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Detectives of Change: Indicator Saturation

Abstract Structural changes are pervasive from innovations affecting
many disciplines. These can shift distributions, altering relationships and
causing forecast failure. Many empirical models also have outliers: both
can distort inference. When the dates of shifts are not known, they need
to be detected to be handled, usually by creating an indicator variable that
matches the event.The basic example is an impulse indicator equal to unity
for the date of an outlier and zero elsewhere. We discuss an approach to
finding multiple outliers and shifts called saturation estimation. For find-
ing outliers, an impulse indicator is created for every observation and the
computer program searches to see which, if any, match an outlier. Simi-
larly for location shifts: a step indicator equal to unity till time t is created
for every t and searched over. We explain how and why this approach
works.
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Impulse-indicator saturation (IIS) · Step-indicator saturation (SIS) ·
Outliers · Non-linearity
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Shifting distributions are indicative of structural change, but that can take
many forms, from sudden location shifts, changes in trend rates of growth,
or in estimated parameters reflecting changes over time in relationships
between variables. Further, outliers that could be attributed to specific
events, but are not modelled, can lead to seemingly fat-tailed distributions
when in fact the underlying process generating the data is thin tailed.
Incorrect or changing distributions pose severe problems for modelling
any phenomena, and need to be correctly dealt with for viable estimation
and inference on parameters of interest. Empirical modelling that does
not account for shifts in the distributions of the variables under analysis
risks reaching potentially misleading conclusions by wrongly attributing
explanations from such contamination to chance correlations with other
included variables, as well as having non-constant parameters.
While the dates of somemajor events like the Great Depression, oil and

financial crises, and major wars are known ex post, those of many other
events are not. Moreover, the durations and magnitudes of the impacts
on economies of shifts are almost never known. Consequently, it behoves
any investigator of economic (and indeed many other) time series to find
and neutralize the impacts of all the in-sample outliers and shifts on the
estimates of their parameters of interest. Shifts come at unanticipated times
withmany different shapes, durations andmagnitudes, so generalmethods
to detect them are needed. ‘Ocular’ approaches to spotting outliers in a
model are insufficient: an apparent outlier may be captured by one of the
explanatory variables, and the absence of any obvious outliers does not
entail that large residuals will not appear after fitting.

It may be thought that the considerable number of tests required to
check for outliers and shifts everywhere in a sample might itself be dis-
torting, and hence adversely affect statistical inference. In particular, will
one find too many non-existent perturbations by chance?That worry may
be exacerbated by the notion of using an indicator saturation approach,
where an indicator for a possible outlier or shift at every observation is
included in the set of explanatory variables to be searched over. Even if
there are just 100 observations, there will be a hundred indicators plus
variables, so there are many trillions of combinations of models created
by including or omitting each variable and every indicator, be they for
outliers or for shifts starting and ending at different times.
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Despite the apparent problems, indicator saturation methods can
address all of these forms of mis-specification. First developed to detect
unknown numbers of outliers of unknownmagnitudes at unknown points
in the sample, including at the beginning and end of a sample, the method
can be generalized to detect all forms of deterministic structural change.
We begin by outlining the method of impulse-indicator saturation (IIS)
to detect outliers, before demonstrating how the approach can be gener-
alized to include step, trend, multiplicative and designer saturation. We
then briefly discuss how to distinguish between non-linearity and struc-
tural change.

Saturation methods can detect multiple breaks, and have the additional
benefit that they can be undertaken conjointly with all other aspects of
model selection. Explanatory variables, dynamics and non-linearities can
be selected jointly with indicators for unknown breaks and outliers. Such a
‘portmanteau’ approach to detecting breaks while also selecting over many
candidate variables is essential when the underlying DGP is unknown and
has to be discovered from the available evidence. Most other break detec-
tion methods rely on assuming the model is somehow correctly specified
other than the breaks, and such methods can lack power to detect breaks
if the model is far from ‘correct’, an event that will occur with high prob-
ability in non-stationary time series.

