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Seeing into the Future

Abstract While empirical modelling is primarily concerned with under-
standing the interactions between variables to recover the underlying
‘truth’, the aim of forecasts is to generate useful predictions about the
future regardless of the model. We explain why models must be different
in non-stationary processes from those that are optimal’ under stationarity,
and develop forecasting devices that avoid systematic failure after location
shifts.

Keywords Forecasting · Forecast failure · Forecast uncertainty ·
Hedgehog forecasts · Outliers · Location shifts · Differencing ·
Robust devices

In a stationary world, many famous theorems about how to forecast opti-
mally can be rigorously proved (summarised in Clements and Hendry
1998):

1. causal models will outperform non-causal (i.e., models without any
relevant variables);

2. the conditional expectation of the future value delivers the minimum
mean-square forecast error (MSFE);
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3. mis-specified models have higher forecast-error variances than cor-
rectly specified ones;

4. long-run interval forecasts are bounded above by the unconditional
variance of the process;

5. neither parameter estimationuncertainty nor high correlations between
variables greatly increase forecast-error variances.

Unfortunately, when the process to be forecast suffers from location
shifts and stochastic trends, and the forecasting model is mis-specified,
then:

1. non-causal models can outperform correct in-sample causal relation-
ships;

2. conditional expectations of future values can be badly biased if later
outcomes are drawn from different distributions (see Fig. 4.5);

3. the correct in-sample model need not outperform in forecasting, and
can be worse than the average of several devices;

4. long-run interval forecasts are unbounded;
5. parameter estimation uncertainty can substantively increase interval

forecasts; as can
6. changes in correlations between variables at or near the forecast origin.

The problem for empirical econometrics is not a plethora of excellent
forecasting models from which to choose, but to find any relationships
that survive long enough to be useful: as we have emphasized, the station-
arity assumptionmust be jettisoned for observable variables in economics.
Location shifts and stochastic trend non-stationarities can have pernicious
impacts on forecast accuracy and its measurement: Castle et al. (2019)
provide a general introduction.

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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7.1 Forecasting Ignoring Outliers
and Location Shifts

To illustrate the issues, we return to the two data sets in Chapter 5 which
were perturbed by an outlier and a location shift respectively, then mod-
elled by IIS and SIS.The next two figures use the indicators found in those
examples. In Fig. 7.1, the 1-step forecasts with and without the indicator
show the former to be slightly closer to the outcome, and with a smaller
interval forecast.

Both features seem sensible: an outlier is a transient perturbation, and
providing it is not too large, its impact on forecasts should also be transient
and not too great. The increase in the interval forecast is due to the rise
in the estimated residual standard error from the outlier. Nevertheless,
failing to model outliers can be very detrimental as Hendry and Mizon
(2011) show when modelling an extension of the US food expenditure
data noted above, which was of course, the origin of IIS finding the very
large outliers in the 1930s, discussed in Sect. 5.1 as a robust estimation
method.
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Fig. 7.1 1-step forecasts with and without the impulse indicator to model an
outlier
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Fig. 7.2 1-step forecasts with and without the step indicator

However, the effect of omitting a step indicator that matches a location
shift is far more serious as Fig. 7.2 shows. The 1-step forecast with the
indicator is much closer to the outcome, with an even smaller interval
forecast than that from themodel without.Moreover, the forecast without
the step indicator is close to the top of the interval forecast from the model
with.

In Fig. 7.2, we (the writers of this book) know that the model with SIS
matches the DGP (albeit with estimated rather than known parameters),
whereas the model that ignores the location shift is mis-specified, and
its interval forecast is hopelessly too wide—wider than the range of all
previous observations. Castle et al. (2017) demonstrate the use of SIS in
a forecasting context, where the step-indicator acts as a type of intercept
correction when there has been a change in policy resulting in a location
shift. An intercept correction changes the numerical value of the intercept
in a forecasting model by adding a recent forecast error to put the forecast
‘back on track’. SIS, along with other forms of robust device such as
a conventional intercept correction, can greatly improve forecasts when
they are subject to shifts at or near the forecast origin: see Clements and
Hendry (1996).
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7.2 Impacts of Stochastic Trends on Forecast
Uncertainty

Because I(1) processes cumulate shocks, even using the correct in-sample
model leads tomuch higher forecast uncertainty thanwould be anticipated
on I(0) data.This is exemplified in Fig. 7.3 showingmulti-period forecasts
of log(GDP) starting in 1990 till 2030: the outcomes to 2016 are shown,
but not used in the forecasts. Constant-change, or difference stationary,
forecasts (dotted) and deterministic trend forecasts (dashed) usually make
closely similar central forecasts as can be seen here. But deterministic linear
trends do not cumulate shocks, so irrespective of the data properties, and
hence even when the data are actually I(1), their uncertainty is measured
as if the data were stationary around the trend.

