts: The
antecedent characterizes the blockchain taken by a honest node:

c =

{
MAX (pin) if ∃c′ ∈ pin : #c′ > #bc,
bc else.

Since the proof-of-work for a blockchain is given by its length, the property
fixes a blockchain c, which is either a maximal blockchain from its input port
pin (for the case that it is strictly longer than its own blockchain), or its own
blockchain bc (for the case that no blockchain from its input is longer than its
own blockchain). The consequent formalizes the mining process:

©(¬mining ∧ bc = c ∨ mining ∧ ∃b : bc = c@b
)
.

Thereby, a honest node may either mine a new block (mining), append it to c
and take the resulting chain as its current blockchain bc, or it may not mine any
new block (¬mining) and just set c as its current blockchain bc.

Fig. 4. Specification of behavior for honest nodes.

Dishonest Nodes. The attacker model is given by the specification of the behav-
ior for dishonest nodes in Fig. 5. Similar as for honest nodes, Eq. (6) requires
that a new node is initialized by the empty blockchain. Additional behavior is
characterized by Eq. (7). Note that, compared to honest nodes, dishonest nodes
may not follow the consensus rules. Thus, while honest nodes always take the
blockchain with the most proof-of-work as their current blockchain, dishonest
nodes may take every blockchain from its input as their current one. Moreover,
in contrast to honest nodes, dishonest nodes may also drop elements from a
blockchain, thus trying to modify a blockchain’s history. The formalization con-
sists of two parts. The antecedent first characterizes a blockchain c:

c ∈ (pin ∪ {bc})

Towards Verified Blockchain Architectures 213

The consequent is similar to the one for honest nodes:

©(¬mining ∧ bc � c ∨ mining ∧ ∃b : bc = c@b
)

Note that, due to computing restrictions, even dishonest nodes may at most
mine one single block at a time. Thus, the mining case is indeed the same as
for honest nodes. The difference, however, comes with the case in which no new
block is mined. While, for such a case, honest nodes are required to take c as
their current blockchain, dishonest nodes may take an arbitrary prefix of c as
their current blockchain.

Fig. 5. Specification of behavior for dishonest nodes.

4.3 Architectural Constraints

Architectural constraints restrict activation and deactivation of components and
connections between component ports [7,12]. They are mainly formulated in
terms of architecture trace assertions, i.e., linear temporal logic formulæ, for-
mulated over component ports1. Certain constraints, however, can be expressed
more easily in a graphical manner, by annotating the pattern’s architecture dia-
gram. In the following, we first discuss connection constraints for Blockchain
architectures. Then, we present some basic activation constraints for such archi-
tectures. Finally, we conclude the section with a description of a fundamental
constraint for Blockchain architectures, which is essential to guarantee persis-
tence of blockchain entries.

Connection Constraints. Connection constraints restrict connections
between component ports and therefore they affect the topology of an architec-
ture. For our pattern of Blockchain architectures, we require a single connection
constraint, which is expressed graphically by an annotation of the architecture
diagram, depicted in Fig. 3. The dashed connection between a nodes input and
output ports expresses a conditional connection between ports pout and pin of

1 Architecture trace assertions are summarized in Sect. 3.

214 D. Marmsoler

two (possible different) components of type node. The minimal condition for the
connection to happen is expressed by the annotation

�ndhn ,nd ′
hn′ : hn ∧ hn ′�.

The condition essentially requires the ports to be connected, whenever two com-
ponents are honest . Roughly speaking, the constraint requires that every honest
node is connected to every other honest node of the network. While this con-
straint is indeed a strong requirement, it is necessary to guarantee persistence
of blockchain entries.

Fig. 6. Basic activation constraints for Blockchain architectures.

Basic Activation Constraints. Activation constraints affect the activation
and deactivation of components of a certain type. We require four basic activation
constraints for Blockchain architectures, summarized in Fig. 6 (with ©– P we
denote that P was true in the previous state) and explained in more detail in
the following. Finite number of active nodes. Our first activation property for
Blockchain architectures is more of technical nature and restricts the number of
active components at each point in time. By Eq. (8), we require that at each point
in time, only a finite number of node components can be active. The property
should be satisfied by every architecture found in practice. However, it is needed
to guarantee that at every point in time, a node component receives only a finite
number of blockchains which, in turn, is required to guarantee the existence of
a maximal blockchain for a component’s input port.

