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Abstract. This paper studies the “integration” problem of nineteenth-
century harmony—the question whether the novel chromatic chord tran-
sitions in this time are a radical break from or a natural extension of the
conventional diatonic system. We examine the connections between the
local behavior of voice leading among diatonic triads and their general-
izations on one hand, and the global properties of voice-leading spaces
on the other. In particular, we aim to identify those neo-Riemannian
chord connections which can be integrated into the diatonic system and
those which cannot. Starting from Jack Douthett’s approach of filtered
point symmetries, we generalize diatonic triads as second-order Clough-
Myerson scales and compare the resulting Douthett graph to the respec-
tive Betweenness graph. This paper generally strengthens the integra-
tionist position, for example by presenting a construction of the hexa-
tonic and octatonic cycles that uses the principle of minimal voice lead-
ing in the diatonic system. At the same time it provides a method to
detect chromatic wormholes, i.e. parsimonious connections between dia-
tonic chords, which are not contiguous in the system of second order
Clough-Myerson scales.

Keywords: Diatonic theory · Hexatonic cycles ·
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1 Introduction

Music exhibits complex structures across its various dimensions such as harmony,
voice-leading, and rhythm. The structural relations are subject to cultural evo-
lution observable in the historic development of music. A famous transition in
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harmony took place in the Western classical music of the 19th century when com-
posers started to use triads and seventh-chords in novel chromatic connections
that exceed the previous diatonic usage [6,10,16]. An ongoing debate concerns
the nature of this transition, called the “integration” problem [18]: Was the novel
usage of the chords a radical break from or a natural extension of conventional
tonal harmony? This paper aims at supporting the latter position by reconstruct-
ing the advanced harmonic structures of late 19th century music—also found in
Jazz—in a generalized diatonic framework. We draw from definitions and results
of neo-Riemannian theory, mathematical scale theory, voice-leading spaces, and
Fourier analysis and reveal connections between these approaches.

As a means of precise formalization, mathematical music theory comprises
descriptions and propositions of musical objects and their relations. The strands
of this discipline originated and evolved independently, concentrating on the
characterization of particular musical phenomena. Many proposals have for
example been made to explain the musical relevance of the triad from various dif-
ferent angles. These include its status as a building block of a three-triad-system
in Hauptmann’s concept of the major and minor keys [12], its voice-leading parsi-
mony in connection to other triads [5,8], its status as a second-order maximally
even set [4], its transformational stability properties as a pitch class set [13],
and its position as a neighbor of the singularity on the orbifold of 3-chords [17].
The logical dependencies between these characterizations triggered an exciting
process of integration between previously separated lines of research and consti-
tute ongoing debates to date. The existence of structural connections between
the different approaches would moreover have an interesting interpretation con-
cerning the development of tonality in Western music of the 19th century: It
would suggest that Romantic composers gradually widened the diatonic usage
of triads and seventh-chords to explore a complex space of extended tonality.
The contrary position argues for several independent utilizations of the triad as
the basic building block of tonality. For instance, Richard Cohn interprets the
“over-determined triad” [5,6] as the seed for the destruction of the tonal sys-
tem from within and emphasizes triads as inhabitants of the chromatic system,
released from their diatonic affiliations. The voice-leading connections within a
hexatonic cycle, Cohn’s paradigmatic example for the disengagement of the triad
from diatonic control, exemplifies two distinct types of diatonically motivated
chord connections. In the hexatonic cycle

C P�−→ Cm L�−→ A�
P�−→ A�m L�−→ E P�−→ Em L�−→ C,

the neo-Riemannian operations P and L are alternately applied to the respective
triads in 12-tone equal temperament. The leading-tone exchange L is a parsimo-
nious diatonic connection (e.g. C �→ Em). The parallel transformation P can be
interpreted as the consequence of an alteration of the underlying scale (� or �,
e.g. Em �→ E).

The present article examines the connections between the local voice-leading
behavior of diatonic triads and their generalizations on one hand, and the
global properties of voice-leading graphs on the other. We thereby identify those
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neo-Riemannian chord connections which can be integrated into our generaliza-
tion of the diatonic system and those which cannot. John Clough, Jack Douthett
and their co-authors made significant contributions to both local and global
aspects, which we take as our points of departure. Main results with respect to
characterizing properties of diatonic sets were achieved in their joint paper on
Maximally Even Sets [4]. Pathbreaking for the understanding of voice-leading
graphs was the joint paper of Douthett with Peter Steinbach on parsimonious
graphs [8] using neo-Riemannian approaches. Programmatic steps towards a sys-
tematic combination of both aspects can be found in Douthett’s approach of
filtered point symmetry and dynamical voice leading [7].