Although the data properties are the same for the two models in
Fig. 7.3, their estimated forecast uncertainties differ dramatically (bars
and bands respectively), increasingly so as the horizon grows, due to
the linear trend model assuming stable changes over time. Thus, model
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Fig. 7.3 Multi-period forecasts of log(GDP) using a non-stationary stochastic-trend
model (dotted) and a trend-stationary model (dashed) with their associated 95%
interval forecasts
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choice has key implications for measuring forecast uncertainty, where mis-
specifications—such as incorrectly imposing linear trends—can lead to
understating the actual uncertainty in forecasts. Although the assumption
of a constant linear trend is rarely satisfactory, nevertheless, here almost all
the outcomes between 1990 and 2016 lie within the bars. Conversely, the
difference stationary interval forecasts are very wide. In fact, that model
has considerable residual autocorrelation which the bands do not take
into account, so over-estimate the uncertainty. However, caution is always
advisable when forecasting integrated time series for long-periods into the
future by either approach, especially from comparatively short samples.

7.3 Impacts of Location Shifts on Forecast
Uncertainty

Almost irrespective of the forecasting device used, forecast failure would
be rare in a stationary process, so episodes of forecast failure confirm
that many time series are not stationary. Conversely, forecasting in the
presence of location shifts can induce systematic forecast failure, unless
the forecasting model accounts for the shifts.

Figure 7.4 shows some recent failures in 8-quarter ahead forecasts of
US log real GDP. There are huge forecast errors (measured by the vertical
distance between the forecast and the outcome), especially at the start of
the ‘Great Recession’, which are not corrected till near the trough. We
call these ‘hedgehog’ graphs since the successively over-optimistic fore-
casts lead to spikes like the spines of a hedgehog. It can be seen that the
largest and most persistent forecast errors occur after the trend growth
of GDP slows, or falls. This is symptomatic of a fundamental problem
with many model formulations, which are equilibrium-correction mecha-
nisms (EqCMs) discussed in Sect. 4.2: they are designed to converge back
to the previous equilibrium or trajectory. Consequently, even when the
equilibrium or trajectory shifts, EqCMs will persistently revert to the old
equilibrium—as the forecasts in Fig. 7.4 reveal—until either the model is
revised or the old equilibrium returns.

Figure 7.4 illustrates the difficulties facing forecasting deriving from
wide-sense non-stationarity. However, the problem created by a location

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 7.4 US real GDP with many successive 8-quarter ahead forecasts

shift is not restricted to large forecast errors, but also affects the formation
of expectations by economic actors: in theory models, today’s expectation
of tomorrow’s outcome is often based on the ‘most likely outcome’, namely
the conditional expectation of today’s distribution of possible outcomes.
In processes that are non-stationary from location shifts, previous expecta-
tions can be poor estimates of the next period’s outcome. Figure 4.5 illus-
trated this problem, which has adverse implications for economic theories
of expectations based on so-called ‘rational’ expectations. This issue also
entails that many so-called structural econometric models constructed
using mathematics based on inter-temporal maximization behavioural
assumptions are bound to fail when the distributions involved shift as
shown in Sect. 4.4.

7.4 Differencing Away Our Troubles

Differencing a break in a trend results in a location shift, as can be seen
in Fig. 7.5, and in turn differencing a location shift produces an impulse,
and a final differencing creates a ‘blip’. All four types occur empirically.

http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 7.5 Successively differencing a trend break in (a) creates a step shift in (b) an
impulse in (c) and a ‘blip’ in (d)

Failing to allow for trend breaks or location shifts when forecasting
entails extrapolating the wrong values and can lead to systematic forecast
failure as shown by the dotted trajectories in Panels (a) and (b). However,
failing to take account of an impulse or a blip just produces temporary
errors, so forecasts revert back to an appropriate level rapidly. Conse-
quently, many forecasts are reported for growth rates and often seem rea-
sonably accurate: it is wise to cumulate such forecasts to see if the entailed
levels are correctly predicted.