Keeping the Honest Blockchain. The second activation property we require for
Blockchain architectures is needed to guarantee that the honest blockchain, i.e.,
the blockchain accepted by honest nodes as the “correct” one, is not lost. It is
formalized by Eq. (9) and requires that at every point in time, there exists an

Towards Verified Blockchain Architectures 215

active and honest node, which stays active for at least one time step. Thus, it is
guaranteed that the current honest blockchain is stored by the honest network
and does not get lost.

Mining on Most Recent Blockchain. Another basic activation property for
Blockchain architectures is needed to ensure that the honest network indeed
collaborates in the mining process. The property is formalized by Eq. (10) using
the previous operator: it requires that whenever a honest node is mining a new
block, this node was active at the time point right before the mining happened.
This ensures that the node had indeed access to the most recent version of the
honest blockchain and works on extending this version instead of an older one.

Closed Architecture. The last basic activation property for Blockchain architec-
tures requires such an architecture to be closed. Equation (11) formalizes the
property and requires that for every blockchain available at the input of any
active node component at any point in time, there exists a corresponding active
node component which provides the blockchain at its output. In other words, the
property guarantees that every blockchain available in the architecture was build
up by the network via the mining process and not injected from the outside.

A Fundamental Assumption for Blockchain Architectures. In the fol-
lowing section, we present a fundamental constraint for Blockchain architectures.
Since its specification requires to express mining frequencies, we first introduce
an operator to express such frequencies in LTL. The operator can be used to
express statements of the form: “for every time span in which at least x states
can be observed which satisfy a certain property ϕ, at least y states can be
observed to satisfy a certain property ϕ′”.

Definition 1 (Weak until for relative frequencies). A trace t satisfies
ϕ �x�W �y� ϕ′, for state predicates ϕ and ϕ′, at time point n, iff

∃n′ ≥ n : cc(t, n, n′, ϕ′) ≥ y ∧ (∀n ≤ i < n′ : cc(t, n, i, ϕ) ≤ x)
∨ (∀n′ ≥ n : cc(t, n, n′, ϕ) ≤ x),

with cc(t, n, n′, p)
def
= |{i | i > n ∧ i ≤ n′ ∧ p(t(i))}|.

Fig. 7. Fundamental assumption for Blockchain architectures.

In Fig. 7 we use the newly introduced operator to formalize a fundamen-
tal requirement for Blockchain architectures. Roughly speaking, the property

216 D. Marmsoler

requires that for every time span in which we can observe a number of dishonest
minings which is greater or equal to the number of confirmation blocks cb, then
we can also observe a number of honest minings which is greater than the num-
ber of confirmation blocks. Note that this is an important requirement needed
to guarantee persistence of blockchain entries.

5 Verifying Blockchain Architectures

We verified an important property for Blockchain architectures which ensures
persistence of blockchain entries.

5.1 Persistence of Blockchain Entries

As described in the introduction, Blockchain architectures were invented to solve
the double spend problem in a distributed peer-to-peer network. In order to do
so, blockchain entries, once accepted by the network, must be resistant to future
modifications. This property is summarized by the following theorem:

Theorem 1 (Persistence of blockchain entries). In a Blockchain architec-
ture, the entries of honest blockchains, which are confirmed by a number of blocks
greater or equal to the number of confirmation blocks, are resistant to future
modifications.

The theorem is formally specified by the architectural assertion depicted in Fig. 8
(with �– P we denote that P was true in all previous states). To this end, sbc
denotes a blockchain which contains the entries supposed to be persistent and
Eqs. (13)–(16) characterize a time point ns, for which the property actually holds.

Fig. 8. Specification of persistence property for Blockchain architectures.