5.1 Impulse-Indicator Saturation

IIS creates a complete set of indicator variables. Each indicator takes the
value 1 for a single observation, and 0 for all other observations. As many
indicators as there are observations are created, each with a different obser-
vation corresponding to the value 1. So for a sample of T observations,
T indicators are then included in the set of candidate variables. However,
all those indicators are most certainly not included together in the regres-
sion, as otherwise a perfect fit would always result and nothing would
be learned. Although saturation creates T additional variables when there
are T observations, Autometrics provides an expanding and contracting
block search algorithm to undertake model selection when there are more
variables than observations, as discussed in the model selection primer
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in Chapter 2. To aid exposition, we shall outline the ‘split-half ’ approach
analyzed in Hendry et al. (2008), which is just the simplest way to explain
and analyze IIS, so bear in mind that such an approach can be general-
ized to a larger number of possibly unequal ‘splits’, and that the software
explores many paths.

Defining Indicators
Impulse indicators are defined as {1{ j=t}} where 1{ j=t} is equal to
unity when j = t and equal to zero otherwise for j = 1, . . . , T .

Including an impulse indicator for a particular observation in a static
regression delivers the same estimate of the model’s parameters as if that
observation had been left out. Consequently, the coefficient of that indi-
cator is equal to the residual of the associated observation when predicted
from amodel based on the other observations. In dynamic relations, omit-
ting an observation can distort autocorrelations, but an impulse indicator
will simply deliver a zero residual at that observation. Thus, in both cases,
including T /2 indicators provides estimates of the model based on the
other half of the observations. Moreover, we get an estimate of any dis-
crepancies in that half of the observations relative to the other half. Those
indicators can then be tested for significance using the estimated error vari-
ance from the other half as the baseline, and any significant indicators are
recorded. Importantly, under the null, each half ’s estimates of parameters
and error variance are unbiased.
To understand the ‘split-half ’ approach, consider a linear regression

that only includes an intercept, to which we add the first T /2 impulse
indicators, although there are in fact no outliers. Doing so has the same
effect as dummying out the first half of the observations such that unbiased
estimates of the mean and variance are obtained from the remaining data.
Any observations in the first half that are discrepant relative to those
estimates at the chosen significance level, α, say 1%, will result in selected
indicators. The locations of any significant indicators are recorded, then
the first T /2 indicators are replaced by the second T /2, and the procedure
repeated. The two sets of sub-sample significant indicators (if any) are
added to the model for selection of the finally significant indicators. This
step is not superfluous: when there is a location shift, for example, some

http://dx.doi.org/10.1007/978-3-030-21432-6_2
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Fig. 5.1 ‘Split-half’ IIS search under null. (a) The data time series; (b) the first 5
impulse indicators included; (c) the other set of impulse indicators; (d) the outcome,
as no indicators are selected

indicators may be significant as approximations to the shift, but become
insignificant when the correct indicators are included.

Figure 5.1 illustrates the ‘split-half ’ approach when T = 9 for an inde-
pendent, identically distributed (IID) Normal random variable with a
mean of 6.0 and a variance of 0.33. Impulse indicators will be selected at
the significance level α = 0.05.

Computer Generated Data
The IID Normal variable is denoted by yt ∼ IN[μ, σ 2

y ], where μ

is the mean and σ 2
y is the variance. A random number genera-

tor on a computer creates an IN[0, 1] series which is then scaled
appropriately.

Figure 5.1(a) shows the data time series, where the dating relates to
periods before and after a shift described below. Then panels (b) and (c)
record which of the 9 impulse indicators were included in turn, then panel
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(d) shows the outcome, where the fitted model is just a constant as no
indicators are selected. Since αT = 0.05 × 9 = 0.45, that is the average
null retention rate, where α is called the theoretical gauge, whichmeasures
a key property of the procedure. This implies that we expect about one
irrelevant indicator to be retained every second time IIS is applied to T = 9
observations using α = 0.05 when the null is true, so finding none is not
a surprise.