2 Triads as Second-Order Clough-Myerson Scales

The goal of this section is to generalize diatonic triads and their PLR transforma-
tions in order to investigate the generalized triadic connections in the consequent
sections.

Definition 1 (Clough-Myerson Scale). A (first-order) Clough-Myerson
scale is a maximally even scale of which its chromatic and diatonic cardinal-
ities are co-prime.

Notably, all Clough-Myerson scales are non-degenerate well-formed [2,3].1

Each such scale is thus uniquely determined (up to chromatic transposition) by
its cardinality d and the cardinality c of its ambient chromatic scale (d < c).
Within the chromatic scale Zc, we have d · c different modes of the c scale
transpositions. Each mode is given by one instance of Clough and Douthett’s
J-function Jm

c,d : Zd → Zc, where the mode index m varies from 0 to d · c − 1.
Note that in this terminology, modes have more structure than scales, as they are
scales with a distinguished root tone just like C Ionian, F Lydian, and E Phrygian
are modes of the diatonic scale {C,D,E, F,G,A,B}. The specific pitch class of
scale degree k of the mode with index m is given by

Jm
c,d(k) :=

⌊
ck + m

d

⌋
mod c.

Clough-Myerson scales are well-formedly generated by the specific interval d̄,
which is the multiplicative inverse of the scale cardinality d modulo the chromatic
cardinality c, d̄d = 1 mod c. The following proposition shows how each Clough-
Myerson mode can be expressed in generation order.

Proposition 1. Each mode first-order Clough-Myerson mode Jm
c,d can be

expressed in generation order by virtue of the map Gm
c,d : Zd → Zc where

Gm
c,d(k) := d̄(m − k) mod c.

1 Clough and Meyerson [3] show that Clough-Myerson scales have Myhill’s property,
i.e. every non-zero generic interval appears in two species. Carey and Clampitt [2]
show that Myhill’s property is equivalent to non-degenerate well-formedness.
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Proof. For each mode index m, the well-formedness property can be expressed
by a commutative triangle as follows.

Zd

Zd

Zcff−1

Jm
c,d

Gm
c,d

�������

�������
�

�

The affine automorphism f : Zd → Zd and its inverse f−1 are given by f(k) =
g(m − k) mod d and f−1(k) = m − wk mod d. The linear factor g ∈ Zd in the
automorphism f is the residue class mod d of the step span (= generic size)

of the generator and can be calculated as
⌊

dd̄

c

⌋
. The inverse linear factor w =

g−1 ∈ Zd (in the inverse automorphism f−1) is the winding number of the scale,
i.e. the number of covered octave ambits in the scale generation. Obviously, the
formulae represent mutually inverse morphisms: f−1(f((k)) = m−wg(m−k) =
m − m + k = k. We check the commutativity of the diagram by verifying that
Jm

c,d ◦ f = Gm
c,d for m ∈ {0, ..., d · c − 1} and k ∈ {0, ..., d − 1}. This follows from

the following equalities in N:
⎢
⎢
⎢
⎢
⎢
⎣

c

⌊

dd̄

c

⌋

(m− k) +m

d

⎥
⎥
⎥
⎥
⎥
⎦
=

⌊

(dd̄− 1)(m− k) +m

d

⌋

=

⌊

d̄(m− k) +
k

d

⌋

= d̄(m− k).

Definition 2. Consider three natural numbers 0 < e < d < c such that the
greatest common divisors (e, d) = (d, c) = 1. A second-order Clough-Myerson
mode Jm,n

c,d,e := Jm
c,d ◦ Jn

d,e : Ze → Zc is defined as the concatenation of the two
Clough-Myerson modes Jn

d,e : Ze → Zd and Jm
c,d : Zd → Zc.

3 Diatonic Contiguity and Its Violation

Observation. Whenever there is a most parsimonious connection between two
diatonic triads (one voice moves by one semitone), they either belong to a com-
mon diatonic collection (leading tone exchange) or they belong to a pair of
neighboring diatonic collections along the circle of fifths (parallel transforma-
tion, e.g. C in F major to Cm in B� major). This shall be called the property of
diatonic contiguity.

