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Abstract. Refinement checking plays an important role in system veri-
fication. This means that the correctness of the system is established by
showing a refinement relation between two models; one for the imple-
mentation and one for the specification. In [21], Wang et al. describe
an algorithm based on antichains for efficiently deciding stable failures
refinement and failures-divergences refinement. We identify several issues
pertaining to the correctness and performance in these algorithms and
propose new, correct, antichain-based algorithms. Using a number of
experiments we show that our algorithms outperform the original ones
in terms of running time and memory usage.

1 Introduction

Refinement is often an integral part of a mature engineering methodology for
designing a (software) system in a stepwise manner. It allows one to start from
a high-level specification that describes the permitted and desired behaviours
of a system and arrive at a detailed implementation that behaves as originally
specified. While in many settings, refinement is often used rather informally, it
forms the mathematical cornerstone in the theoretical development of the process
algebra CSP (Communicating Sequential Processes) by Hoare [12,17,18].

This formal view on refinement—as a mathematical relation between a spec-
ification and its implementation—has been used successfully in industrial set-
tings [10], and it has been incorporated in commercial Formal Model-Driven
Engineering tools such as Dezyne [3]. In such settings there are a variety of
refinement relations, each with their own properties. In particular, each notion
of refinement offers specific guarantees on the (types of) behavioural properties
of the specification that carry over to correct implementations. For the theory
of CSP, the—arguably—most prominent refinement relations are stable failures
refinement [2,18] and failures-divergences refinement [18]. Both are implemented
in the tool FDR [6] for specifying and analysing CSP processes.

Both stable failures refinement and failures-divergences refinement are com-
putationally hard problems; deciding whether there is a refinement relation
between an implementation and a specification, both represented by CSP pro-
cesses or labelled transition systems, is PSPACE-hard [13]. In practice, however,
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tools such as FDR are able to work with quite large state spaces. The basic algo-
rithm for deciding a stable failures refinement or a failures-divergences refinement
between an implementation and a specification relies on a normalisation of the
specification. This normalisation is achieved by a subset construction that is used
to obtain a deterministic transition system which represents the specification.

As observed in [21] and inspired by successes reported, e.g., in [1], antichain
techniques can be exploited to improve on the performance of refinement check-
ing algorithms. Unfortunately, a closer inspection of the results and algorithms
in [21], reveals several issues. First, the definitions of stable failures refinement
and failures-divergences refinement used in [21] do not match the definitions
of [2,18], nor do they seem to match known relations from the literature [8].

Second, as we demonstrate in Example 2 in this paper, the results [21, The-
orems 2 and 3] claiming correctness of their algorithms for deciding both refine-
ment relations are incorrect. We do note that their algorithm for checking stable
failures refinement correctly decides the refinement relation defined by [2,18].

Third, unlike claimed by the authors in [21], their algorithms violate the
antichain property as we demonstrate in Example 4. Fourth, their algorithms
suffer from severely degraded performance due to suboptimal decisions made
when designing the algorithms, leading to an overhead of a factor |Σ|, where Σ
is the set of events. When using a FIFO queue to realise a breadth-first search
strategy instead of the stack used by default for a depth-first search this factor is
even greater, viz. |Σ||S|, where S is the set of states of the implementation, see
our Example 3. Note that there are compelling reasons for using a breadth-first
strategy [17]; e.g., the conciseness of counterexamples to refinement.

The contributions of the current paper are as follows. Apart from pointing
out the issues in [21], we propose new antichain-based algorithms for deciding
stable failures refinement and failures-divergences refinement and we prove their
correctness. We compare the performance of the stable failures refinement algo-
rithm of [21] to ours. Due to the flaw in their algorithm for checking failures-
divergences refinement, a comparison for this refinement relation makes little
sense. Our results indicate a small improvement in run time performance for
practical models when using depth-first search, whereas our experiments using
breadth-first search illustrate that decision problems intractable using the algo-
rithm of [21] generally become quite easy using our algorithm.

The remainder of this paper is organised as follows. We recall the necessary
mathematics in Sect. 2 and we describe the essence of refinement checking algo-
rithms in Sect. 3. In Sect. 4, we analyse the algorithms of [21] and in Sect. 5,
we propose new antichain-based refinement algorithms, claim their correctness
and provide proof sketches. In Sect. 6, we compare the performance of our algo-
rithm to that of [21]. Full proofs of our claims can be found in a technical
report [14], which also contains additional experiments, showing that further
speed improvements can be obtained by applying divergence-preserving branch-
ing bisimulation [7] minimisation before checking refinement.
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2 Preliminaries

In this section the preliminaries of labelled transition systems, stable failures
refinement and failures-divergences refinement checking are introduced.

2.1 Labelled Transition Systems

Let Σ be a finite set of event labels that does not contain the constant τ , mod-
elling internal events.

Definition 1. A labelled transition system is a tuple L = (S, ι,Act,→) where S
is a set of states; ι ∈ S is an initial state; Act = Σ or Act = Σ ∪ {τ} is a set of
actions and → ⊆ S × Act × S is a labelled transition relation.

The following definitions are in the context of a given labelled transition system
L = (S, ι,Act,→). We typically use letters s, t, u to denote states, U, V to denote
sets of states, a to denote an arbitrary action, e to denote an arbitrary event
and σ, ρ ∈ Act∗ to denote a sequence of actions.