Towards Verified Blockchain Architectures 217

Equation (13) requires that sbc is indeed a prefix of the blockchain of every
honest node hn ′ at hn ′’s first activation after ns. It basically ensures that the
honest network is initialized with blockchains extending sbc.

Equation (14) requires the proof-of-work at time point ns to be greater or equal
to the length of sbc, increased by the number of confirmation blocks cb. This
equation is required to provide the honest network with some lead over a
potential attacker, which might want to change sbc. Note, however, that the
assumption is indeed feasible, since Theorem 1 ensures persistence only of
entries which were confirmed by cb number of blocks.

Equation (15) requires the length of the blockchain of every active and dishonest
node dn to be less than the length of sbc. Together with Eq. (16), this equation
ensures that a potential attacker did not prepare a “false” blockchain before
time point ns, which he could then use later on to cheat the honest network.

Equation (16) requires for every node’s blockchain nd .bc, at every time point
before ns, that sbc is either a prefix of nd .bc or that the length of nd .bc is
smaller than the length of sbc.

For every time point ns, for which the above conditions hold, the property
depicted in Fig. 8 guarantees that sbc will always be a prefix of every honest
node’s blockchain (formalized by Eq. (17)).

5.2 Verification Effort

The pattern’s specification (as presented in Sect. 4) was formalized in three differ-
ent Isabelle/HOL theories, which are available via the Archive of Formal Proofs
in [18]:

– a theory Auxiliary, which contains some auxiliary results, such as custom
induction rules;

– a theory RF_LTL, which contains a calculus for Blockchain architectures, based
on counting LTL;

– a theory Blockchain, which is the main theory containing the actual formal-
ization of the pattern.

Theorem 1 was then formalized as theorem blockchain-save in theory
Blockchain and mechanically verified in Isabelle. Its proof consists of roughly
3 500 lines of Isabelle/Isar code and required an effort of roughly three person
months (by a person with around two years of experience in using Isabelle).

6 Discussion

We admit that the specification presented in Sect. 4 is somehow idealized and
some of the assumptions may not always hold. Thus, to better understand when
the results can be applied, we discuss some of these assumptions in more detail.

218 D. Marmsoler

Cryptographic Aspects. Cryptography is an important aspect when it comes to
Blockchain. For example, some Blockchain implementations make extensive use
of Merkle tree’s [19] to ensure integrity of blockchains. With the work presented
in this paper, we abstracted from cryptographic aspects. Rather, we assumed
integrity of blockchains and focused on the problem of building consensus in a
way to resist double spend attacks. Of course, flaws in the implementation of the
integrity mechanism might lead to situations in which the results presented in
this paper are not valid anymore. Thus, for such applications, one first needs to
verify correctness of the employed integrity mechanism. Only then, our results
can be applied to support the verification.

Probabilistic Aspects. In Blockchain, the process of mining new blocks is usually
of probabilistic nature and thus, it is actually difficult to provide any “hard”
guarantees. The reason why we could provide such a guarantee here, is the prob-
abilistic nature of the assumption provided by Eq. (12). In a real-world setting,
the assumption is usually only valid with a certain probability. Thus, also the
corresponding guarantee, provided by Theorem 1, is only valid with a certain
probability. Hence, to use the results presented in this paper for a concrete set-
ting, one first needs to verify (or estimate) the probability of Eq. (12) to be true
in this setting. This is then also the probability of Theorem 1 to be true in this
setting.

Broadcast. Another limitation of the specification presented in this paper is
the connection constraint provided by Fig. 3, which requires honest nodes to
be always connected. While this may seem too strict, it indeed reflects a real
problem in Blockchain networks, such as Bitcoin, in which “resilience to the
double spending attack relies strongly on the assumption that Bitcoin’s P2P
network is connected, and that honest nodes are able to communicate” [20]. Thus,
to ensure that Theorem 1 holds, and thus the corresponding Blockchain network
indeed resists double spend attacks, the network needs to employ mechanisms
to ensure a high degree of connectivity for the honest sub-network.

