Skip to main content

Materials Used Intraoperatively During Oral and Maxillofacial Surgery Procedures

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry
  • 1292 Accesses

Abstract

Oral and maxillofacial surgery (OMFS) is a broad scope medical and dental specialty that focuses on the diagnoses and treatment of a wide range of disorders including those that affect the head and neck, as well as the facial complex and skeleton. A number of tools and materials can be used intraoperatively with the intention of increasing the success rate of a surgical procedure and shortening the healing time for patients. In this chapter, we will explore several elements of surgical intervention relating to the use of varying types of bone grafts, along with implementing growth factors and enhancers including bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and platelet-rich plasma (PRP). In addition, we will examine the use of biodegradable materials including bone plates, membranes, and scaffolds. Further, we will discuss the use of implantable devices in the surgical treatment of patients for replacement of teeth and fixation of hard tissue structures using customizable titanium plates and screws within the realm of OMFS. Finally, we consider what the future holds with regard to technologically assisted surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahmy, M. D., et al. (2016). Three-dimensional bioprinting materials with potential application in preprosthetic surgery. Journal of Prosthodontics, 25(4), 310–318.

    Article  Google Scholar 

  2. Boyne, P. J. (2001). Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. JBJS, 83(1_suppl_2), S146–S150.

    Google Scholar 

  3. Rifkin, D. B., & Moscatelli, D. (1989). Recent developments in the cell biology of basic fibroblast growth factor. The Journal of Cell Biology, 109(1), 1–6.

    Article  Google Scholar 

  4. Sykaras, N., et al. (2000). Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. International Journal of Oral & Maxillofacial Implants, 15(5).

    Google Scholar 

  5. Hjørting-Hansen, E. (2001). Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery: A historical review (Übersicht). Mund-, Kiefer-und Gesichtschirurgie, 6(1), 6–14.

    Article  Google Scholar 

  6. Hirsch, J. M. (2001). Volumetry of simulated bone grafts in the edentulous maxilla by computed tomography: An experimental study. Dentomaxillofacial Radiology, 30, 153–156.

    Article  Google Scholar 

  7. Sjöström, M., On healing of titanium implants in iliac crest bone grafts. 2006.

    Google Scholar 

  8. Springer, I. N., et al. (2004). Particulated bone grafts–effectiveness of bone cell supply. Clinical Oral Implants Research, 15(2), 205–212.

    Article  Google Scholar 

  9. Alberius, M. G. (1999). Per, Some basic factors essential to autogeneic nonvascularized onlay bone grafting to the craniofacial skeleton. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 33(2), 129–146.

    Article  Google Scholar 

  10. Albrektsson, T., & Albrektsson, B. (1978). Microcirculation in grafted bone: A chamber technique for vital microscopy of rabbit bone transplants. Acta Orthopaedica Scandinavica, 49(1), 1–7.

    Article  Google Scholar 

  11. Chen, N. T., et al. (1994). The roles of revascularization and resorption on endurance of craniofacial onlay bone grafts in the rabbit. Plastic and Reconstructive Surgery, 93(4), 714–722; discussion 723-4.

    Article  Google Scholar 

  12. Lin, K. Y., et al. (1990). The effect of rigid fixation on the survival of onlay bone grafts: An experimental study. Plastic and Reconstructive Surgery, 86(3), 449–456.

    Article  Google Scholar 

  13. Pinholt, E. M., et al. (1994). Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats. Annals of Plastic Surgery, 33(2), 193–197.

    Article  Google Scholar 

  14. Goldstein, J., Mase, C., & Newman, M. H. (1993). Fixed membranous bone graft survival after recipient bed alteration. Plastic and Reconstructive Surgery, 91(4), 589–596.

    Article  Google Scholar 

  15. Goldstein, J. A., Mase, C. A., & Newman, M. H. (1995). The influence of bony architecture on fixed membranous bone graft survival. Annals of Plastic Surgery, 34(2), 162–167.

    Article  Google Scholar 

  16. Phillips, J. H., & Rahn, B. A. (1988). Fixation effects on membranous and endochondral onlay bone-graft resorption. Plastic and Reconstructive Surgery, 82(5), 872–877.

    Article  Google Scholar 

  17. Phillips, J. H., & Rahn, B. A. (1990). Fixation effects on membranous and endochondral onlay bone graft revascularization and bone deposition. Plastic and Reconstructive Surgery, 85(6), 891–897.

    Article  Google Scholar 

  18. Hara, S., Mitsugi, M., & Tatemoto, Y. (2017). Variation of plate fixation for mandibular advancement with intraoral vertical ramus osteotomy using endoscopically-assisted intraoral rigid or semi-rigid internal fixation: Postoperative condylar seating control for mandibular advancement. International Journal of Oral and Maxillofacial Surgery, 46, 158.

    Article  Google Scholar 

  19. Rao, S. S., Baliga, S. D., & Bhatnagar, A. (2018). Management of extensive maxillofacial injury related to a Tyre Blast: A rare case report. The Saudi Dental Journal, 30(1), 97–101.