We adopt the following conventions and notation. Whenever (s, a, t) ∈ → ,
we write s

a−→ t; we write s
a−→ just whenever there is some t such that s

a−→ t, and
s � a−→ holds iff not s

a−→. The set of actions that can be executed in s is given by
the set enabled(s), defined as enabled(s) = {a ∈ Act | s

a−→ }. We generalise the
relation → in the usual manner to sequences of actions as follows: s

ε−→→ t holds iff
s = t, and s

aσ−−→→ t holds iff there is some u such that s
a−→ u and u

σ−→→ t. Finally,
the weak transition relation � ⊆ S × Σ∗ × S is the least relation satisfying:

– s
ε� t if there is some σ ∈ τ∗ such that s

σ−→→ t,
– if s

a−→ t then s
a� t,

– if s
ρ� t and t

σ� u then s
ρσ� u.

Definition 2. Traces, weak traces and reachable states are defined as follows:

– σ ∈ Act∗ is a trace starting in s iff s
σ−→→ t for some t. We denote the set of

all traces starting in s by traces(s), and we define traces(L) = traces(ι),
– σ ∈ Σ∗ is a weak trace starting in s iff s

σ� t for some t. The set of all
weak traces starting in s is denoted by tracesw(s), and we define tracesw(L) =
tracesw(ι),

– the set of states, reachable from s is defined as reachable(s) = {t ∈ S | ∃σ ∈
Σ∗ : s

σ� t}; we define reachable(L) = reachable(ι).

The semantics of the CSP process algebra builds on observations of failures and
divergences. A failure is a set of event labels that the system observably refuses
following an experiment on that system, i.e., after executing a weak trace on
that system.

By assumption, refusals can only be observed when the system has stabilised.
Formally, a state s is stable, denoted stable(s), if and only if s � τ−→. A divergence
can be understood as the potential inability of a system to stabilise. In effect,
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this means that a divergence is an infinite sequence of τ -actions; formally, a state
s is a diverging state, denoted div(s), if and only if there is an infinite sequence
of states si such that s

τ−→ s1
τ−→ s2

τ−→ · · · . For a set of states U , we write div(U)
iff div(s) for some s ∈ U .

Definition 3. Let s ∈ S be a stable state. The refusals of s are defined as1 the
set refusals(s) = P(Σ \ enabled(s)). For a set of (not necessarily stable) states
U , we define refusals(U) = {X ⊆ Σ | ∃s ∈ U : stable(s) ∧ X ∈ refusals(s)}.
We are now in a position to formally define the set of divergences and the set
of failures of an LTS; we here follow the standard conventions and definitions
of [4,9,18]. Note that in [14] we instead have adopted the notational conventions
of [21] to allow for an easier comparison of our results to theirs.

Definition 4. The set of all divergences of a state s, denoted by divergences(s),
is defined as {σρ ∈ Σ∗ | ∃t ∈ S : s

σ� t ∧ div(t)}. We define divergences(L) =
divergences(ι).

Observe that a divergence is not only a weak trace that can reach a diverging
state, but also any suffix of a weak trace that can reach a diverging state. This
is based on the assumption that divergences lead to chaos. In theories in which
divergences are considered chaotic, such chaos obscures all information about
the behaviours involving a diverging state; we refer to this as obscuring post-
divergences details.

Definition 5. The set of all stable failures of a state s, denoted failures(s), is
defined as {(σ,X) ∈ Σ∗×P(Σ) | ∃t ∈ S : s

σ� t∧stable(t)∧X ∈ refusals(t)}. The
set of stable failures of a state s with post-divergences details obscured, denoted
failures⊥(s), is defined as failures(s)∪{(σ,X) ∈ Σ∗ ×P(Σ) | σ ∈ divergences(s)}.
The two standard models of CSP are the stable failures model and the failures-
divergences model. The refinement relations on LTSs, induced by these models,
are called the stable failures refinement and the failures-divergences refinement.
We remark that the LTS that is refined is commonly referred to as the specifi-
cation, whereas the LTS that refines the specification is often referred to as the
implementation.

Definition 6. Let L1 and L2 be two LTSs. We say that L2 is a stable failures
refinement of L1, denoted by L1 	sfr L2, iff tracesw(L2) ⊆ tracesw(L1) and
failures(L2) ⊆ failures(L1). LTS L2 is a failures-divergences refinement of L1,
denoted by L1 	fdr L2, iff failures⊥(L2) ⊆ failures⊥(L1) and divergences(L2) ⊆
divergences(L1).

1 We remark that [21] states the following, non-standard, definition: refusals(s) = {X |
∃s′ ∈ S : s

ε� s′ ∧ stable(s′) ∧ X ⊆ Σ \ enabled(s′)}, suggesting that refusals are also
defined for unstable states. As we discuss in Sect. 4, this has consequences for the
performance of the algorithms for deciding the various refinement relations.
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Remark 1. The notions defined above appear in different formulations in [21].
Their stable failures refinement omits the clause for weak trace inclusion, and
their failures-divergences refinement replaces failures⊥ with failures. This yields
refinement relations different from the standard ones and neither relation seems
to appear in the literature [8].