The Attacker Model. The attacker model presented in Fig. 5 does not allow the
instantaneous modification of blocks within a blockchain. Rather, modifying an
entry can only be done by first removing corresponding entries from the top of
the blockchain and then to add new blocks over time. This assumption is based
on two fundamental design decisions inherent in bitcoin-like Blockchain appli-
cations: First, as already discussed above, such Blockchain applications usually
employ Merkle tree’s to ensure integrity of blockchains. Second, adding new
blocks to a blockchain is done through mining, which usually requires some time
and cannot happen instantaneous.

7 Related Work

This paper provides a formalization of Blockchain architectures and a mecha-
nized proof of an important safety property regarding integrity of blockchain

Towards Verified Blockchain Architectures 219

entries. Thus, related work can be found in formalizations of Blockchain archi-
tectures in general, as well as verification of consensus algorithms, specifically.

7.1 Formalizations of Blockchain Concepts

There has been some work in formalizing and investigating different aspects of
Blockchain technologies. A lot of research in this area is devoted to the formaliza-
tion of concrete technological implementations. The Ethereum Virtual Machine
and its contract language Solidity, for example, are formalized in Coq [21] and
Isabelle/HOL [22], respectively. Another interesting branch of research in this
area concerns the study of so-called smart contracts. Such contracts can be
used to associate transactions with code, which execution is triggered by certain
events. A proposal to formalize such contracts is provided by Bhargavan [23].
Approaches for their verification were made based on behavior models [24], Finite
State Machines [25], or interactive theorem proving [26].

Relation to Our Work: The studies described so far report on the formalization
of various types of concepts found in Blockchain technology. Thus, they provide
many insights into the formalization and even mechanization of various concepts
used in Blockchain. The main difference to our work lies in the scope of these
studies: while they focus on the details of these different concepts, we try to
integrate them at a more abstract level in a so-called Blockchain architecture.
One exception here is Pirlea’s recent work [27] which goes in a similar direction
to our work. The authors try to come up with an abstract model of Blockchain,
which we would consider a Blockchain architecture, in Coq. What is interesting
is that they identify important aspects of Blockchain architectures and provide
abstract notions for them. Specifically, they introduce an abstract notion of
proof object and a so-called validator acceptance function, which is used to
ensure validity of a block w.r.t. a specific proof object. Moreover, they abstract
from the concrete consensus agreement, called Fork Choice Rule in an abstract
function, which they require to form a total order between blockchains. These
abstractions allow their model to be applied to various scenarios. While, with our
work, we follow a similar approach, there are some notable differences: (i) First,
with our implementation in Isabelle/HOL we provide an alternative framework
for Isabelle/HOL users. (ii) A more important difference, however, concerns the
scope of the proved property: In their work, the authors verified that a Blockchain
architecture, in a consistent state, will eventually reach a consistent state again.
In our work, we were rather interested in blockchain integrity, i.e., that additions
to the blockchain are guaranteed to be persistent. (iii) Finally, in their work, they
do not consider possible attackers. As shown in this work, these nodes may have
different behavior and we were interested whether this could influence integrity.

7.2 Verification of Consensus Algorithms

Consensus mechanisms for Blockchain architectures are actually an instance
of more traditional, distributed fault tolerance protocols. Such protocols were

220 D. Marmsoler

intensively studied over the last decades and mechanical verifications exist, for
example, for Paxos [28,29], Raft [30,31], and the classical Two-Phase Com-
mit [32]. More recently, work in this area focuses on the verification of more
Blockchain-specific protocols. Kiayias [33], for example, proposes a verified con-
sensus protocol based on proof-of-stake.

Relation to Our Work: The work discussed so far provides formalizations of
various protocols, useful for the implementation of distributed trust. The pattern
proposed and verified in this paper, however, uses a mechanism called “proof-
of-work”. Thus, approaches using proof-of-work are most closely related to our
work and are discussed in more detail. The idea of applying proof-of-work to the
problem of establishing distributed trust goes back to Nakamoto in its original
bitcoin paper [1]. Here the author provides a mathematical description of the
theory behind Blockchain technology and provides probabilistic bounds about
certain security concerns. Garay [34,35] and Pass [36] elaborate on these ideas
and identify and verify two properties of proof-of-work: common prefix and chain
quality. The former is actually similar to Theorem1 proved in this paper. While
these works provide similar results to ours, there are two notable differences
to our work: (i) First, the above approaches exclusively focus on probabilistic
boundaries. While such boundaries are important in the area of Blockchain, we
try to identify the preconditions which are required in order to establish these
properties. (ii) Second, the above works were not mechanized, so far.