    Article  Google Scholar 

  20. Esposito, M., et al. (2006). The efficacy of various bone augmentation procedures for dental implants: A Cochrane systematic review of randomized controlled clinical trials. International Journal of Oral & Maxillofacial Implants, 21(5).

    Google Scholar 

  21. Trippel, S. B. (1997). Growth factors as therapeutic agents. Instructional Course Lectures-American Academy of Orthopaedic Surgeons, 46, 473–476.

    Google Scholar 

  22. Urist, M. R., & Strates, B. S. (1971). Bone morphogenetic protein. Journal of Dental Research, 50(6), 1392–1406.

    Article  Google Scholar 

  23. Wozney, J. M., et al. (1988). Novel regulators of bone formation: Molecular clones and activities. Science, 242(4885), 1528–1534.

    Article  Google Scholar 

  24. Karsenty, G. (1998). Genetics of skeletogenesis. Developmental Genetics, 22(4), 301–313.

    Article  Google Scholar 

  25. Kingsley, D. M. (1994). The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes & Development, 8(2), 133–146.

    Article  Google Scholar 

  26. Ducy, P., & Karsenty, G. (2000). The family of bone morphogenetic proteins. Kidney International, 57(6), 2207–2214.

    Article  Google Scholar 

  27. Rosen, V. (2006). BMP and BMP inhibitors in bone. Annals of the New York Academy of Sciences, 1068(1), 19–25.

    Article  Google Scholar 

  28. Hotz, G., & Herr, G. (1994). Bone substitute with osteoinductive biomaterials—Current and future clinical applications. International Journal of Oral and Maxillofacial Surgery, 23(6), 413–417.

    Article  Google Scholar 

  29. Bhanot, S., & Alex, J. C. (2002). Current applications of platelet gels in facial plastic surgery. Facial Plastic Surgery, 18(1), 27–34.

    Article  Google Scholar 

  30. Assoian, R. K., et al. (1983). Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. Journal of Biological Chemistry, 258(11), 7155–7160.

    Google Scholar 

  31. Wiltfang, J., et al. (2003). Sinus floor augmentation with β-tricalciumphosphate (β-TCP): Does platelet-rich plasma promote its osseous integration and degradation? Clinical Oral Implants Research, 14(2), 213–218.

    Article  Google Scholar 

  32. Overall, C. M., Wrana, J., & Sodek, J. (1989). Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. Journal of Biological Chemistry, 264(3), 1860–1869.

    Google Scholar 

  33. Bonewald, L., & Mundy, G. (1990). Role of transforming growth factor-beta in bone remodeling. Clinical Orthopaedics and Related Research, (250), 261–276.

    Google Scholar 

  34. Lieberman, J. R., Daluiski, A., & Einhorn, T. A. (2002). The role of growth factors in the repair of bone: Biology and clinical applications. JBJS, 84(6), 1032–1044.

    Article  Google Scholar 

  35. Cho, T. J., Gerstenfeld, L. C., & Einhorn, T. A. (2002). Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. Journal of Bone and Mineral Research, 17(3), 513–520.

    Article  Google Scholar 

  36. Dimitriou, R., Tsiridis, E., & Giannoudis, P. V. (2005). Current concepts of molecular aspects of bone healing. Injury, 36(12), 1392–1404.

    Article  Google Scholar 

  37. Andrew, J., et al. (1995). Platelet-derived growth factor expression in normally healing human fractures. Bone, 16(4), 455–460.

    Google Scholar 

  38. Hock, J. M., & Canalis, E. (1994). Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology, 134(3), 1423–1428.

    Article  Google Scholar 

  39. Hallman, M., & Thor, A. (2008). Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontology 2000, 47(1), 172–192.

    Article  Google Scholar 

  40. Sonmez, A. B., & Castelnuovo, J. (2014). Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry. Dental Traumatology, 30(2), 107–111.

    Article  Google Scholar 

  41. Hatch, N., & Franceschi, R. (2008). FGF2 induced expression of the pyrophosphate generating enzyme, PC-1, is mediated by Runx2 and Msx2. Journal of Musculoskeletal & Neuronal Interactions, 8(4), 318.

    Google Scholar 

  42. Takayama, S., et al. (2001). Periodontal regeneration by FGF-2 (bFGF) in primate models. Journal of Dental Research, 80(12), 2075–2079.

    Article  Google Scholar 

  43. Marx, R. E. (2004). Platelet-rich plasma: Evidence to support its use. Journal of Oral and Maxillofacial Surgery, 62(4), 489–496.

    Article  Google Scholar 

  44. Gibble, J. W., & Ness, P. M. (1990). Fibrin glue: The perfect operative sealant? Transfusion, 30(8), 741–747.

    Article  Google Scholar 

  45. Matras, H. (1985). Fibrin sealant in maxillofacial surgery. Development and indications. A review of the past 12 years. Facial Plastic Surgery, 2(4), 297–313.

    Article  Google Scholar 

  46. Whitman, D. H., Berry, R. L., & Green, D. M. (1997). Platelet gel: An autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. Journal of Oral and Maxillofacial Surgery, 55(11), 1294–1299.