The observation is relevant, because its general formulation would strengthen
the integrationist position of Yust [18] as described in Sect. 1. In the controversy
on the autonomy or the diatonic dependency of triads, it is therefore interesting to
know whether this property holds for a broader family of second-order Clough-
Meyerson scales. The contiguity notably does not hold for all configurations of
second-order Clough-Myerson scales. The following is a counter-example.
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We consider a generic seven-note scale Z7 in the role of the generalized chro-
matic space and use the note names C, D, E, F , G, A, and B. Therein, we
have the parsimonious cycle of the fourth-generated pentatonic scales and within
each scale we have the complete parsimonious cycle of all five chords with four
tones. In other words, we consider the second-order Clough-Myerson scales for
c = 7, d = 5, and e = 4. In each of the seven 4-chord cycles, there is exactly
one diatonic-seventh chord being maximally even in Z7. These diatonic sev-
enth chords violate the—in this case—“pentatonic” contiguity. They have most
parsimonious voice leading (one voice moves by one diatonic step), but the pen-
tatonic distance (generalized key distance) between them is 3, as shown in the
array below using the Manhatten (or taxicab) distance. Consider for instance the
seventh-chords Fmaj7 and Dm7. They have a generalized chromatic distance of
1 implying that they are most parsimonious, but the pentatonic scales in which
they occur ({C,E, F,A,B} and {C,D,F,G,A}) are not neighboring scales.

{C, D, F, G, A} : {C, D, F, G}, {C, D, F, A}, {C, D, G, A},{C, F, G, A}, {D, F, G, A}
{C, D, E, G, A} : {C, D, E, G},{C, D, E, A},{C, D, G, A},{C, E, G, A},{D, E, G, A}
{D, E, G, A, B} : {D, E, G, B},{D, E, A, B},{D, G, A, B},{E, G, A, B},{E, G, A, B}
{D, E, F, A, B} : {D, E, F, B},{D, E, A, B},{D, F, A, B},{E, F, A, B},{D, E, F, A}
{C, E, F, A, B} : {C, E, F, B}, {C, E, A, B},{C, F, A, B}, {E, F, A, B},{C, E, F, A}
{C, E, F, G, B} : {C, E, F, B}, {C, E, G, B},{C, F, G, B}, {E, F, G, B},{C, E, F, G}
{C, D, F, G, B} : {C, D, F, B}, {C, D, G, B},{C, F, G, B}, {D, F, G, B},{C, D, F, G}.

The construction used to derive the counter-example can be generalized to
arbitrary second-order Clough-Myerson configurations using the concept of Dou-
thett graphs, similar to coordinate spaces [14,15] or configuration spaces [19].

Definition 3 (Douthett Graph). For given cardinalities 0 < e < d < c, the
Douthett graph Dc,d,e has second-order Clough-Myerson scales as nodes, and
edges between any two intrascalar neighbors Jm

c,d(J
n+1
d,e (Ze)) and Jm

c,d(J
n
d,e(Ze)),

as well as between any neighbors under chromatic alteration. This is whenever
Jm+1

c,d (Jn
d,e(Ze)) �= Jm

c,d(J
n
d,e(Ze)).

Intrascalar neighbors generalize chords that are related by the neo-
Riemannian transformations L and R while neighbors under chromatic alter-
ation generalize chords that are related by the transformation P .2

4 Distant Neighbors and Interscalar Contiguities

This section compares Douthett graphs with their corresponding betweenness
graphs using the concepts of distant (intrascalar) neighbors and interscalar
2 Here we have to dispense with a transformational treatment of chord progressions.
The Douthett graph for the diatonic triads contains the chicken-wire graph (being
the Cayley-graph of the action of the Schritt-Wechsel group on the 24 major and
minor triads with respect to the generators P,L and R). The diminished triads and
the corresponding voice leading connections are not included.
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contiguities as defined below. Figure 1 (top) shows the Douthett graph D12,7,3 of
the major, minor, and diminished triads in 12-tone equal temperament. Edges
are colored black if they are also edges of the corresponding betweenness graph
(see below) or colored orange otherwise. The chords of the diatonic scales go
from left to right. For example, the triads of the C major scale Em, C, Am, F,
Dm, Bdim, and G form an intrascalar (in this case diatonic) voice-leading cycle
of the graph. The chords C and Cm, represented by {0, 4, 7} and {0, 3, 7}, are
an example of neighbors under chromatic alteration. The following concept of
voice-leading distance (also known as taxicab metric [17] or voice-leading work
[6]) is used to consequently define betweenness graphs.