We finish this section with a small example, illustrating the difference between
failures-divergences refinement and stable failures refinement.

Example 1. Consider the two transition systems (named after their initial states
s0 and t0) depicted below.

s0s1 s2 t0t1 t2

a

b

a
τ b

a

b

a
a b

Observe that we have s0 	fdr t0, but not s0 	sfr t0. The latter fails because aa is
a trace of t0, but not of s0; the same goes for the stable failure (a, {b}) of t0. The
failures-divergences refinement holds because the divergent trace a obfuscates
the observations of traces of the form aa+: since divergence is chaos, anything
is permitted. We do have t0 	sfr s0 but not t0 	fdr s0. The latter fails because
of the divergent trace a not being present in t0. Stable failures refinement holds
because all traces and stable failure pairs of s0 are included in those of t0; in
particular, the instability of state s1 causes s1 not to contribute to the stable
failures set of s0. 
�

3 Refinement Checking

In general, the set of failures and divergences of an LTS can be infinite. Therefore,
checking inclusion of the set of failures or divergences is not viable. In [17,18],
an algorithm to decide refinement between two labelled transition systems is
sketched. As a preprocessing to this algorithm, all diverging states in both LTSs
are marked. The algorithm then relies on exploring the cartesian product of
the normal form representation of the specification, i.e., the LTS that is to be
refined, and the implementation. We remark that what we refer to as cartesian
product, defined in [17], is called a synchronous product in [21]. For each pair in
the product it checks whether it can locally decide non-refinement of the imple-
mentation state with the normal form state. A pair for which non-refinement
holds is referred to as a witness.

Following [18,21] and specifically the terminology of [17], we formalise the
cartesian product between LTSs that is explored by the procedure.

Definition 7. Let L1 = (S1, ι1, Σ,→1) and L2 = (S2, ι2,Act,→2) be LTSs. The
cartesian product of L1 and L2 is the LTS L1 × L2 = (S, ι,Act,→) satisfying
S = S1 × S2; ι = (ι1, ι2); and the transition relation → is the smallest relation
satisfying the following conditions for all s1, t1 ∈ S1, and s2, t2 ∈ S2 and e ∈ Σ:
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– If s2
τ−→2 t2 then (s1, s2)

τ−→ (s1, t2),
– If s1

e−→1 t1 and s2
e−→2 t2 then (s1, s2)

e−→ (t1, t2).

We remark that Σ is used in L1 to indicate that it has no transitions labelled
with τ , whereas, L2 might contain τ -transitions. A key property of the cartesian
product, provable by induction on the length of sequence σ, is the following:

Proposition 1. Let L1 = (S1, ι1, Σ,→1) and L2 = (S2, ι2,Act,→2) be LTSs,
and let L1 × L2 = (S, ι,Act,→) be their cartesian product. For all s1 ∈ S1,
s2 ∈ S2 and all σ ∈ Act∗, ι

σ� (s1, s2) iff ι1
σ�1 s1 and ι2

σ�2 s2.

The normal form LTS is obtained using a typical subset construction as is com-
mon when determinising a transition system. Although all states in an LTS in
normal form are stable, the states of the original LTS comprising a normal form
state may not be. To avoid confusion when we wish to reason about the stability
and divergences of states U in the LTS L underlying a normal form LTS, rather
than the state of the normal form LTS, we write [[U ]]L to indicate we refer to the
set of states in L. Stable failures refinement and failures-divergences refinement
require different normal forms.

Definition 8. Let L = (S, ι,Act,→) be a labelled transition system. Set S′ =
P(S), ι′ = {s ∈ S | ι

ε� s}. The stable failures refinement normal form of L
is the LTS normsfr(L) = (S′, ι′, Σ,→′), where →′ is defined as U

e−→′ V if and
only if V = {t ∈ S | ∃s ∈ U : s

e� t} for all U, V ⊆ S and e ∈ Σ. The failures-
divergences refinement normal form of L is the LTS normfdr(L) = (S′, ι′, Σ,→′′)
where →′′ is defined as U

e−→′′ V if and only if U
e−→′ V and not div([[U ]]L).

We remark that we deliberately permit the empty set to be a state in a normal
form LTS. Clearly, a normal form LTS satisfies ∅ e−→ ∅ for all actions e. Moreover,
note that a normal form LTS is deterministic; in particular, for all σ, and states
U, T, V of a normal form LTS U

σ−→→ T and U
σ−→→ V implies T = V .

The structure explored by the refinement checking procedure of [17,18] is
essentially the cartesian product normsfr(L1)×L2 in case of stable failures refine-
ment, or normfdr(L1) × L2 in case of failures-divergences refinement. For these
structures the related witnesses, where the reachability of such a witness indi-
cates non-refinement, are then as follows:

Definition 9. Let L1 and L2 be LTSs.

– A state (U, s) in normsfr(L1) × L2 is called an SFR-witness iff U = ∅; or
stable(s) and not refusals(s) ⊆ refusals([[U ]]L1),

– a state (U, s) in normfdr(L1)×L2 is called an FDR-witness iff not div([[U ]]L1),
and either div(s); or U = ∅; or stable(s) and not refusals(s) ⊆ refusals([[U ]]L1).

The following statement formalises the insights of [17]; both results follow from
Proposition 1 and the characteristics of the normal form LTSs.