    Article  Google Scholar 

  47. Dohan, D. M., et al. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 101(3), e37–e44.

    Article  Google Scholar 

  48. De Pascale, M. R., et al. (2015). Platelet derivatives in regenerative medicine: An update. Transfusion Medicine Reviews, 29(1), 52–61.

    Article  Google Scholar 

  49. Dohan Ehrenfest, D. M., Rasmusson, L., & Albrektsson, T. (2009). Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in Biotechnology, 27(3), 158–167.

    Article  Google Scholar 

  50. Miloro, M., et al. (2004). Peterson’s principles of oral and maxillofacial surgery (2nd ed.). Hamilton, ON/London: B C Decker.

    Google Scholar 

  51. Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. The New England Journal of Medicine, 341(10), 738–746.

    Article  Google Scholar 

  52. Dohan, D. M., et al. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 101(3), e45–e50.

    Article  Google Scholar 

  53. Dauendorffer, J. N., Fraitag, S., & Dupuy, A. (2013). Basal cell carcinoma following platelet-rich plasma injection for skin rejuvenation. Annales de Dermatologie et de Vénéréologie, 140(11), 723–724.

    Article  Google Scholar 

  54. Dohan, D. M., et al. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 101(3), e51–e55.

    Article  Google Scholar 

  55. Del Fabbro, M., Bortolin, M., & Taschieri, S. (2011). Is autologous platelet concentrate beneficial for post-extraction socket healing? A systematic review. International Journal of Oral and Maxillofacial Surgery, 40(9), 891–900.

    Article  Google Scholar 

  56. Del Fabbro, M., et al. (2017). Healing of Postextraction sockets preserved with autologous platelet concentrates. A systematic review and meta-analysis. Journal of Oral and Maxillofacial Surgery, 75(8), 1601–1615.

    Article  Google Scholar 

  57. Eshghpour, M., et al. (2014). Effect of platelet-rich fibrin on frequency of alveolar Osteitis following mandibular third molar surgery: A double-blinded randomized clinical trial. Journal of Oral and Maxillofacial Surgery, 72(8), 1463–1467.

    Article  Google Scholar 

  58. Al-Hamed, F. S., et al. (2017). Efficacy of platelet-rich fibrin after mandibular third molar extraction: A systematic review and meta-analysis. Journal of Oral and Maxillofacial Surgery, 75(6), 1124–1135.

    Article  Google Scholar 

  59. Bilginaylar, K., & Uyanik, L. O. (2016). Evaluation of the effects of platelet-rich fibrin and piezosurgery on outcomes after removal of ımpacted mandibular third molars. British Journal of Oral and Maxillofacial Surgery, 54(6), 629–633.

    Article  Google Scholar 

  60. Canellas, J., Ritto, F. G., & Medeiros, P. J. D. (2017). Evaluation of postoperative complications after mandibular third molar surgery with the use of platelet-rich fibrin: A systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 46(9), 1138–1146.

    Article  Google Scholar 

  61. Varghese, M. P., Manuel, S., Kumar, S., & K, L. (2017). Potential for osseous regeneration of platelet-rich fibrin—A comparative study in mandibular third molar impaction sockets. Journal of Oral and Maxillofacial Surgery, 75(7), 1322–1329.

    Article  Google Scholar 

  62. Gürbüzer, B., et al. (2010). Scintigraphic evaluation of Osteoblastic activity in extraction sockets treated with platelet-rich fibrin. Journal of Oral and Maxillofacial Surgery, 68(5), 980–989.

    Article  Google Scholar 

  63. Moraschini, V., & Barboza, E. S. P. (2015). Effect of autologous platelet concentrates for alveolar socket preservation: A systematic review. International Journal of Oral and Maxillofacial Surgery, 44(5), 632–641.

    Article  Google Scholar 

  64. Khairy, N. M., et al. (2013). Effect of platelet rich plasma on bone regeneration in maxillary sinus augmentation (randomized clinical trial). International Journal of Oral and Maxillofacial Surgery, 42(2), 249–255.

    Article  Google Scholar 

  65. Lemos, C. A. A., et al. (2016). Effects of platelet-rich plasma in association with bone grafts in maxillary sinus augmentation: A systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 45(4), 517–525.

    Article  MathSciNet  Google Scholar 

  66. Pocaterra, A., et al. (2016). Effectiveness of platelet-rich plasma as an adjunctive material to bone graft: A systematic review and meta-analysis of randomized controlled clinical trials. International Journal of Oral and Maxillofacial Surgery, 45(8), 1027–1034.

    Article  Google Scholar 

  67. Del Fabbro, M., Gallesio, G., & Mozzati, M. (2015). Autologous platelet concentrates for bisphosphonate-related osteonecrosis of the jaw treatment and prevention. A systematic review of the literature. European Journal of Cancer, 51(1), 62–74.

    Article  Google Scholar 

  68. Kim, J.-W., Kim, S.-J., & Kim, M.-R. (2014). Leucocyte-rich and platelet-rich fibrin for the treatment of bisphosphonate-related osteonecrosis of the jaw: A prospective feasibility study. British Journal of Oral and Maxillofacial Surgery, 52(9), 854–859.