Figure 7.6 illustrates for artificial data: only a couple of the growth-
rate outcomes lie above the 95% interval forecasts, but the levels forecasts
are systematically downward biased from about observation 35. This is
because the growth forecasts are on average slightly too low, which cumu-
lates over time. The graphs show multi-step forecasts, but being simply a
constant growth-rate forecast, the same interval forecasts apply at all steps
ahead.
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Fig. 7.6 Top panel: growth-rate forecasts; lower panel: implied forecasts of the
levels

Constant growth-rate forecasts are of course excellent when growth
rates stay at similar levels, but otherwise are too inflexible. An alternative
is to forecast the next period’s growth rate by the current value, which
is highly flexible, but imposes a unit root even when the growth rate is
I(0). Figure 7.3 contrasted deterministic trend forecasts with those from a
stochastic trend, which had huge interval forecasts. Such intervals correctly
reflect the ever increasing uncertainty arising from cumulating unrelated
shocks when there is indeed a unit root in the DGP.

However, forecasting an I(0) process by a unit-root model also leads
to calculating uncertainty estimates like those of a stochastic trend: the
computer does not know the DGP, only the model it is fed. We must
stress that interval forecasts are based on formulae that are calculated for
the model used in forecasting. Most such formulae are derived under the
assumption that the model is the DGP, so can be wildly wrong when that
is not the case.
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Fig. 7.7 Top panel: 1-step growth-rate forecasts from a 4-period moving average;
lower panel: multi-period growth-rate forecasts with ±2 standard errors from a
random walk (bands) and a 4-period moving average of past growth rates (bars)

The top panel in Fig. 7.7 shows that 1-step growth-rate forecasts from a
4-period moving average of past growth rates with an imposed unit coef-
ficient are much more flexible than the assumed constant growth rate,
and only one outcome lies outside the 95% error bars. The two sets of
multi-period interval forecasts in the lower panel of Fig. 7.7 respectively
compare the growth rate and the 4-period moving average of past growth
rates as their sole explanatory variables, both with an imposed unit coeffi-
cient to implement a stochastic trend. The average of the four most recent
growth rates at the forecast origin, as against just one, produces a marked
reduction in the interval forecasts despite still cumulating shocks.

A potential cost is that it will take longer to adjust to a shift in the growth
rate. Here the growth rate is an I(0) variable, and it is the imposition of the
unit coefficient that creates the increasing interval forecasts, but even so,
the averaging illustrates the effects of smoothing. This idea of smoothing
applies to the robust forecasting methods noted in the next section. Care
is required in reporting interval forecasts for several steps ahead as their
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ŷT+h |T=yT
yt=yt−1+εt

10 20 30 40 50 60 70 80 90 100
-10

0

10
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Fig. 7.8 Top panel: multi-period forecasts with ±2 standard errors from the DGP
of a random walk; lower panel: multi-period forecasts from a 2-period moving
average with ±2 calculated standard errors

calculation may reflect the properties of the model being used more than
those of the DGP.

Conversely, trying to smooth a genuine randomwalk process by using a
shortmoving average to forecast can lead to forecast failure as Fig. 7.8 illus-
trates. The DGP is the same in both panels, but the artificially smoothed
forecasts in the lower panel have too small calculated interval forecasts.

7.5 Recommendations When Forecasting
Facing Non-stationarity

Given the hazards of forecasting wide-sense non-stationary variables, what
canbe done? First, bewary of forecasting I(1)processes over long timehori-
zons. Modellers and policy makers must establish when they are dealing
with integrated series, and acknowledge that forecasts then entail increas-
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ing uncertainty. The danger is that uncertainty can be masked by using
mis-specified models which can falsely reduce the reported uncertainty.
An important case noted above is enforcing trend stationarity, as seen in
Fig. 7.3, greatly reducing the measured uncertainty without reducing the
actual, a recipe for poor policy and intermittent forecast failure. As Sir
Alex Cairncross worried in the 1960s: ‘A trend is a trend is a trend, but the
question is, will it bend? Will it alter its course through some unforeseen
force, and come to a premature end?’ Alternatively, it is said that the trend
is your friend till it doth bend.