Theorem 1. Let L1 and L2 be LTSs. Then:

– L1 	sfr L2 iff no SFR-witness is reachable in normsfr(L1) × L2,
– L1 	fdr L2 iff no FDR-witness is reachable in normfdr(L1) × L2.
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4 Antichain Algorithms for Refinement Checking

The normalisation of the specification LTS in refinement checking dominates the
theoretical worst-case run time complexity of refinement checking, which itself
is a PSPACE-hard problem. In practice, however, refinement checking can often
be done quite effectively. Nevertheless, as observed in [21], there is room for
improvement by exploiting an antichain approach to keep the size of the normal
form LTS of the specification in check.

An antichain is a set A ⊆ X of a partially ordered set (X,≤) in which
all distinct x, y ∈ A are incomparable: neither x ≤ y nor y ≤ x. Given a
partially ordered set (X,≤) and an antichain A, the operation � checks whether
A ‘contains’ an element x; that is, x � A holds true if and only if there is some
y ∈ A such that y ≤ x. We write Y �∀ A iff y � A for all y ∈ Y . Antichain A
can be extended by inserting an element x ∈ X, denoted A�x, which is defined
as the set {y | y = x ∨ (y ∈ A ∧ x �≤ y)}. Note that this operation only yields an
antichain whenever x �� A.

As [1,21] suggest, the state space of the cartesian product (S, ι,Act,→)
between the normal form of LTS L1 and the LTS L2 induces a partially
ordered set as follows. For (U, s), (V, t) ∈ S, define (U, s) ≤ (V, t) iff s = t and
[[U ]]L1 ⊆ [[V ]]L1 . Then the set (S,≤) is a partially ordered set. The fundamental
property underlying the reason why an antichain approach to refinement check-
ing works is expressed by the following proposition, stating that the traces of
any state (V, s) in the cartesian product can be executed from all states smaller
than (V, s). We remark that this is due to including the empty set as a state in
the normal form LTS.

Proposition 2. For all (U, s) ≤ (V, s) of a normal form LTS normsfr(L1) × L2

or normfdr(L1) × L2 and for every sequence σ ∈ Act∗ such that (V, s) σ−→→ (V ′, t),
there is some (U ′, t) such that (U, s) σ−→→ (U ′, t) and (U ′, t) ≤ (V ′, t).

The proof of this proposition proceeds by induction on the length of σ and is
routine.

The main idea of the antichain algorithm is now as follows: the set of states
of the cartesian product explored is recorded in an antichain. Whenever a new
state of the cartesian product is found that is already included in the antichain
(w.r.t. the membership test �), further exploration of that state is unnecessary,
thereby pruning the state space of the cartesian product. Note that it is not
immediate that doing so is also ‘safe’ for refusals and divergences. Algorithm 1 is
the pseudocode for checking stable failures refinement and failures-divergences
refinement as presented in [21, Algorithms 2 and 3]; we remark that we combined
these algorithms, as their check for failures-divergences refinement only requires
an additional check for divergences (enabled by the Boolean CheckDiv).
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Algorithm 1. Antichain-based refinement checking algorithm from [21]. The
algorithm is claimed to return true iff LTS L1 = (S1, ι1,Act1,→1) is refined
by L2 = (S2, ι2,Act2,→2). The refinement check conducted checks for stable
failures refinement when CheckDiv is false and failures-divergences refinement
otherwise.
1: procedure refines(L1, L2,CheckDiv)

2: let working be a stack containing a pair ({s | ι1
ε�1 s}, ι2)

3: let antichain := ∅
4: while working �= ∅ do
5: pop (spec, impl) from working
6: antichain := antichain � (spec, impl)
7: if CheckDiv and div(impl) then
8: if not div(spec) then
9: return false

10: else
11: if refusals(impl) �⊆ refusals(spec) then
12: return false
13: for impl

a−→2 impl ′ do
14: if a = τ then
15: spec′ := spec
16: else
17: spec′ := {s′ | ∃s ∈ spec : s

a�1 s′}
18: if spec′ = ∅ then
19: return false
20: if (spec′, impl ′) � antichain is not true then
21: push (spec′, impl ′) into working

22: return true

Let us first stress that the algorithm correctly decides stable failures refine-
ment but it fails to correctly decide failures-divergences refinement. Second, the
algorithm also fails to decide the non-standard relations used in [21], see also
Remark 1. All three issues are illustrated by the example below.

Example 2. Consider the four transition systems depicted below.

s0 s1 s2 t2 s3 t3

τ

a b

τ

a

a

τ

a

Let us first observe that the algorithm correctly decides that s1 	sfr s0 does
not hold, which follows from a violation of tracesw(s0) ⊆ tracesw(s1). Next,
observe that we have s0 	fdr s1, since the divergence of the root state s0 implies
chaotic behaviour of s0 and, hence, any system refines such a system. However,
Algorithm 1 returns false when CheckDiv holds.