Definition 4 (Voice-Leading Distance). For each c ∈ N, the generalized
chromatic scale Nc = {0, 1, . . . , c − 1} (here used as a set of integers) forms a
metric space together with the Lee distance

d(x, y) = min(|x − y|, c − |y − x|),

wherex, y ∈ Nc. The (minimal) voice-leading distance between to chords (or scales)
X,Y ⊆ Nc is then defined as the summed movement of a minimal bijection,

D(X,Y ) = min
f :X

∼=→Y

∑
x∈X

d(x, f(x)).

A minimal bijection is also called minimal voice leading from X to Y .

Note that the voice-leading distance is a metric on any set of equally sized
chords. There is in particular always a minimal voice leading which fixes all notes
in the intersection of the chords. For proofs and examples see [11].

Definition 5 (Betweenness Graph). A chord Y ⊆ Zc is in between two
chords X,Z ⊆ Zc if D(X,Z) = D(X,Y ) + D(Y,Z). The betweenness graph of a
set of equally sized chords X ⊆ 2Nc (where 2Nc denotes the powerset of Nc) has
an edge between two chords X and Z iff there is no other chord in between them.
For given cardinalities 0 < e < d < c, the betweenness graph of second-order
Clough-Myerson scales is denoted by Bc,d,e.

Figure 1 (bottom) shows the betweenness graph B12,7,3 that corresponds to
the Douthett graph D12,7,3 shown in Fig. 1 (top). In Fig. 1 (bottom), edges are
colored black if they are also edges of D12,7,3 or colored orange otherwise. Since
the chord pairs Dm and Bdim as well as Bdim and G are not connected directly,
but through the out-of-scale chords B� respectively Bm, the triads of the C
major scale form a different cycle in the betweenness graph than the intrascalar
voice-leading cycle in the Douthett graph D12,7,3.

Douthett graphs focus on the local aspect of voice-leading transformations.
From the definition, the path distance of two given chords cannot be obtained
directly, but for any given chord, its neighbors can be accessed directly. In con-
trast, betweenness graphs focus on the global aspect of minimal voice-leading.
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The voice-leading distance of two given chords can be calculated using the def-
inition, but it is not straightforward to decide if two chords are adjacent in the
betweenness graph. In general, Douthett graphs and betweenness graphs have
overlapping edges, but neither of them is a subgraph of the other. To compare
them, we name edges that are in the Douthett graph Dc,d,e, but not in the
betweenness graph Bc,d,e and vice versa.

Fig. 1. Douthett and Betweenness graphs for c = 12, d = 7 and e = 3. (Color figure
online)

Definition 6 (Distant Neighbors). Edges of a Douthett graph Dc,d,e which
are not edges of the corresponding betweenness graph Bc,d,e are called distant
(intrascalar) neighbors.

The orange edges in Fig. 1 (top) show the distant neighbors of the second-
order Clough-Myerson scales with cardinalities c = 12, d = 7 and e = 3. Consider
for example the chords Dm and Bdim. They are both chords in the C major scale,
but not adjacent in the betweenness graph B12,7,3 shown in Fig. 1 (bottom),
because the chord B� (represented by {2, 5, 10}) is located between them with
respect to the voice-leading distance.
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Definition 7 (Interscalar Contiguities). Edges of the betweenness graph
Bc,d,e, which are not edges of the Douthett graph Dc,d,e are called interscalar
contiguities.

The orange edges in Fig. 1 (bottom) show the interscalar contiguities of
the second-order Clough-Myerson scales with cardinalities c = 12, d = 7 and
e = 3. Consider for example the chords Cm and G, represented by {0, 3, 7}
and {2, 7, 11}, respectively. Since there is no triad Y such that D(Cm,G) =
D(Cm,Y ) + D(Y,G), Cm and G are adjacent in the betweenness graph B12,7,3,
but they are neither intrascalar neighbors nor neighbors under chromatic alter-
ation.