8 Conclusion

In this paper, we reported on the outcome of applying FACTum to specify a
variant of Blockchain architectures [1] and verify that blockchains are guaranteed
to be persistent for architectures implementing the specification:

– The blockchain itself is modeled as a parametric list over blocks.
– Nodes represent the types of components. They either keep a blockchain and

forward copies to other nodes or they may add at most one new block through
mining. Thereby, we distinguish between two types of nodes: Honest nodes
strictly follow the consensus rules and when faced with different copies of a
blockchain, they always take the longest one (containing the most amount
of work) as the “correct” one. Dishonest nodes on the other hand, do not
necessarily follow the consensus rules and may also remove blocks from any
blockchain they receive, in order to attempt to modify a certain entry.

– A Blockchain architecture is parameterized by a number of confirmation
blocks, i.e., a value which determines the number of blocks which need to
be mined on top of a block in order to consider this block to be save.

We also propose a formalization of a desired safety property: persistence of
blockchain entries. Finally, we (mechanically) verified the property from the
specification.

Towards Verified Blockchain Architectures 221

Throughout the paper, we describe 11 characteristic properties for Blockchain
architectures and one fundamental assumption about relative mining frequen-
cies, which guarantee persistence of blockchain entries. The properties can be
used to support the verification of Blockchain architectures. To this end, an
architecture specification is verified to satisfy the properties and in return, per-
sistence of blockchain entries is guaranteed by Theorem 1. For the case that nodes
are implemented by means of statemachines, this step could even be automated
using model checking techniques. In addition, the paper presents a case study
about the use of FACTum for the verification of dynamic architectures. Thereby
it reveals interesting insights to direct future research. On the positive side, it
shows feasibility of verifying properties for dynamically evolving architectures,
even if we need to reason about unbounded number of components. On the neg-
ative side, we discovered two main weaknesses: Since the approach is based on
interactive theorem proving, the effort required to verify an architecture is still
relatively high. For example, the verification of the property presented in this
paper required a total effort of roughly three person months. Another weak-
ness concerns the usability of the approach in practice since verification requires
expertise in interactive theorem proving, which is not always available.

Based on the outcome of this study, we derive two directions for future
work: (i) One direction should focus on extending the preliminary analysis of
Blockchain architectures presented in this paper. To this end it should mainly
address the limitations identified in Sect. 6: partial broadcasts, cryptographic
aspects, explicit consideration of probabilities. (ii) Another direction should
address to extend the FACTum approach based on the lessons learned from
this case study. In particular possibilities for proof automation and proof mod-
eling should be investigated.

Acknowledgments. We would like to thank Manfred Broy, Alexander Knapp, Max-
imilian Junker, and Andreas Lochbihler for their comments and helpful suggestions on
earlier versions of this paper. In addition, we are grateful to all the anonymous review-
ers of FORTE 2019 for suggesting many improvements to the presentation. Parts of
the work on which we report in this paper was funded by the German Federal Ministry
of Education and Research (BMBF) under grant no. 01Is16043A.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:

Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4_10

3. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: International Conference on
Open and Big Data (OBD), pp. 25–30. IEEE (2016)

4. Chavez-Dreyfuss, G.: Sweden tests blockchain technology for land reg-
istry. http://web.archive.org/web/20161024065806/www.reuters.com/article/us-
sweden-blockchain-idUSKCN0Z22KV

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
http://web.archive.org/web/20161024065806/www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
http://web.archive.org/web/20161024065806/www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV

222 D. Marmsoler

5. Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

6. Yurcan, B.: How blockchain fits into the future of digital identity. http://web.
archive.org/web/20170119054131/https://www.americanbanker.com/news/how-
blockchain-fits-into-the-future-of-digital-identity

7. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures using
configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 235–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4_14

8. Marmsoler, D.: Hierarchical specification and verification of architectural design
patterns. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 149–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1_9

9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

10. The Bitcoin Community: The bitcoin wiki. http://web.archive.org/web/
20181106124036/https://en.bitcoin.it/wiki/Confirmation

11. Marmsoler, D., Gidey, H.K.: FACTum studio: a tool for the axiomatic specification
and verification of architectural design patterns. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 279–287. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7_14

12. Marmsoler, D., Gleirscher, M.: On activation, connection, and behavior in dynamic
architectures. Sci. Ann. Comput. Sci. 26(2), 187–248 (2016)

13. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

14. Marmsoler, D.: A framework for interactive verification of architectural design
patterns in Isabelle/HOL. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol.
11232, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02450-5_15

15. Wirsing, M.: Algebraic specification. In: van Leeuwen, J., (ed.): Handbook of The-
oretical Computer Science, vol. B, pp. 675–788. MIT Press, Cambridge, MA, USA
(1990)

16. Marmsoler, D.: Axiomatic specification and interactive verification of architec-
tural design patterns in FACTum. Dissertation, Technische Universität München,
München (2019)

17. Marmsoler, D.: Towards a calculus for dynamic architectures. In: Hung, D.V.,
Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 79–99. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-67729-3_6

18. Marmsoler, D.: A theory of architectural design patterns. Archive of Formal Proofs,
March 2018. Formal proof development. http://isa-afp.org/entries/Architectural_
Design_Patterns.html

19. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

20. Zohar, A.: Bitcoin: under the hood. Commun. ACM 58(9), 104–113 (2015)
21. Hirai, Y.: Ethereum virtual machine for Coq (v0. 0.2). Published online on, 5

March 2017
22. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.

In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://web.archive.org/web/20181106124036/https://en.bitcoin.it/wiki/Confirmation
http://web.archive.org/web/20181106124036/https://en.bitcoin.it/wiki/Confirmation
https://doi.org/10.1007/978-3-030-02146-7_14
https://doi.org/10.1007/978-3-030-02146-7_14
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-319-67729-3_6
http://isa-afp.org/entries/Architectural_Design_Patterns.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-319-70278-0_33

Towards Verified Blockchain Architectures 223

23. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

24. Abdellatif, T., Brousmiche, K.: Formal verification of smart contracts based on
users and blockchain behaviors models. In: 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1–5, February 2018

25. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6_11

26. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 66–77. ACM
(2018)

27. Pîrlea, G., Sergey, I.: Mechanising blockchain consensus. In: Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
78–90. ACM (2018)

28. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSYNC: a partially synchronous lan-
guage for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, pp. 400–415. ACM, New York (2016)

29. Jaskelioff, M., Merz, S.: Proving the correctness of disk Paxos. The Archive of
Formal Proofs (2005). http://afp.sf.net/entries/DiskPaxos.shtml

30. Wilcox, J.R., et al.: Verdi: a framework for formally verifying distributed system
implementations. In: Proceedings of the 2015 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), Portland, OR (2015)

31. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the raft consensus protocol. In: Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.
154–165. ACM (2016)

32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL), 28 (2017)

33. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

34. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_10

35. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_10

36. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11
http://afp.sf.net/entries/DiskPaxos.shtml
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

	Towards Verified Blockchain Architectures: A Case Study on Interactive Architecture Verification
	1 Introduction
	2 Blockchain Architectures
	3 Factum
	3.1 System Model
	3.2 Specifying Dynamic Architectures
	3.3 Verifying Dynamic Architectures

	4 Formalizing Blockchain Architectures
	4.1 Data Types and Ports
	4.2 Component Types
	4.3 Architectural Constraints

	5 Verifying Blockchain Architectures
	5.1 Persistence of Blockchain Entries
	5.2 Verification Effort

	6 Discussion
	7 Related Work
	7.1 Formalizations of Blockchain Concepts
	7.2 Verification of Consensus Algorithms

	8 Conclusion
	References