With respect to the refinement relations defined in [21], we observe the fol-
lowing. Since s0 is not stable, we have failures(s0) = ∅ and hence failures(s0) ⊆
failures(s1). Consequently, stable failures refinement as defined in [21] should
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hold, but as we already concluded above, the algorithm returns false when
checking for s1 	sfr s0. Next, observe that the algorithm returns true when
checking for s2 	fdr s3. The reason is that for the pair ({s2}, s3), it detects
that state s3 diverges and concludes that since also the normal form state of the
specification {s2} diverges, it can terminate the iteration and return true. This is
a consequence of splitting the divergence tests over two if -statements in lines 7
and 8. According to the failures-divergences refinement of [21], however, the algo-
rithm should return false, since failures(s3) ⊆ failures(s2) fails to hold: we have
(a, {a}) ∈ failures(s3) but not (a, {a}) ∈ failures(s2). 
�
We note that the algorithm explores the cartesian product between the nor-
mal form of a specification, and an implementation in a depth-first, on-the-fly
manner. While depth-first search is typically used for detecting divergences, [17]
states a number of reasons for running the refinement check in a breadth-first
manner. A compelling argument in favour of using a breadth-first search is con-
ciseness of the counterexample in case of a non-refinement.

Algorithm 1 can be made to run in a breadth-first fashion simply by using a
FIFO queue rather than a stack as the data structure for working . However, our
implementation of this algorithm suffers from a severely degraded performance.
We can trace this back to the following three additional problems in the origi-
nal algorithm, which also are present (albeit less pronounced in practice) when
utilising a depth-first exploration:

1. The refusal check on line 11 is also performed for unstable states, which,
combined with the definition of refusals in [21] (see also our remark in Foot-
note 1 on page 4), results in a repeated, potentially expensive, search for
stable states;

2. Adding the pair (spec, impl) that is taken from working to antichain might
result in duplicate pairs in working since working is filled with all successors
of that pair in line 21, regardless of whether these pairs are already scheduled
for exploration, i.e., included in working , or not;

3. Contrary to the explicit claim in [21, Section 2.2], the set antichain is not
guaranteed to be an antichain.

The first problem is readily seen to lead to undesirable overhead. The second and
third problem are more subtle. We first illustrate the second problem: the follow-
ing pathological example shows that the algorithm stores an excessive number
of pairs in working .

Example 3. Consider the family of LTSs Lk
n = (Sn, ιn,Actk,→n) with states

Sn = {s1, . . . , sn}, event labels Actk = {e1, . . . , ek} and transitions si
ej−→n si−1

for all 1 ≤ j ≤ k, 1 < i ≤ n and ιn = sn; see also the transition system
depicted below. Note that each LTS that belongs to this family is completely
deterministic.

sn sn−1 . . . s2 s1

ek

.

.

.

e1

e1

.

.

.

ek

e1

.

.

.

ek
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Suppose one checks for refinement between an implementation and specification
both of which are given by Lk

n; i.e., we test for Lk
n 	sfr Lk

n. Then the stack
working will contain exactly i·(k−1)+1 pairs at the end of the i-th iteration
(when i ≤ n), resulting in a working stack size of O(n·k) entries. At the end of
the n-th iteration antichain contains all reachable pairs of the cartesian product,
i.e., antichain = {({sj}, sj) | 1 ≤ j ≤ n} at that point. Emptying working
after the n-th iteration will involve k antichain membership tests per entry.
Consequently, O(n·k2) antichain membership tests are required. A breadth-first
search strategy requires even more antichain membership tests, viz., O(kn). 
�
The example below illustrates the third problem of the algorithm, viz., the vio-
lation of the antichain property.

Example 4. Consider the two left-most labelled transition systems depicted
below, along with the (normal form) cartesian product (the LTS on the right).

t0

t1 t2

a
b

b

s0

s1

a b

({t0}, s0)

({t1}, s1) ({t1, t2}, s1)

a b

Algorithm 1 starts with working containing pair ({t0}, s0) and antichain = ∅.
Inside the loop, the pair ({t0}, s0) is popped from working and added to
antichain. The successors of the pair ({t0}, s0) are the pairs ({t1}, s1) and
({t1, t2}, s1). Since antichain contains neither of these, both successors are added
to working in line 21. Next, popping ({t1}, s1) from working and adding this pair
to antichain results in antichain consisting of the set {({t0}, s0), ({t1}, s1)}. In
the final iteration of the algorithm, the pair ({t1, t2}, s1) is popped from working
and added to antichain, resulting in the set {({t0}, s0), ({t1}, s1), ({t1, t2}, s1)}.
Clearly, since ({t1}, s1) ≤ ({t1, t2}, s1), the set antichain no longer is a proper
antichain. 
�

5 A Correct and Improved Antichain Algorithm

We address the identified performance problems by rearranging the computa-
tions that are conducted. Note that in order to solve the first performance prob-
lem, we only perform the check to compare the refusals of the implementation
and the normal form state of the specification in case the implementation state
is stable.

Solving the second performance problem is more involved. The essential
observation here is that in order for the information in antichain to be most
effective, states of the cartesian product must be added to antichain as soon
as these are discovered, even if these have not yet been fully explored. This is
achieved by maintaining, as an invariant, that working �∀ antichain; the states
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in working then essentially compose the frontier of the exploration. We achieve
this by initialising working and antichain to consist of exactly the initial state
of the cartesian product, and by extending antichain with all (not already dis-
covered) successors for the state (spec, impl) that is popped from working . As a
side effect, this also resolves the third issue, as now both working and antichain
are only extended with states that have not yet been discovered, i.e., for which
the membership test in antichain fails, and for which insertion with such states
does not invalidate the antichain property.