5 Path Characterization of Hexatonic and Octatonic
Cycles in Betweenness Graphs

As described in the introduction, hexatonic cycles are commonly defined using
the neo-Riemannian transformations L and P in the Douthett graph D12,7,3

of diatonic triads. In the corresponding betweenness graph B12,7,3, hexatonic
cycles can be characterized as cycles of toggling voice leadings with voice-leading
distance 1 (zigzag voice leadings with alternating voice-movement direction). In
the cycle of C, Cm, A�, A�m, E, and Em for example, the tone E is moving down
to E�, G is moving up to A�, C is moving down to C�, etc. The characterization
in terms of toggling voice leadings is, in particular, independent of the inner
structure of the chords. It is an outer characterization that can be applied to
any space of equally sized chords. For example in the case of 12-7-4 second-order
Clough-Myerson scales (diatonic seventh-chords), the cycles of toggling voice
leadings with voice-leading distance 1 are exactly the octatonic cycles such as
C7 Am7 A7 F�m7 F�7 E�m7 E�7 Cm7 C7. In general, however, toggling voice-
leading cycles with voice-leading distance 1 do not always exists in second-order
Clough-Myerson spaces. The betweenness graph B17,8,3 does for instance not
contain any.

The observed characterization of hexatonic and octatonic cycles moreover
allows for their construction using solely the principle of minimal voice lead-
ing and the set of diatonic triads and seventh-chords, respectively. If taken as
a definition of a generalized hexatonic cycle, this characterization allows for the
investigation of sufficient and necessary conditions for Clough-Myerson configu-
rations c-d-e to have a generalized hexatonic.

6 Chromatic Saturation

Distant intrascalar neighbors occur when a scale-external chord sneaks in
between neighbor chords of a scale. These intermediate chromatic passing chords
can easily be detected in terms of their voice-leading behavior. They are reached
and left with motions in one and the same voice. It is therefore a consistent fur-
ther step in the modelling of voice-leading connections to include these passing
chords, which we do not require to be second-order Clough-Myerson scales.
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Recalling the fact that second-order Clough-Myerson scales are in particu-
lar second order maximally even, we find that such single-voice-motion passing
chords turn out to be at least as even as the less even one among the two con-
nected chords. To make this explicit we subscribe to Emmanuel Amiot’s proposal
to measure the evenness of chords or scales X ⊂ Zc in terms of the magnitude
of the 1st Fourier coefficient of its representation on the unit circle [1].

For every chromatic pitch class space Zc, consider the embedding ι : Zc →
T ⊂ C via c-th roots of unity into the unit circle T within the complex numbers
C, ι(k) := exp(2πik/c) for any integral representative k ∈ Z of the residue
classes in Zc. For every e-tone mode σ : Ze → Zc, we have the concatenation
ι ◦ σ : Ze → C. Recall that for any map φ : Ze → C we may consider its finite
Fourier transform φ̂ : Ze → C by virtue of the formula

φ̂(t) =
1
e

e−1∑
k=0

φ(k) exp
(

−2πikt

e

)
.

Definition 8. For a given sequence X : Ze → T of points Xk = exp(2πitk), tk ∈
[0, 1) on the unit circle we define its evenness in terms of the absolute value
evenness(X) = |X̂(1)|. For an e-tone mode σ : Ze → Zc, we define its evenness
as the evenness of the concatenation: ι ◦ σ : Ze → C.

Our finding on the passing chords is in fact of more general nature and can
be best understood with a continuous moving voice.

Definition 9. For a given sequence X = (exp(2πit1), . . . , exp(2πite−1)) ∈ T
e−1

of e−1 points on the unit circle, consider the continuous family X : [0, 1) → T
e

with Xt := (exp(2πit), exp(2πit1), . . . , exp(2πite−1)), together with the Single-
Zero-Padding of X, namely the vector

X0 := (0, exp(2πit1), . . . , exp(2πite−1)) ∈ C
e.

The family Xt is called a chord with a sliding voice and the vector X0 shall be
called the “muted slider.”

Proposition 2. Consider a chord with a sliding voice Xt : [0, 1) → T
e and

the associated “muted slider” X0. Then the associated one-parameter family
{X̂t(1) ∈ C | t ∈ [0, 1)} of the first Fourier-Coefficients of the vectors Xt

forms a circle of radius 1/e around the first Fourier-Coefficient X̂0(1) of X0.
The most even and uneven chords Xv and Xu correspond to the parameters
v = arg(X̂0(1))/2π and u = v + 1

2 mod 1, respectively.