Second, once forecast failure has been experienced, detection of location
shifts (see Sect. 4.5) can be used to correct forecasts even with only a
few observations, or alternatively it is possible to switch to more robust
forecasting devices that adjust quickly to location shifts, removing much
of any systematic forecast biases, but at the cost of wider interval forecasts
(see e.g., Clements and Hendry 1999).
Nevertheless, we have also shown that one aspect of the explosion in

interval forecasts from imposing an integrated model after a shift in an
I(0) process (i.e., one that does not have a genuine unit root) is due to
using just the forecast-origin value, and that can be reduced by using
moving averages of recent values. In turbulent times, such devices are an
example of amethod with no necessary verisimilitude that can outperform
the in-sample previously correct representation. Figure 7.9 illustrates the
substantial improvement in the 1-step ahead forecasts of the log of UK
GDP over 2008–2012 using a robust forecasting device compared to a
‘conventional’ method. The robust device has a much smaller bias and
MSFE, but as it is knowinglymis-specified, clearly does not justify selecting
it as an economic model—especially not for policy.
That last result implies that it is important to refrain from linking out-

of-sample forecast performance of models to their ‘quality’ or verisimili-
tude. When unpredictable location shifts occur, there is no necessary link
between forecast performance and how close the underlying model is to
the truth. Both good and poormodels can forecast well or badly depending
on unanticipated shifts.
Third, the huge class of equilibrium-correction models includes almost

all regression models for time series, autoregressive equations, vector
autoregressive systems, cointegrated systems, dynamic-stochastic general

http://dx.doi.org/10.1007/978-3-030-21432-6_4


7 Seeing into the Future 113

Log(GDP)
`Conventional' forecast 
`Robust' forecast 

2007 2008 2009 2010 2011

12.66

12.68

12.70

12.72

12.74

12.76
Forecasts of the (log) level of UK GDP

Log(GDP)
`Conventional' forecast 
`Robust' forecast 

Fig. 7.9 1-step ahead forecasts of the log of UK GDP over 2008–2012 by ‘conven-
tional’ and robust methods

equilibrium (DSGE) models, and many of the popular forms of model
for autoregressive heteroskedasticity (see Engle 1982). Unfortunately, all
of these formulations suffer from systematic forecast failure after shifts
in their long-run, or equilibrium, means. Indeed, because they have in-
built constant equilibria, their forecasts tend to go up (down) when out-
comes go down (up), as they try to converge back to previous equilibria.
Consequently, while cointegration captures equilibrium correction, care
is required when using such models for genuine out-of-sample forecasts
after any forecast failure has been experienced.

Fourth, Castle et al. (2018) have found that selecting a model for fore-
casting from a general specification that embeds the DGP does not usually
entail notable costs compared to using the estimated DGP—an infeasi-
ble comparator with non-stationary observational data. Indeed when the
exogenous variables need to be forecast, selection can even have smaller
MSFEs than using a knownDGP.That result matches an earlier finding in
Castle et al. (2011) that a selected equation can have a smaller root mean
square error (RMSE) for estimated parameters than those from estimating
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the DGP when the latter has several parameters that would not be signifi-
cant on conventional criteria. Castle et al. (2018) suggest using looser than
conventional nominal significance levels for in-sample selection, specifi-
cally 10% and 16% depending on the number of non-indicator candidate
variables, and show that this choice is not greatly affected by whether or
not location shifts occur either at, or just after, the forecast origin. The
main difficulty is when an irrelevant variable that happens to be highly
significant by chance has a location shift, which by definition will not
affect the DGP but will shift the forecasts from the model, so forecast
failure results. Here rapid updating after the failure will drive that errant
coefficient towards zero in methods that minimize squared errors, so will
be a transient problem.

Fifth, Castle et al. (2018) also conclude that some forecast combina-
tion can be a good strategy for reducing the riskiness of forecasts facing
location shifts. Although no known method can protect against a shift
after a forecast has been made, averaging forecasts from an econometric
model, a robust device and a simple first-order autoregressive model fre-
quently came near the minimum MSFE for a range of forecasting models
on 1-step ahead forecasts in their simulation study. This result is consis-
tent with many findings since the original analysis of pooling forecasts in
Bates and Granger (1969), and probably reflects the benefits of ‘portfolio
diversification’ known from finance theory. Clements (2017) provides a
careful analysis of forecast combination. A caveat emphasized by Hendry
and Doornik (2014) is that some pre-selection is useful before averag-
ing to eliminate very bad forecasting devices. For example, the GUM is
rarely a good device as it usually contains a number of what transpire
to be irrelevant variables, and location shifts in these will lead to poor
forecasts. Granger and Jeon (2004) proposed ‘thick’ modelling as a route
to overcoming model uncertainty, where forecasts from all non-rejected
specifications are combined. However, Castle (2017) showed that ‘thick’
modelling by itself neither avoids the problems ofmodelmis-specification,
nor handles forecast origin location shifts. Although ‘thick’ modelling is
not formulated as a general-to-simple selection problem, it could be imple-
mented by pooling across all congruent models selected by an approach
like Autometrics.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.
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