Hendry et al. (2008) establish a feasible algorithm for IIS, and derive its
null distribution for an IID process. Johansen and Nielsen (2009) extend
those findings to general dynamic regression models (possibly with trends
or unit roots), and show that the distributions of regression parameter
estimates remain almost unaltered, despite investigating the potential rel-
evance of T additional indicators, with a small efficiency loss under the
null of no breaks when αT is small. For a stationary process, with a
correct null of no outliers and a symmetric error distribution, under rela-
tively weak assumptions, the limiting distribution of the estimators of the
regression parameters of interest converges to the population parameters
at the usual rate (namely

√
T ) despite using IIS. Moreover, that is still

a Normal distribution, where the variance is somewhat larger than the
conventional form, determined by the stringency of the significance level
used for retaining impulse indicators. For example, using a 1%significance
level, the estimator variance will be around 1% larger.

If the significance level is set to the inverse of the sample size, 1/T , only
one irrelevant indicator will be retained on average by chance, entailing
that just one observation will be ‘dummied out’. Think of it: IIS allows
us to examine T impulse indicators for their significance almost costlessly
when they are not needed. Yet IIS has also checked for the possibility of
an unknown number of outliers, of unknown magnitudes and unknown
signs, not knowing in advance where in the data set they occurred!
The empirical gauge g is the fraction of incorrectly retained variables, so

here is the number of indicators retainedunder the null divided by T .More
generally, if on average one irrelevant variable in a hundred is adventitiously
retained in the final selection, the empirical gauge is g = 0.01. Johansen
and Nielsen (2016) derive its distribution, and show g is close to α for
small α. IIS has a close affinity to robust statistics, which is not surprising
as it seeks to prevent outliers from contaminating estimates of parameters



5 Detectives of Change: Indicator Saturation 73

of interest. Thus, they also demonstrate that IIS is a member of the class
of robust estimators, being a special case of a 1-step Huber-skip estimator
when the model specification is known.

Illustrating IIS for an Outlier
We generate an outlier of size λ at observation k by
yt = μ + λ1{t=k} + εt where εt ∼ IN

[
0, σ 2

ε

]
and λ �= 0.

To illustrate ‘split-half ’ IIS search under the alternative (i.e., when there
is an outlier as in the box), Fig. 5.2 records the behaviour of IIS for an
outlier ofλ = −1.0 at observation k = 1, so earlier dates are shown as neg-
ative. Selecting at α = 0.05, no first-half indicators are retained (Fig. 5.2
panel (b)), as the discrepancy between the first-half and second-half means
is not large relative to the resulting variance. When those indicators are
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Fig. 5.2 (a) Perturbed data time series; (b) the first 5 impulse indicators included;
(c) the other set of impulse indicators where the dashed line indicates retained;
(d) the outcome with and without the selected indicator
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dropped and the second set entered, the first for the period after the outlier
is now retained: note that the first-half variance is very small.

Here the combined set is also just the second selection. When the null
of no outliers or breaks is true, any indicator that is significant on a sub-
sample would remain so overall, but for many alternatives, sub-sample
significance can be transient, due to an unmodelled feature that occurs
elsewhere in the data set.

Despite its apparently arcane formulation involving more variables plus
indicators than available observations, the properties ofwhichwediscussed
above, IIS is closely related to a number of other well-known statistical
approaches. First, consider recursive estimation, where a model is fitted
to a small initial subset of the data, say K > N values when there are N
variables, then observations are added one at a time to check for changes
in parameter estimates. In IIS terms, this is equivalent to starting with
impulse indicators for the last T − K observations, then dropping those
indicators one at a time as each next observation is included in the recur-
sion.