    Article  Google Scholar 

  69. Lopez-Jornet, P., et al. (2016). Medication-related osteonecrosis of the jaw: Is autologous platelet concentrate application effective for prevention and treatment? A systematic review. Journal of Cranio-Maxillofacial Surgery, 44(8), 1067–1072.

    Article  Google Scholar 

  70. Mohanty, S., Pathak, H., & Dabas, J. (2014). Platelet rich fibrin: A new covering material for oral mucosal defects. Journal of Oral Biology and Craniofacial Research, 4(2), 144–146.

    Article  Google Scholar 

  71. Oyama, T., et al. (2004). Efficacy of platelet-rich plasma in alveolar bone grafting. Journal of Oral and Maxillofacial Surgery, 62(5), 555–558.

    Article  MathSciNet  Google Scholar 

  72. Marukawa, E., et al. (2011). Reduction of bone resorption by the application of platelet-rich plasma (PRP) in bone grafting of the alveolar cleft. Journal of Cranio-Maxillofacial Surgery, 39(4), 278–283.

    Article  Google Scholar 

  73. Lee, C., et al. (2009). A quantitative radiological assessment of outcomes of autogenous bone graft combined with platelet-rich plasma in the alveolar cleft. International Journal of Oral and Maxillofacial Surgery, 38(2), 117–125.

    Article  Google Scholar 

  74. Kütük, N., et al. (2014). Effect of platelet-rich plasma on fibrocartilage, cartilage, and bone repair in Temporomandibular joint. Journal of Oral and Maxillofacial Surgery, 72(2), 277–284.

    Article  Google Scholar 

  75. Lin, S. L., et al. (2018). Effect of arthrocentesis plus platelet-rich plasma and platelet-rich plasma alone in the treatment of temporomandibular joint osteoarthritis: A retrospective matched cohort study (a STROBE-compliant article). Medicine (Baltimore), 97(16), e0477.

    Article  Google Scholar 

  76. Hegab, A. F., et al. (2015). Platelet-rich plasma injection as an effective treatment for Temporomandibular joint osteoarthritis. Journal of Oral and Maxillofacial Surgery, 73(9), 1706–1713.

    Article  Google Scholar 

  77. Bousnaki, M., Bakopoulou, A., & Koidis, P. (2018). Platelet-rich plasma for the therapeutic management of temporomandibular joint disorders: A systematic review. International Journal of Oral and Maxillofacial Surgery, 47(2), 188–198.

    Article  Google Scholar 

  78. Cömert Kiliç, S., Güngörmüş, M., & Sümbüllü, M. A. (2015). Is arthrocentesis plus platelet-rich plasma superior to arthrocentesis alone in the treatment of Temporomandibular joint osteoarthritis? A randomized clinical trial. Journal of Oral and Maxillofacial Surgery, 73(8), 1473–1483.

    Article  Google Scholar 

  79. Zhu, Y., et al. (2013). Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: A review. Osteoarthritis and Cartilage, 21(11), 1627–1637.

    Article  Google Scholar 

  80. Kim, T.-H., et al. (2014). Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing. Archives of Oral Biology, 59(5), 550–558.

    Article  Google Scholar 

  81. Miron, R. J., et al. (2017). Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clinical Oral Investigations, 21(8), 2619–2627.

    Article  Google Scholar 

  82. Kobayashi, E., et al. (2016). Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clinical Oral Investigations, 20(9), 2353–2360.

    Article  Google Scholar 

  83. Su, C. Y., et al. (2009). In vitro release of growth factors from platelet-rich fibrin (PRF): A proposal to optimize the clinical applications of PRF. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 108(1), 56–61.

    Article  Google Scholar 

  84. Manzano, G., Herrero, L. R., & Montero, J. (2014). Comparison of clinical performance of zirconia implants and titanium implants in animal models: A systematic review. The International Journal of Oral & Maxillofacial Implants, 29(2), 311–320.

    Article  Google Scholar 

  85. Shin, D., et al. (2011). Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model. Clinical Oral Implants Research, 22(3), 242–250.

    Article  Google Scholar 

  86. Andreiotelli, M., Wenz, H. J., & Kohal, R. J. (2009). Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clinical Oral Implants Research, 20(Suppl 4), 32–47.

    Article  Google Scholar 

  87. Branemark, P. I., et al. (1969). Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scandinavian Journal of Plastic and Reconstructive Surgery, 3(2), 81–100.

    Article  Google Scholar 

  88. Branemark, P. I., et al. (1977). Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery. Supplementum, 16, 1–132.

    Google Scholar 

  89. Adell, R., et al. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10(6), 387–416.

    Article  Google Scholar 

  90. Heydecke, G., et al. (2003). Oral and general health-related quality of life with conventional and implant dentures. Community Dentistry and Oral Epidemiology, 31(3), 161–168.

    Article  Google Scholar 

  91. Heydecke, G., et al. (2005). The impact of conventional and implant supported prostheses on social and sexual activities in edentulous adults results from a randomized trial 2 months after treatment. Journal of Dentistry, 33(8), 649–657.

    Article  Google Scholar 

  92. Junker, R., et al. (2009). Effects of implant surface coatings and composition on bone integration: A systematic review. Clinical Oral Implants Research, 20(Suppl 4), 185–206.