Algorithm 2. The corrected antichain-based refinement checking algorithm.
The algorithm returns true iff LTS L1 = (S1, ι1,Act1,→1) is refined by
L2 = (S2, ι2,Act2,→2). The refinement check conducted checks for stable fail-
ures refinement when CheckDiv is false and failures-divergences refinement
otherwise.
1: procedure refinesnew(L1, L2,CheckDiv)

2: let working be a stack containing a pair ({s | ι1
ε�1 s}, ι2)

3: let antichain := ∅ � ({s | ι1
ε�1 s}, ι2)

4: while working �= ∅ do
5: pop (spec, impl) from working
6: if not div(spec) or not CheckDiv then
7: if CheckDiv and div(impl) then
8: return false
9: else

10: if stable(impl) then
11: if refusals(impl) �⊆ refusals(spec) then
12: return false
13: for impl

a−→2 impl ′ do
14: if a = τ then
15: spec′ := spec
16: else
17: spec′ := {s′ | ∃s ∈ spec : s

a�1 s′}
18: if spec′ = ∅ then
19: return false
20: if (spec′, impl ′) � antichain is not true then
21: antichain := antichain � (spec′, impl ′)
22: push (spec′, impl ′) into working

23: return true

Algorithm 2 shows the corrected antichain procedure for checking stable failures
refinement and failures-divergences refinement. Since the algorithm fundamen-
tally differs (in the relations that it computes) from the one in [21], we cannot
reuse their arguments in our proof of correctness, which are based on invariants
that do not hold in our case.
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In the remainder of this section, we sketch the proof of correctness of
Algorithm 2 as claimed below by Theorem 2. We focus on the proof of correctness
w.r.t. failures-divergences refinement; for stable failures refinement the proof is
almost the same except that it does not have to consider divergences.

Theorem 2. Let Li = (Si, ιi,Acti,→i) where i ∈ {1, 2} be two labelled transi-
tion systems. Then:

– refinesnew(L1,L2, false) returns true if and only if L1 	sfr L2;
– refinesnew(L1,L2, true) returns true if and only if L1 	fdr L2;

For the remainder of this section we fix the two LTSs Li = (Si, ιi,Acti,→i) where
i ∈ {1, 2}. First we show termination of Algorithm 2. A crucial observation of
the antichain operations is that adding elements to an antichain does not affect
the membership test of elements already included; see the lemma below.

Lemma 1. Let (X,≤) be a partially ordered set, A ⊆ X an antichain, and let
x, y ∈ X. If x � A and y �� A then x � (A � y).

Termination now follows from the observation that all states of the cartesian
product that have been processed occur in antichain and do not get added back
to working ; for this we rely on Lemma 1. To reason formally about the states that
have been processed, we introduce a ghost variable done; i.e., done is intialised
as the empty set and each pair (spec, impl) that is popped from working in line 5
is added to done after line 22. We have the following invariants.

Lemma 2. Let Ln = normfdr(L1) if CheckDiv holds and Ln = normsfr(L1)
otherwise. The while loop (lines 4–22) of Algorithm2 satisfies the following
invariants: done ∪ working ⊆ reachable(Ln × L2), done ∩ working = ∅,
done ∪ working �∀ antichain and working contains no duplicates.

Theorem 3. Algorithm2 terminates for finite state, finitely branching LTSs.

Proof. The total number of pairs present in normsfr(L1)×L2 and normfdr(L1)×L2

are finite since L1 and L2 are finite state. By Lemma 2 we find that, when not
CheckDiv, working ∪ done ⊆ reachable(normsfr(L1) × L2). Likewise, we conclude
working ∪ done ⊆ reachable(normfdr(L1) × L2) when CheckDiv. Furthermore,
as done ∩ working = ∅, done strictly increases in size each iteration and so
only a finite number of iterations of the outer for-loop are possible. Termination
of the inner for-loop follows from the assumption that L1 and L2 are finitely
branching. 
�
The correctness of the algorithm requires a lemma that shows anti-monotonicity
of witnesses (cf. Definition 9); see below. Combined with Proposition 2 (see
page 7) this allows us to conclude that the distance (defined below) from a
state in the cartesian product to a witness is at least the distance to a witness
from smaller states.
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Lemma 3. Let (U, s), (V, s) be states of normsfr(L1) × L2 satisfying (U, s) ≤
(V, s). If (V, s) is an SFR-witness then (U, s) is an SFR-witness. Likewise, if
(V, s) is an FDR-witness in normfdr(L1) × L2 and (U, s) ≤ (V, s) then (U, s) is
an FDR-witness.

For a set of states U in the cartesian product, let SFR(U) be a predicate that
is true if and only if U contains an SFR-witness; likewise, FDR(U) holds if and
only if U contains an FDR-witness. We denote the set of all reachable SFR-
witnesses in the cartesian product normsfr(L1) × L2 by S, and the set of all
reachable FDR-witnesses in normfdr(L1) × L2 by F . For a state (U, s) in the
cartesian product, we define the distance to a set U of the cartesian product
by DistU (U, s) as the shortest distance from state (U, s) to a state in U . If U
is unreachable, the distance is set to infinity. Formally, DistU (U, s) = min{|σ| |
∃(V, t) ∈ U : (U, s) σ−→→ (V, t)}. We generalise this to a set of states V as follows:
DistU (V) = min{DistU (U, s) | (U, s) ∈ V}.