Second, rolling regressions, where a fixed sample length is used, so earlier
observations are dropped as later ones are added, is a further special case,
equivalent to sequentially adding impulse indicators to eliminate earlier
observations and dropping those for later.
Third, investigators sometimes drop observations or truncate their sam-

ple for what they view as discrepant periods such as wars. Again, this is
a special case of IIS, namely including impulse indicators for the obser-
vations to be eliminated, precisely as we discussed above for modelling
US food demand from 1929 to 1952. A key lack in all these methods is
not inspecting the indicators for their significance or information content.
However, because the variation in such apparently ‘discrepant’ periods can
be invaluable in breaking collinearities and enhancing estimation preci-
sion, much can be learned by applying IIS instead, and checking which, if
any, observations are actually problematic, perhaps using archival research
to find out why.

Fourth, the Chow test for parameter constancy can be implemented by
adding impulse indicators for the subsample to be tested, clearly a special
case of IIS. Thus, IIS nests all of these settings. There is a large literature
on testing for a known number of breaks, but indicator saturation is
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applicable when there is an unknown number of outliers or shifts, and can
be implemented jointly with selecting over other regressors. Instrumental
variables variants follow naturally, with the added possibility of checking
the instrument equations for outliers and shifts, leading to being able to
test the specification of the equation of interest for invariance to shifts in
the instruments.

IIS is designed to detect outliers rather than location shifts, but split-
half can also be used to illustrate indicator saturation when there is a single
location shift which lies entirely within one of the halves. For a single loca-
tion shift, Hendry and Santos (2010) show that the detection power, or
potency, of IIS is determined by the magnitude of the shift; the length
of the break interval, which determines how many indicators need to be
found; the error variance of the equation; and the significance level, α,
as a Normal-distribution critical value, cα, is used by the IIS selection
algorithm. Castle et al. (2012) establish the ability of IIS in Autometrics to
detect multiple location shifts and outliers, including breaks close to the
start and end of the sample, as well as correcting for non-Normality. Nev-
ertheless, we next consider step-indicator saturation, which is explicitly
designed for detecting location shifts.

5.2 Step-Indicator Saturation

A step shift is just a block of contiguous impulses of the same signs
and magnitudes. Although IIS is applicable to detecting these, then the
retained indicators could be combined into one dummy variable taking
the average value of the shift over the break period and 0 elsewhere, per-
haps after conducting a joint F-test on the ex post equality of the retained
IIS coefficients, there is a more efficient method for detecting step shifts.
We can instead generate a saturating set of T − 1 step-shift indicators
which take the value 1 from the beginning of the sample up to a given
observation, and 0 thereafter, with each step switching from 1 to 0 at
a different observation. Step indicators are the cumulation of impulse
indicators up to each next observation. The ‘T ’th step would just be the
intercept. The T − 1 steps are included in the set of candidate regressors.
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The split-half algorithm is conducted in exactly the same way, but there
are some differences.

Defining Step Indicators
Step indicators are defined by 1{t≤ j}, j = 1, . . . , T , where
1{t≤ j} = 1 for observations up to j , and zero otherwise.

First, while impulse indicators are mutually orthogonal, step indicators
overlap increasingly as their second index increases. Second, for a location
shift that is not at either end, say from T1 to T2, two indicators are required
to characterize it:1{t≤T2} − 1{t<T1}.Third, for a split-half analysis, the ease
of detection is affected by whether or not T1 and T2 lie in the same split,
and whether location shifts occur in both halves with similar signs and
magnitudes. Castle et al. (2015) derive the null retention frequency of SIS
and demonstrate the improved potency relative to IIS for longer location
shifts.
We now consider ‘split-sample’ SIS for the same data as used for IIS

above. As it happens, the second half coincides with the break period, so
rather than use the first and second halves, we illustrate ‘half-sample’ SIS,
where some indicators are chosen from each half as shown in Fig. 5.3 under
the null. AsAutometrics software usesmulti-path block searches, this choice
is potentially one of many paths explored, so has no specific advantage,
but hopefully avoids the impression that the method is successful because
the shift neatly coincides with the second half.

Figure 5.3 panel (a) records the time series; panels (b) and (c) the first
and second choices of the 9 step indicators where now solid, dotted, dashed
and long dashed clarify the steps, and panel (d) reports the same outcome
as for IIS, as no indicators are selected.