    Article  Google Scholar 

  93. Linkevicius, T., & Vaitelis, J. (2015). The effect of zirconia or titanium as abutment material on soft peri-implant tissues: A systematic review and meta-analysis. Clinical Oral Implants Research, 26 Suppl 11, 139–147.

    Article  Google Scholar 

  94. Ozkurt, Z., & Kazazoglu, E. (2011). Zirconia dental implants: A literature review. The Journal of Oral Implantology, 37(3), 367–376.

    Article  Google Scholar 

  95. Javed, F., et al. (2013). Is titanium sensitivity associated with allergic reactions in patients with dental implants? A systematic review. Clinical Implant Dentistry and Related Research, 15(1), 47–52.

    Article  Google Scholar 

  96. Siddiqi, A., et al. (2011). Titanium allergy: Could it affect dental implant integration? Clinical Oral Implants Research, 22(7), 673–680.

    Article  Google Scholar 

  97. Bianco, P. D., Ducheyne, P., & Cuckler, J. M. (1996). Titanium serum and urine levels in rabbits with a titanium implant in the absence of wear. Biomaterials, 17(20), 1937–1942.

    Article  Google Scholar 

  98. Weingart, D., et al. (1994). Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. International Journal of Oral and Maxillofacial Surgery, 23(6 Pt 2), 450–452.

    Article  Google Scholar 

  99. Meyer, U., et al. (2006). Fast element mapping of titanium wear around implants of different surface structures. Clinical Oral Implants Research, 17(2), 206–211.

    Article  Google Scholar 

  100. Gahlert, M., et al. (2007). Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clinical Oral Implants Research, 18(5), 662–668.

    Article  Google Scholar 

  101. Kohal, R. J., et al. (2009). Biomechanical and histological behavior of zirconia implants: An experiment in the rat. Clinical Oral Implants Research, 20(4), 333–339.

    Article  Google Scholar 

  102. Kim, H. K., et al. (2015). Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae. Dental Materials Journal, 34(4), 508–515.

    Article  Google Scholar 

  103. Cionca, N., Hashim, D., & Mombelli, A. (2017). Zirconia dental implants: Where are we now, and where are we heading? Periodontology 2000, 73(1), 241–258.

    Article  Google Scholar 

  104. Sandhaus, S. (1968). Technic and instrumentation of the implant C.B.S. (Cristalline Bone Screw). Informatore Odonto-Stomatologico, 4(3), 19–24.

    Google Scholar 

  105. Schulte, W., & Heimke, G. (1976). Das Tübinger Sofortimplantat. Die Quintessenz, 27(1), 17–23.

    Google Scholar 

  106. Sandhaus, S. (1991). Cerasand ceramic implants. Attualità Dentale, 7(12), 14–18.

    Google Scholar 

  107. Ehrl, P., & Frenkel, G. (1981). Klinische Ergebnisse mit einem enossalen Extensionsimplantat aus Al203-Keramik nach drei Jahren. Die Quintessenz, 32, 2007–2015.

    Google Scholar 

  108. Silva, N. R., et al. (2010). Performance of zirconia for dental healthcare. Materials, 3(2), 863–896.

    Article  Google Scholar 

  109. Andreiotelli, M., & Kohal, R. J. (2009). Fracture strength of zirconia implants after artificial aging. Clinical Implant Dentistry and Related Research, 11(2), 158–166.

    Article  Google Scholar 

  110. Silva, N. R., et al. (2009). Reliability of one-piece ceramic implant. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88(2), 419–426.

    Article  Google Scholar 

  111. Depprich, R., et al. (2008). Osseointegration of zirconia implants compared with titanium: An in vivo study. Head & Face Medicine, 4, 30.

    Article  Google Scholar 

  112. Smeets, R., et al. (2016). Impact of dental implant surface modifications on Osseointegration. BioMed Research International, 2016, 6285620.

    Article  Google Scholar 

  113. von Wilmowsky, C., et al. (2014). Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives. Oral and Maxillofacial Surgery, 18(3), 243–257.

    Article  Google Scholar 

  114. Jemat, A., et al. (2015). Surface modifications and their effects on titanium dental implants. BioMed Research International, 2015, 791725.

    Article  Google Scholar 

  115. Oue, H., et al. (2015). Influence of implant surface topography on primary stability in a standardized osteoporosis rabbit model study. Journal of Functional Biomaterials, 6(1), 143–152.

    Article  Google Scholar 

  116. Hong, D. G. K., & Oh, J. H. (2017). Recent advances in dental implants. Maxillofacial Plastic and Reconstructive Surgery, 39(1), 33.

    Article  Google Scholar 

  117. Jung, U. W., et al. (2012). Surface characteristics of a novel hydroxyapatite-coated dental implant. Journal of Periodontal & Implant Science, 42(2), 59–63.

    Article  Google Scholar 

  118. Buser, D., et al. (2004). Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of Dental Research, 83(7), 529–533.

    Article  Google Scholar 

  119. Cochran, D. L., et al. (2002). The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI SLA implants. Clinical Oral Implants Research, 13(2), 144–153.