Proof. For t ∈ [0, 1) one finds:

X̂t(1) =
1
e

(
exp(2πit) +

e−1∑
k=1

exp(2πi(tk − k/e))

)
=

exp(2πit)
e

+ X̂0(1). (1)
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Let l = |X̂0(1)| and ψ = arg(X̂0(1)) denote the magnitude and the phase of
the first Fourier-coefficient of X0, respectively. Then we obtain the first Fourier-
Coefficient of the most even chord Xv by adding the radius 1/e to the magnitude
l, while keeping the same phase ψ, X̂v(1) = (l+1/e) exp(iψ). Likewise, we obtain
X̂u(1) = (l − 1/e) exp(iψ), for the most uneven chord. In order to see that the
parameter of Xv is actually v = ψ/2π we insert this value for t in Eq. (1).

X̂ψ/2π(1) =
exp( 2πiψ

2π )
e

+ X̂0(1) =
exp(iψ)

e
+ l exp(iψ) = (l +

1
e
) exp(iψ) = X̂v.

(1)
Moving the sliding voice from exp(2πiψ) about half the unit circle to the opposite
point exp(2πi(ψ + 1/2)) corresponds to a half circle movement of the Fourier-
coefficient (l + 1/e) exp(iψ) in the small circle around X̂0(1) to the opposite
point (l − 1/e) exp(iψ), and hence u = v + 1

2 .

This proposition has the following consequence for passing chords.

Corollary 1. Consider two instances Xr and Xs of a chord with a sliding voice
Xt : [0, 1) → T

e, such that all other points (the fixed tones) are located in the
circular segment between s and r and no points between r and s, i.e. 0 < s <
t1 < . . . te−1 < r < 1. Consider the corresponding 1st Fourier coefficients X̂r(1)
and X̂s(1). If the location of the 1st Fourier coefficient X̂u(1) of the most uneven
chord Xu in the family Xt is not between X̂r(1) and X̂s(1) in counter-clockwise
direction, then for any t between r and s (r ≤ t < 1 or 0 ≤ t ≤ s), we have
|X̂t(1)| ≥ min(|X̂r(1)|, |X̂s(1)|).
Proof. The assertion is an immediate consequence of the fact that the curve
{X̂t(1) | t ∈ [0, 1)} is a circle. Within any segment of the circle that does nei-
ther contain X̂v(1) nor X̂u(1), the magnitude |X̂t(1)| is monotonously increas-
ing (or decreasing). If only X̂v(1) is contained in a segment, but not X̂u(1),
the magnitude |X̂t(1)| will pass through the maximum, and satisfies |X̂t(1)| ≥
min(|X̂r(1)|, |X̂s(1))| throughout.

In the light of Corollary 1, we have to study the remaining case where the
location of the 1st Fourier coefficient X̂u(1) of the most uneven chord Xu in
the family Xt is actually between X̂r(1) and X̂s(1) (in counter-clockwise direc-
tion). We will first show in the case e = 3 that such chords have one very large
step interval, which implies that this situation can not occur with second order
Clough-Myerson chords (scales).

Proposition 3. Consider a 3-chord with a sliding voice Xt : [0, 1) → T
e, such

that the pair X = (exp(2πit1), exp(2πit2)) ∈ T
2 of its fixed tones satisfies 0 ≤

t1 < t2 < 1. Further suppose that Xu = X0 is the most uneven chord. Then the
fixed tones satisfy t1 < 1

12 and t2 > 11
12 . i.e. the three tones of Xu are located

within a segment of the angle 2π
6 .
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Proof. As u = 0 is the parameter of the most uneven chord, it follows from
Proposition 2 that arg(X̂0(1)) = 2πv = π, since v = u − 1

2 . In other words:
the 1st Fourier coefficients X̂0(1) and X̂0(1) = X̂0(1) + 1

3 are both located
on the real line and the coefficient X̂0(1) must be negative. This implies that
the two (non-zero) summands of 3X̂0(1) = (exp(2πi(t1 − 1

3 ) + exp(2πi(t2 − 2
3 ))

must be conjugated with a shared negative real part. Hence, t2 = 1 − t1 and
this implies t1 ≤ 1

2 , because t1 ≤ t2. We have Re(exp(2πi(t1 − 1
3 )) < 0 iff

1
4 < (t1 + 2

3 )mod 1 < 3
4 iff 0 < t1 < 1

12 or 7
12 < t1 < 1. The latter inequality is

out of question, because t1 < 1
2 , Hence we obtain t1 < 1

12 along with t2 > 11
12 .

An analogous statement is most likely true also for chords of cardinality e > 3
and should be proven with the help of an estimate for |X̂0(1)| in dependence of
the size of circular segment around 1 covered by the points of X0. An estimation
for the size of the largest step interval follows also from the following conjec-
ture about the distribution of the summands of the 1st Fourier-Coefficient for a
consecutive sequence of points on the unit circle.

Conjecture 1. Consider a sequence X = (exp(2πit1), . . . , exp(2πite−1)) ∈ T
e−1

of consecutive points on the unit circle in counter-clockwise order with the prop-
erty that the first Fourier-Coefficient of X0 = (0, exp(2πit1), . . . , exp(2πite−1)) ∈
C

e is a negative real number, more precisely X̂0(1) ∈ (−1, 0). Then the sequence
Y 0 = (exp(2πi(t1 − 1/e)), . . . , exp(2πi(tk − k/e))) of the e − 1 (non-zero) sum-
mands of e · X̂0(1) is formed by (clockwise) consecutive points on the unit circle.

According to this conjecture the parameters t1, . . . , te−1 must fit into an
interval of size (1− e−1

e )− 1
e = 1− e−2

e = 2
e . For e ≥ 4 this excludes all instances

of second order Clough-Myerson Chords.

7 Conclusion and Future Research

This paper studied the “integration” problem by proposing a generalization of
diatonic triads using second-order Clough-Myerson scales in the role of the triads.
It further compared the resulting chord connections to the globally defined voice-
leading distance utilizing the novel concepts of distant neighbors and interscalar
contiguities. The property of diatonic contiguity does not hold in this general
case, as a counterexample demonstrates. The paper particularly presented a
generalization of hexatonic cycles that is integrated into the diatonic system.

There are three main directions in which future work will build upon this
paper. In order to further understand the relationship between Douthett graphs
and betweenness graphs, one utilizes the evenness measure of the first Fourier
coefficient to define, study and compare the saturations of the Douthett graphs
and the betweenness graphs with passing chords. The second direction brings
transformations back into play and aims to interpret suitable subgraphs of these
voice-leading graphs as Cayley-graphs of group actions with respect to musi-
cally meaningful generators. The third direction interprets the findings of this
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paper as a potential integrationist enrichment of Tonfeld analysis [10,16] and
aims to bring this area in closer contact with the discourse on neo-Riemannian
approaches.

Acknowledgement. The authors would like to thank Fabian C. Moss, Christoph
Finkensiep, and the two anonymous reviewers for their constructive, and helpful com-
ments.

References

1. Amiot, E.: Music Through Fourier Space, Discrete Fourier Transform in Music
Theory. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-45581-5

2. Carey, N., Clampitt, D.: Self-similar pitch structures, their duals, and rhythmic
analogues. Perspect. New Music 34, 62–87 (1996)

3. Clough, J., Myerson, G.: Variety and multiplicity in diatonic systems. J. Music
Theory 29(2), 249–270 (1985)

4. Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35, 93–173 (1991)
5. Cohn, R.: Neo-Riemannian operations, parsimonious trichords, and their “Ton-

netz” representations. J. Music Theory 41(1), 1–66 (1997)
6. Cohn, R.: Audacious Euphony: Chromatic Harmony and the Triad’s Second

Nature. OUP USA, Oxford (2012)
7. Douthett, J.: Filtered point-symmetry and dynamical voice-leading. In: Douthett,

J., et al. (eds.) Music Theory and Mathematics: Chords, Collections, and Trans-
formations, pp. 72–106. University of Rochester Press, New York (2008)

8. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual
transformations, and modes of limited transposition. J. Music Theory 42(2), 241–
263 (1998)

9. Fiore, T.M., Noll, T., Satyendra, R.: Incorporating voice permutations into the
theory of neo-Riemannian groups and Lewinian duality. In: Yust, J., Wild, J.,
Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 100–114. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0 8. (Including Sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

10. Haas, B.: Die neue Tonalität von Schubert bis Webern. Hören und Analysieren
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