Illustrating SIS for a Location Shift
Here we generate a location shift of magnitude λ at observation k
by yt = μ + λ1{t≥k} + εt where εt ∼ IN

[
0, σ 2

ε

]
and λ �= 0.

Next, wemodify the process that generated an outlier to instead generate a
location shift of λ = −1 at k = 0, but with the same half selections of step
indicators. Figure 5.4 illustrates the outcome. Panel (a) records the shifted
data, (b) shows the first selection of step indicators and (c) the remainder
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Fig. 5.3 (a) The data time series; (b) the 4 step indicators included; (c) the other
set of step indicators; (d) the outcome as no indicators are selected

where now the thick solid line denotes the selected indicator, with (d)
showing the outcome with and without that selected step indicator.

Notice how the fit without handling the shift produces ‘spurious’ resid-
ual autocorrelation, as all the residuals are first positive, then all become
negative after observation 1. ‘Treating’ the residual autocorrelation by a
conventional recipe would not be a good solution (see Mizon 1995) as
the location shift is not correctly modelled. Finally, a more parsimonious
and less ‘overfitted’ outcome results than would be found using IIS which
would produce a perfect fit to the last 4 data points.

Figure 4.6 for the growth of real wages was used to illustrate co-breaking
between wage growth and inflation, both of which experienced myriad
shifts.However, the graph hides that the latter half of the twentieth century
had a substantively higher mean real-wage growth at 1.8% p.a. post-1945
versus 0.7% p.a. pre, and 1.3% overall. Real wages would have increased
16-fold at 1.8% p.a. from 1860, rather than just threefold at 0.7% p.a.,

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 5.4 (a) The shifted time series; (b) the first 4 step indicators included where
the thick solid line denotes selected; (c) the other 4 step indicators; (d) the outcome
with the selected step indicator

and sevenfold in practice: ‘small’ changes in growth rates can dramati-
cally alter living standards. The location shifts shown on the graph were
selected by SIS at α = 0.005, and were not noticed, or included, in earlier
models, but helped clarify the many influences on real wages (see Castle
and Hendry 2014).

5.3 Designing Indicator Saturation

But why stop at step-indicator saturation? A location shift in the growth
rate of a variable must imply that there is a change in the trend of the
variable itself.
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5.3.1 Trend-Indicator Saturation

Thus, one way of capturing a trend break would be to saturate the model
with a series of trend indicators, which generate a trend up to a given
observation and 0 thereafter for every observation. However, trend breaks
can be difficult to detect as small changes in trends can take time to
accumulate, even if they eventually lead to very substantial differences.

Defining Trend Indicators
Trend indicators are defined as T j t = t − j + 1 for t ≥ j, j =
1, . . . , T and 0 otherwise.

Figure 5.5 also illustrated the issue that although the long-run effect of
the step shift detected by SIS starting in 1945 was dramatic, that would
not have been clear at the time. The average growth of 1.4% p.a. over the
first 15 years, 1945–1960, after SIS detects the shift, is little different from
the 1.2% p.a. near the start of data period over the 15 years 1864–1879.
Indeed, fitting SIS to the sample up to 1960, it finds a location shift from
1944 of 1.1% which could be the end of aWorldWar II effect rather than
the start of the prolonged higher growth to come.
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Fig. 5.5 A location shift in the growth of UK real wages
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Fig. 5.6 Several trend breaks in UK real wages detected by TIS

We illustrate trend-indicator saturation (TIS) for the level of real wages
as shown in Fig. 5.6. Selection was undertaken at α = 0.001, using such
a tight significance level because the variable is I(1) with shifts, so con-
siderable residual serial correlation seemed likely. An overall trend was
retained without selection, so deviations therefrom were being detected.
Even at such a tight significance level, nine trend indicators were retained,
several acting for short periods, as with the jump between 1939 and 1940
(matching the spike in Fig. 5.5), and the flattening over 1973–1981, and
again at the end of the period.