    Article  Google Scholar 

  120. Kumar, B. P., et al. (2016). Mandibular reconstruction: Overview. Journal of Maxillofacial and Oral Surgery, 15(4), 425–441.

    Article  Google Scholar 

  121. Macewen, W. (1885). Cases illustrative of cerebral surgery. The Lancet, 125(3221), 934–936.

    Article  Google Scholar 

  122. Simion, M., & Fontana, F. (2004). Autogenous and xenogeneic bone grafts for the bone regeneration. A literature review. Minerva Stomatologica, 53(5), 191–206.

    Google Scholar 

  123. Handschel, J., et al. (2011). Nonvascularized iliac bone grafts for mandibular reconstruction – Requirements and limitations. In Vivo, 25(5), 795–799.

    Google Scholar 

  124. Poswillo, D. (1974). Experimental reconstruction of the mandibular joint. International Journal of Oral Surgery, 3(6), 400–411.

    Article  Google Scholar 

  125. El-Sayed, K. M. (2008). Temporomandibular joint reconstruction with costochondral graft using modified approach. International Journal of Oral and Maxillofacial Surgery, 37(10), 897–902.

    Article  Google Scholar 

  126. Connolly, T. M., et al. (2017). Reconstruction of midface defects with the osteocutaneous radial forearm flap: Evaluation of long term outcomes including patient reported quality of life. Microsurgery, 37(7), 752–762.

    Article  Google Scholar 

  127. Dean, N. R., et al. (2012). Free flap reconstruction of lateral mandibular defects: Indications and outcomes. Otolaryngology and Head and Neck Surgery, 146(4), 547–552.

    Article  Google Scholar 

  128. Dowthwaite, S. A., et al. (2013). Comparison of fibular and scapular osseous free flaps for oromandibular reconstruction: A patient-centered approach to flap selection. JAMA Otolaryngology. Head & Neck Surgery, 139(3), 285–292.

    Article  Google Scholar 

  129. Moscoso, J. F., & Urken, M. L. (1994). The iliac crest composite flap for oromandibular reconstruction. Otolaryngologic Clinics of North America, 27(6), 1097–1117.

    Google Scholar 

  130. Roberts, T. T., & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis, 8(4), 114–124.

    Article  Google Scholar 

  131. Goldberg, V. M., & Akhavan, S. (2005). Biology of bone grafts. In Bone regeneration and repair (pp. 57–65). Humana Press.

    Google Scholar 

  132. Aludden, H. C., et al. (2017). Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: A systematic review. International Journal of Oral and Maxillofacial Surgery, 46(8), 1030–1038.

    Article  Google Scholar 

  133. Moss, S. D., et al. (1995). Transplanted demineralized bone graft in cranial reconstructive surgery. Pediatric Neurosurgery, 23(4), 199–204; discussion 204-5.

    Article  Google Scholar 

  134. Elsalanty, M. E., & Genecov, D. G. (2009). Bone grafts in craniofacial surgery. Craniomaxillofacial Trauma & Reconstruction, 2(3), 125–134.

    Article  Google Scholar 

  135. Salyer, K. E., et al. (1992). Demineralized perforated bone implants in craniofacial surgery. The Journal of Craniofacial Surgery, 3(2), 55–62.

    Article  Google Scholar 

  136. Neumann, A., & Kevenhoerster, K. (2009). Biomaterials for craniofacial reconstruction. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 8, Doc08.

    Google Scholar 

  137. Menderes, A., et al. (2004). Craniofacial reconstruction with high-density porous polyethylene implants. The Journal of Craniofacial Surgery, 15(5), 719–724.

    Article  Google Scholar 

  138. Eufinger, H., & Wehmoller, M. (2002). Microsurgical tissue transfer and individual computer-aided designed and manufactured prefabricated titanium implants for complex craniofacial reconstruction. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 36(6), 326–331.

    Article  Google Scholar 

  139. Siebert, H., et al. (2006). Evaluation of individual ceramic implants made of Bioverit with CAD/CAM technology to reconstruct multidimensional craniofacial defects of the human skull. Mund-, Kiefer- und Gesichtschirurgie, 10(3), 185–191.

    Article  Google Scholar 

  140. Biskup, N. I., et al. (2010). Pediatric cranial vault defects: Early experience with beta-tricalcium phosphate bone graft substitute. The Journal of Craniofacial Surgery, 21(2), 358–362.

    Article  Google Scholar 

  141. Verret, D. J., et al. (2005). Hydroxyapatite cement in craniofacial reconstruction. Otolaryngology and Head and Neck Surgery, 133(6), 897–899.

    Article  Google Scholar 

  142. Rezaei, M., et al. (2018). Nano-biphasic calcium phosphate ceramic for the repair of bone defects. The Journal of Craniofacial Surgery, 29(6), e543–e548.

    Article  Google Scholar 

  143. Eppley, B. L. (2002). Craniofacial reconstruction with computer-generated HTR patient-matched implants: Use in primary bony tumor excision. The Journal of Craniofacial Surgery, 13(5), 650–657.

    Article  Google Scholar 

  144. Scolozzi, P., Martinez, A., & Jaques, B. (2007). Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. The Journal of Craniofacial Surgery, 18(1), 224–228.