Proposition 3. For (U, s), (V, s) in normsfr(L1) × L2 satisfying (U, s) ≤ (V, s)
we have DistS(U, s) ≤ DistS(V, s). Likewise, for (U, s), (V, s) in normfdr(L1)×L2

satisfying (U, s) ≤ (V, s) we have DistF (U, s) ≤ DistF (V, s).

Proof. Follows from Lemma 3 and Proposition 2. 
�
We conclude with a sketch of the proof of correctness of the algorithm. The full
proof can be found in [14].

Proof (Theorem 2). We prove both implications, by contraposition, for the case
of failures-divergences refinement. The proof of correctness for stable failures
refinement proceeds along the same lines.

– Assume that Algorithm 2 returns false. This occurs when the pair (spec, impl)
satisfies the conditions of an FDR-witness, as follows from lines 7, 11 and 18 of
Algorithm 2. Since working ⊆ reachable(normfdr(L1) × L2) and (spec, impl) ∈
working , the FDR-witness is reachable. By Theorem 1 we find that L1 	fdr L2

fails to hold.
– Assume that an FDR-witness is reachable in normfdr(L1) × L2, i.e., F �= ∅.

Then the following invariant holds in the while loop (lines 4–22):

DistF (done) > DistF (working) and DistF (working) = DistF (antichain).

Towards a contradiction, assume Algorithm 2 returns true. This can only
be the case when working is empty. Upon termination of the while loop,
DistF (working) = DistF (∅) = ∞. By the above invariants, DistF (working) =
DistF (antichain). Since ι = ({s ∈ S1 | ι1

ε�1 s}, ι2) � antichain and
DistF (ι) < ∞, we also have DistF (antichain) < ∞. Contradiction. 
�

We remark that the correctness of the algorithm is independent of the search
order that is used. That is, replacing the data structure for working with a
FIFO queue results in a breadth-first search strategy and does not impair the
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correctness of the algorithm. As explained in [17], breadth-first search has the
advantage to yield the shortest possible counterexamples. Reconstructing such
counterexamples can be done efficiently by recording, for each state stored in
working , its breadth-first search level. We close this section by briefly returning
to Example 3.

Example 5 Reconsider the family of transition systems of Example 3. Contrary
to the original algorithm, the improved algorithm will, in each iteration, only add
a single successor state to working , because every other successor will already
be part of antichain. This results in working containing O(1) entries; antichain
will be queried O(n·k) times. Compared to the original algorithm, this reduces
overhead for the depth-first search strategy by a factor n·k in the working stack
size and by a factor k in the number of antichain checks. For the breadth-first
search strategy, the working size is reduced by a factor kn and the antichain
checks by a factor kn/n. 
�

6 Experimental Validation

We have conducted several benchmarks to compare the run time of both algo-
rithms to show that solving the identified issues actually improves the run time
performance in practice.

For this purpose we have implemented a depth-first and breadth-first variant
of both Algorithms 1 and 2 in a branch of the mCRL22 tool set [5] as part of
the ltscompare tool, which is implemented in C++. The implementation of
the working and antichain operations are the same. For the implementation of
refusals in Algorithm 1 we follow the definition of [21] (see also Footnote 1 on
page 4), implementing refusals for any state, whereas for Algorithm2 we follow
Definition 3. The source modifications and experiments can be obtained from
the downloadable package [15].

The experiments we consider are taken from three sources. First, Example 3
for exposing the performance overhead of the original algorithm. Second, several
linearisability tests of concurrent data structures for more practical benchmarks.
These models have been taken from [16], and consist of six implementations of
concurrent data types that, when trace-refining their specifications, are guar-
anteed to be linearisable. As in [21], we approximate trace-refinement by the
stronger stable failures refinement. For these models, the implementation and
specification pairs are based on the same descriptions; the difference between
the two is that the specification uses a simple construct to guarantee that each
method of the concurrent data structure executes atomically. This significantly
reduces the non-determinism and the number of transitions in the specification
models.

Finally, an industrial model of a control system modelled in the Dezyne
language [3] that first exposed the performance issues in practice. The industrial
example is of a more traditional flavour in which the specification is an abstract

2 www.mcrl2.org.

www.mcrl2.org
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description of the behaviours at the external interface of a control system, and
the implementation is a detailed model that interacts with underlying services
to implement the expected interface. For reasons of confidentiality, the industrial
model cannot be made available.

All measurements have been performed on a machine with an Intel Core
i7-7700HQ CPU 2.80 Ghz and a 16 GiB memory limit imposed by ulimit -Sv
16777216.

6.1 Benchmarking Example 3

Example 3 has been benchmarked for all combinations of k, n ≤ 500, where k
and n are multiples of 10, checking stable failures refinement between equivalent
LTSs, i.e., Lk

n 	sfr Lk
n. Figure 1 shows the run time performance (in seconds) of

the depth-first variant of Algorithm1 on the left and Algorithm2 on the right.
The plots match the asymptotic growth as stated in Example 3, illustrating a

factor k speed-up of our algorithm compared to the original one. A comparison
of the performance of breadth-first search is infeasible as the original algorithm
already runs into the memory limit for small k and n, whereas for Algorithm 2
there is only little difference between the depth-first and breadth-first variants.

Note that due to the absence of τ -transitions, there is no performance dif-
ference in the computation of refusals in both algorithms. Consequently, the
difference in performance is entirely due to the different way of inspecting and
extending working .
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Fig. 1. The run time performance (in seconds) of Example 3 for depth-first search (left:
original algorithm, right: our improved algorithm).

6.2 Benchmarking Practical Examples

Our next batch of experiments consists of more typical refinement checks,
assessing whether the behaviours of the implementations are in line with the
behaviours prescribed by their specifications. Characteristics of the state spaces
are listed in Table 1.
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Table 1. The size of the state space for each specification and associated implemen-
tation.

Model Ref. Specification 	sfr Implementation

#states #transitions #states #transitions

Coarse set [11] 50 488 64 729 Yes 55 444 145 043

Fine-grained set [11] 3 720 3 305 Yes 5 077 9 006

Lazy set [11] 3 565 3 980 Yes 24 496 41 431

Optimistic set [11] 25 435 28 154 Yes 234 332 389 344

Non-blocking queue [19] 1 248 1 473 No 3 030 5 799

Treiber stack [20] 87 389 124 740 Yes 205 634 564 862

Industrial 24 45 Yes 24 551 45 447

The run time performance of both algorithms (both depth-first and breadth-first)
can be found in Table 2. The run times we report are averages obtained from
five runs. As illustrated by the figures in that table, we see small improvements
of our algorithm over the original algorithm for depth-first search, whereas the
improvements for breadth-first search are dramatic.

Table 2. Run time comparison between Algorithms 1 and 2 using both a depth-first
and breadth-first search strategy. All run times are in seconds; † indicates an out-
of-memory issue indicating that the algorithm failed to complete within the imposed
16 GiB memory limit.

Model Depth-first (sec.) Breadth-first (sec.)

Alg. 1 Alg. 2 Alg. 1 Alg. 2

Coarse set 9.15 8.61 † 9.06

Fine-grained set 0.37 0.32 † 0.46

Lazy set 1.19 1.02 † 1.26

Optimistic set 16.96 14.13 † 22.67

Non-blocking queue 0.03 0.02 0.17 0.09

Treiber stack 148.39 137.52 † 352.59

Industrial 1.36 0.15 296.29 0.17

To better understand the reason behind the performance gains we obtain, we
report on the maximal size of working and antichain, and the number of suc-
cessful and unsuccessful antichain membership tests; see Table 3. We only report
on metrics for the breadth-first search strategy; the figures for the depth-first
search strategy for both algorithms are similar; see [14].
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Table 3. Metrics for the breadth-first search strategy experiments. For the original
algorithm most of these figures are under-approximations due to the out-of-memory
issue. All values we report on are in thousands (i.e., the actual number is obtained by
multiplying with 103).

Model max size working max size antichain antichain-hits antichain-misses

Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Coarse set 4 710.3 3.4 3.6 55.4 13.9 96.2 7 807.4 60.3

Fine-grained set 6 604.5 0.4 1.9 5.1 180.7 7.2 15 547.9 9.7

Lazy set 6 726.4 1.7 4.3 24.5 130.5 24.3 14 852.8 35.2

Optimistic set 6 366.5 15.2 4.4 234.4 38.7 292.5 14 238.0 434.2

Non-blocking queue 6.3 0.3 0.3 2.7 3.1 342.6 14.6 4.0

Treiber stack 5 829.9 139.2 4.8 214.8 76.1 2 411.6 8 340.6 1 523.8

Industrial 549.2 224.3 43.1 43.1 54 591.1 36.4 12 888.4 43.1

For the breadth-first search strategy, the fact that the original algorithm delays
adding state pairs to the antichain induces an enormous overhead in the size of
working due to the many failing antichain checks. This can be seen from the
large size of working and the small size of antichain. Because of these differ-
ences in size, most antichain membership tests fail in the original algorithm.
The situation is largely reversed in our improved algorithm, explaining the sub-
stantial performance improvements we observe. Since the original algorithm for
failures-divergences refinement is incorrect, we only compared the performance
of both algorithms for stable failures refinement. The performance of our failures-
divergences refinement algorithm is comparable to our stable failures refinement
algorithm; we refer to [14] for further details. In [14], we also performed additional
experiments which show that further run time improvements can be obtained
by applying divergence-preserving branching bisimulation [7] minimisation as a
preprocessing step to refinement checking.

7 Conclusions

Our study of the antichain-based algorithms for deciding stable failures refine-
ment and failures-divergences refinement presented in [21] revealed that the
failures-divergences refinement algorithm is incorrect; both algorithms perform
suboptimally when implemented using a depth-first search strategy and poorly
when implemented using a breadth-first search strategy. Moreover, both violate
the claimed antichain property. We have proposed alternative algorithms for
which we showed correctness and which utilise proper antichains. Our experi-
ments indicate significant performance improvements for deciding stable failures
refinement and a performance of deciding failures-divergences refinement that is
comparable to deciding stable failures refinement.
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