5.3.2 Multiplicative-Indicator Saturation

Ericsson (2012) considered a wide range of possible indicator satura-
tion methods, including combining IIS and SIS (super saturation) and
multiplicative-indicator saturation (MIS) where every variable in a can-
didate set is multiplied by every step indicator. For example, with 100
observations and four regressor variables there will be 400 candidates to
select from. Kitov and Tabor (2015) have investigated the properties of
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MIS by simulation, and found it can detect shifts in regression parameters
despite the huge number of candidate variables. This prompted Castle
et al. (2017) to apply the approach to successfully detect induced shifts
in estimated models following a policy intervention. They offer an expla-
nation for the surprisingly good performance of MIS as follows. Imagine
knowing where a shift occurred, so you split your data sample at that point
andfit the now correctly specifiedmodel separately to the two sub-samples.
You would be deservedly surprised if those appropriate sub-sample esti-
mates did not reflect the parameter shifts. Choosing the split by MIS will
add variability, but the correct indicator, or one close to it, should be
selected as that is where the parameters changed. Of course, as ever with
model selection, ‘unlucky’ draws from the error distribution may make
the shift appear to happen slightly earlier or later than actually occurred.
We consider an application of MIS in the next Chapter.

5.3.3 Designed-Break Indicator Saturation

If the breaks under investigation have a relatively regular shape, saturation
techniques can be ‘designed’ appropriately, denoted DIS. This idea has
been used by Pretis et al. (2016) to detect the impacts of volcanic erup-
tions on temperature records. When a volcano erupts, it spews material
into the atmosphere and above, which can ‘block’ sunlight, or more accu-
rately, reduce received solar radiation. The larger the eruption, the more
solar radiation is reduced. Thus, the eruption of Tambora in 1816 created
the ‘year without a summer’ in the Northern Hemisphere, adding to the
difficulties people confronted just after the end of the Napoleonic wars.
More generally, atmospheric temperatures drop rapidly during and imme-
diately after an eruption, then as the ejected material is removed from the
atmosphere, temperature slowly recovers, like a ‘ν’. Thus, a saturating set
of indicators with such a shape can be created and applied to the relevant
time series, selecting rather like we described above for SIS. The follow
up in Schneider et al. (2017) demonstrates the success of DIS for detect-
ing the impacts of volcanic eruptions to improve dendrochronological
temperature reconstructions.
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5.4 Outliers and Non-linearity

The methods discussed above were designed to detect unknown outliers
(IIS), location shifts (SIS), trend breaks (TIS), parameter changes (MIS)
and volcanic eruptions (DIS) that actually happened, at a pre-set signif-
icance level. An alternative explanation for what appears to be structural
change is that the data generating process is non-linear. Possible examples
include Markov switching models (see e.g., Hamilton 1989), threshold
(see e.g., Priestley 1981) and smooth transition models (see e.g., Granger
Teräsvirta 1993), where the non-linearity is ‘regular’ in some way. Dis-
tinguishing between the two explanations can be difficult. Indeed, non-
linearities and deterministic structural breaks can often be closely similar.
But a key advantage of Autometrics is that it operates as a variable selection
algorithm, allowing selection over non-linear functions as well as poten-
tial outliers and breaks, so both explanations can be tested jointly, and
both explanations could well play a role in explaining the phenomena of
interest.
The Autometrics-based approach in Castle and Hendry (2014) creates

a class of non-linear functions from transformations of the original data
variables to approximate a wide range of potential non-linearities in a
low-dimensional way. The problem with including, say, a general cubic
function of all the (non-indicator) candidate variables is the explosion in
the number of terms that need to be considered. For example, with 20
candidates, there are 1539 cubic terms. However, their simplification adds
only 60 terms, at the possible risk of not capturing all the non-linearity in
some settings. When an investigator has a specific non-linear function as
a preferred explanation, that can be tested against the selected model by
encompassing to see if (a) the proposed function is significant, and if so
(b) whether it eliminates all the other non-linear terms.