    Article  Google Scholar 

  145. Ng, Z. Y., & Nawaz, I. (2014). Computer-designed PEEK implants: A peek into the future of cranioplasty? The Journal of Craniofacial Surgery, 25(1), e55–e58.

    Article  Google Scholar 

  146. Nieminen, T., et al. (2008). Amorphous and crystalline polyetheretherketone: Mechanical properties and tissue reactions during a 3-year follow-up. Journal of Biomedical Materials Research. Part A, 84(2), 377–383.

    Article  Google Scholar 

  147. Lethaus, B., et al. (2011). A treatment algorithm for patients with large skull bone defects and first results. Journal of Cranio-Maxillo-Facial Surgery, 39(6), 435–440.

    Article  Google Scholar 

  148. Ridwan-Pramana, A., et al. (2015). Porous polyethylene implants in facial reconstruction: Outcome and complications. Journal of Cranio-Maxillo-Facial Surgery, 43(8), 1330–1334.

    Article  Google Scholar 

  149. Eski, M., et al. (2007). Contour restoration of the secondary deformities of zygomaticoorbital fractures with porous polyethylene implant. The Journal of Craniofacial Surgery, 18(3), 520–525.

    Article  Google Scholar 

  150. Wang, W., & Yeung, K. W. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247.

    Article  Google Scholar 

  151. Steinmann, S., et al. (1986). Biological and biomechanical performance of biomaterials. Amsterdam: Elsevier Science.

    Google Scholar 

  152. Actis, L., et al. (2013). Antimicrobial surfaces for craniofacial implants: State of the art. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 39(2), 43–54.

    Article  Google Scholar 

  153. Mok, D., et al. (2004). A review of materials currently used in orbital floor reconstruction. The Canadian Journal of Plastic Surgery, 12(3), 134–140.

    Article  Google Scholar 

  154. Gross, P. P., & Gold, L. (1957). The compatibility of Vitallium and Austanium in completely buried implants in dogs. Oral Surgery, Oral Medicine, Oral Pathology, 10(7), 769–780.

    Article  Google Scholar 

  155. Simpson, J. P., Geret, V., Brown, S. A., & Merrit, K. (1981). Implant retrieval: Material and biologic analysis (Vol. 601, pp. 395–422). NBS Spec Publ.

    Google Scholar 

  156. Barone, C. M., et al. (1994). Effects of rigid fixation device composition on three-dimensional computed axial tomography imaging: Direct measurements on a pig model. Journal of Oral and Maxillofacial Surgery, 52(7), 737–740; discussion 740-1.

    Article  Google Scholar 

  157. Fiala, T. G., Novelline, R. A., & Yaremchuk, M. J. (1993). Comparison of CT imaging artifacts from craniomaxillofacial internal fixation devices. Plastic and Reconstructive Surgery, 92(7), 1227–1232.

    Google Scholar 

  158. Sullivan, P. K., Smith, J. F., & Rozzelle, A. A. (1994). Cranio-orbital reconstruction: Safety and image quality of metallic implants on CT and MRI scanning. Plastic and Reconstructive Surgery, 94(5), 589–596.

    Article  Google Scholar 

  159. Meslemani, D., & Kellman, R. M. (2012). Recent advances in fixation of the craniomaxillofacial skeleton. Current Opinion in Otolaryngology & Head and Neck Surgery, 20(4), 304–309.

    Article  Google Scholar 

  160. McRae, M., & Frodel, J. (2000). Midface fractures. Facial Plastic Surgery, 16(2), 107–113.

    Article  Google Scholar 

  161. Nastri, A. L., & Gurney, B. (2016). Current concepts in midface fracture management. Current Opinion in Otolaryngology & Head and Neck Surgery, 24(4), 368–375.

    Article  Google Scholar 

  162. Haug, R. H., Nuveen, E., & Bredbenner, T. (1999). An evaluation of the support provided by common internal orbital reconstruction materials. Journal of Oral and Maxillofacial Surgery, 57(5), 564–570.

    Article  Google Scholar 

  163. Kinnunen, I., et al. (2000). Reconstruction of orbital floor fractures using bioactive glass. Journal of Cranio-Maxillo-Facial Surgery, 28(4), 229–234.

    Article  Google Scholar 

  164. Romano, J. J., Iliff, N. T., & Manson, P. N. (1993). Use of Medpor porous polyethylene implants in 140 patients with facial fractures. The Journal of Craniofacial Surgery, 4(3), 142–147.

    Article  Google Scholar 

  165. Metzger, M. C., et al. (2006). Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology, 113(10), 1863–1868.

    Article  Google Scholar 

  166. Scolozzi, P., et al. (2009). Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: A pilot study. The Journal of Craniofacial Surgery, 20(4), 1108–1113.

    Article  Google Scholar 

  167. Balogh, C., et al. (2001). Lactic acid polymer implants in the repair of traumatic defects of the orbital floor. Revue de Stomatologie et de Chirurgie Maxillo-Faciale, 102(2), 109–114.

    MathSciNet  Google Scholar 

  168. Gierloff, M., et al. (2012). Orbital floor reconstruction with resorbable polydioxanone implants. The Journal of Craniofacial Surgery, 23(1), 161–164.