5 Detectives of Change: Indicator Saturation 83

References

Castle, J. L., Doornik, J. A., and Hendry, D. F. (2012). Model selection when
there are multiple breaks. Journal of Econometrics, 169, 239–246.

Castle, J. L., Doornik, J. A., Hendry, D. F., and Pretis, F. (2015). Detecting loca-
tion shifts during model selection by step-indicator saturation. Econometrics,
3(2), 240–264. http://www.mdpi.com/2225-1146/3/2/240.

Castle, J. L., and Hendry, D. F. (2014). Semi-automatic non-linear model selec-
tion. In Haldrup, N., Meitz, M., and Saikkonen, P. (eds.), Essays in Nonlinear
Time Series Econometrics, pp. 163–197. Oxford: Oxford University Press.

Castle, J. L., Hendry, D. F., and Martinez, A. B. (2017). Evaluating forecasts,
narratives and policy using a test of invariance. Econometrics, 5(39). https://
doi.org/10.3390/econometrics5030039.

Ericsson, N. R. (2012). Detecting crises, jumps, and changes in regime.Working
paper, Federal Reserve Board of Governors, Washington, DC.

Granger, C. W. J., and Teräsvirta, T. (1993).Modelling Nonlinear Economic Rela-
tionships. Oxford: Oxford University Press.

Hamilton, J. D. (1989). A new approach to economic analysis of nonstationary
time series. Econometrica, 57, 357–384.

Hendry, D. F., Johansen, S., and Santos, C. (2008). Automatic selection of indi-
cators in a fully saturated regression. Computational Statistics, 33, 317–335.
Erratum, 337–339.

Hendry, D. F., and Santos, C. (2010). An automatic test of super exogeneity. In
Watson, M. W., Bollerslev, T., and Russell, J. (eds.), Volatility and Time Series
Econometrics, pp. 164–193. Oxford: Oxford University Press.

Johansen, S., and Nielsen, B. (2009). An analysis of the indicator saturation
estimator as a robust regression estimator. In Castle, J. L., and Shephard, N.
(eds.),TheMethodology and Practice of Econometrics, pp. 1–36.Oxford:Oxford
University Press.

Johansen, S., and Nielsen, B. (2016). Asymptotic theory of outlier detection
algorithms for linear time series regression models. Scandinavian Journal of
Statistics, 43, 321–348.

Kitov, O. I., and Tabor, M. N. (2015). Detecting structural changes in linear
models: A variable selection approach using multiplicative indicator satura-
tion. Unpublished paper, University of Oxford.

Mizon, G. E. (1995). A simple message for autocorrelation correctors: Don’t.
Journal of Econometrics, 69, 267–288.

http://www.mdpi.com/2225-1146/3/2/240
https://doi.org/10.3390/econometrics5030039
https://doi.org/10.3390/econometrics5030039


84 J. L. Castle and D. F. Hendry

Pretis, F., Schneider, L., Smerdon, J. E., and Hendry, D. F. (2016). Detecting
volcanic eruptions in temperature reconstructions by designed break-indicator
saturation. Journal of Economic Surveys, 30, 403–429.

Priestley, M. B. (1981). Spectral Analysis and Time Series. New York: Academic
Press.

Schneider, L., Smerdon, J. E., Pretis, F., Hartl-Meier, C., and Esper, J. (2017).
A new archive of large volcanic events over the past millennium derived from
reconstructed summer temperatures. Environmental Research Letters, 12(9).
https://doi.org/10.1088/1748-9326/aa7a1b/meta.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

https://doi.org/10.1088/1748-9326/aa7a1b/meta
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	5 Detectives of Change: Indicator Saturation
	5.1 Impulse-Indicator Saturation
	5.2 Step-Indicator Saturation
	5.3 Designing Indicator Saturation
	5.3.1 Trend-Indicator Saturation
	5.3.2 Multiplicative-Indicator Saturation
	5.3.3 Designed-Break Indicator Saturation

	5.4 Outliers and Non-linearity
	References