    Article  Google Scholar 

  169. Chowdhury, K., & Krause, G. E. (1998). Selection of materials for orbital floor reconstruction. Archives of Otolaryngology – Head & Neck Surgery, 124(12), 1398–1401.

    Article  Google Scholar 

  170. Krishnan, V., & Johnson, J. V. (1997). Orbital floor reconstruction with autogenous mandibular symphyseal bone grafts. Journal of Oral and Maxillofacial Surgery, 55(4), 327–330; discussion 330-2.

    Article  Google Scholar 

  171. Celikoz, B., Duman, H., & Selmanpakoglu, N. (1997). Reconstruction of the orbital floor with lyophilized tensor fascia lata. Journal of Oral and Maxillofacial Surgery, 55(3), 240–244.

    Article  Google Scholar 

  172. Johnson, P. E., & Raftopoulos, I. (1999). In situ splitting of a rib graft for reconstruction of the orbital floor. Plastic and Reconstructive Surgery, 103(6), 1709–1711.

    Article  Google Scholar 

  173. Ellis, E., 3rd. (1999). Treatment methods for fractures of the mandibular angle. International Journal of Oral and Maxillofacial Surgery, 28(4), 243–252.

    Article  Google Scholar 

  174. Rastogi, S., et al. (2016). Assessment of bite force in patients treated with 2.0-mm traditional miniplates versus 2.0-mm locking plates for mandibular fracture. Craniomaxillofacial Trauma & Reconstruction, 9(1), 62–68.

    Google Scholar 

  175. Flores-Hidalgo, A., et al. (2015). Management of fractures of the atrophic mandible: A case series. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 119(6), 619–627.

    Article  Google Scholar 

  176. Sauerbier, S., et al. (2008). The development of plate osteosynthesis for the treatment of fractures of the mandibular body – a literature review. Journal of Cranio-Maxillo-Facial Surgery, 36(5), 251–259.

    Article  Google Scholar 

  177. Chaudhary, M., et al. (2015). Evaluation of trapezoidal-shaped 3-D plates for internal fixation of mandibular subcondylar fractures in adults. Journal of Oral Biology and Craniofacial Research, 5(3), 134–139.

    Article  Google Scholar 

  178. Kang, D. H. (2012). Surgical management of a mandible subcondylar fracture. Archives of Plastic Surgery, 39(4), 284–290.

    Article  Google Scholar 

  179. Eckelt, U., & Hlawitschka, M. (1999). Clinical and radiological evaluation following surgical treatment of condylar neck fractures with lag screws. Journal of Cranio-Maxillo-Facial Surgery, 27(4), 235–242.

    Article  Google Scholar 

  180. Luo, S., et al. (2011). Surgical treatment of sagittal fracture of mandibular condyle using long-screw osteosynthesis. Journal of Oral and Maxillofacial Surgery, 69(7), 1988–1994.

    Article  Google Scholar 

  181. Gerlach, K. L. (2000). Resorbable polymers as osteosynthesis material. Mund Kiefer Gesichtschir, 4 Suppl 1, S91–S102.

    Article  Google Scholar 

  182. Eppley, B. L., & Sadove, A. M. (1995). A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plastic and Reconstructive Surgery, 96(2), 316–322.

    Article  Google Scholar 

  183. Stanton, D. C., et al. (2014). Use of bioresorbable plating systems in paediatric mandible fractures. Journal of Cranio-Maxillo-Facial Surgery, 42(7), 1305–1309.

    Article  Google Scholar 

  184. Suuronen, R., Kallela, I., & Lindqvist, C. (2000). Bioabsorbable plates and screws: Current state of the art in facial fracture repair. The Journal of Cranio-Maxillofacial Trauma, 6(1), 19–27; discussion 28–30.

    Google Scholar 

  185. Eppley, B. L. (2005). Use of resorbable plates and screws in pediatric facial fractures. Journal of Oral and Maxillofacial Surgery, 63(3), 385–391.

    Article  Google Scholar 

  186. Pietrzak, W. S. (2012). Degradation of LactoSorb fixation devices in the craniofacial skeleton. The Journal of Craniofacial Surgery, 23(2), 578–581.

    Article  Google Scholar 

  187. Ferretti, C. (2008). A prospective trial of poly-L-lactic/polyglycolic acid co-polymer plates and screws for internal fixation of mandibular fractures. International Journal of Oral and Maxillofacial Surgery, 37(3), 242–248.

    Article  Google Scholar 

  188. Agarwal, S., et al. (2009). Use of resorbable implants for mandibular fixation: A systematic review. The Journal of Craniofacial Surgery, 20(2), 331–339.

    Article  Google Scholar 

  189. Bell, R. B., & Kindsfater, C. S. (2006). The use of biodegradable plates and screws to stabilize facial fractures. Journal of Oral and Maxillofacial Surgery, 64(1), 31–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina D. Fahmy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fahmy, M.D., Gupta, A., Guentsch, A., Peisker, A. (2020). Materials Used Intraoperatively During Oral and Maxillofacial Surgery Procedures. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics