
317© The Author(s) 2019 
S. Makarov et al. (eds.), Brain and Human Body Modeling, 
https://doi.org/10.1007/978-3-030-21293-3_17

Chapter 17
A Robust Algorithm for Voxel-to-Polygon 
Mesh Phantom Conversion

Justin L. Brown, Takuya Furuta, and Wesley E. Bolch

17.1  �Introduction

Since their early development in the late 1950s, general-purpose Monte Carlo (MC) 
radiation transport codes have utilized primitive geometric structures to define 
material interfaces in their transport geometry, e.g., planes, spheres, ellipsoids, and 
truncated cones. These structures were used from the 1960s to mid-1980s to geo-
metrically represent the human body in both its outer body contour and internal 
organ structure. Their geometric simplicity was ideal for the limited computer tech-
nology at the time, and addressed the need for computational efficiency in particle 
tracking. These “stylized” phantoms, while at the time fit for purpose, did not pro-
vide an anatomically realistic representation of the human body, particularly in 
regard to organ shape and inter-organ tissue separation.

Beginning in the late 1980s, the need for improved anatomical accuracy, along 
with concurrent advances in computational memory and processor speed, led to the 
subsequent development and use of voxel-based human computational phantoms. 
Those phantoms were defined by a collection of rectangular parallelepipeds (voxels) 
of equal or non-equal size defining each tissue material. Voxel phantoms originate 
from the segmentation of CT or MR image data sets. Consequently, all tissue ele-
ments within a voxel phantom are generally of uniform size and shape (x,y,z dimen-

J. L. Brown 
Medical Physics Graduate Program, University of Florida, Gainesville, FL, USA 

T. Furuta 
Nuclear Science and Engineering Centre, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan 

W. E. Bolch (*) 
Medical Physics Graduate Program, University of Florida, Gainesville, FL, USA 

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 
Gainesville, FL, USA
e-mail: wbolch@ufl.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21293-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-21293-3_17
mailto:wbolch@ufl.edu


318

sions). The transition from stylized to voxel phantoms necessitated an increase in 
computational steps during radiation transport, as boundary crossing checks shifted 
from those associated with entering or leaving an organ or body region to those 
associated with entering or leaving each voxel defining that organ or body region.

Beginning in the early 2000s, a third generation of human computational phan-
tom – mesh phantoms – was advanced, in which body regions and internal organ 
structures were once again represented, not by a collection of voxels, but by surfaces 
defined by 3D control points (non-uniform rational B-splines or NURBS) or arrays 
of polygons. These mesh-type phantoms allowed for the scalability and deformabil-
ity provided by stylized phantoms, yet they retained the anatomical realism of voxel 
phantoms. In the coupling of mesh phantoms to radiation transport codes, however, 
a final step of voxelization had to be performed as the particle tracking algorithms 
employed at that time did not recognize NURBS or polygon mesh surfaces. Mesh 
phantom voxelization thus entailed filling these surfaces with an array of voxels of 
user-defined dimensions. A second advantage of mesh phantom voxelization was a 
resolution of potential surface overlaps and intersections introduced during phantom 
construction, rescaling, and/or deformation. The voxelization processes, by defini-
tion, eliminated these tissue incongruencies. Within the past few years, however, 
significant advances have been made in particle tracking algorithms so as to now 
enable the direct use of meshed geometries during MC radiation transport simula-
tion. These developments were initially introduced into the MCNP code in 2009 [1], 
into the GEANT4 code in 2013 [2], and into the PHITS code in 2015 [3, 4]. Thus, 
there are a tremendous number of existing voxel-based computational phantoms that 
would now benefit from a conversion to mesh-type format.

This chapter reviews a computational algorithm developed to convert voxel phan-
toms to polygon mesh phantoms suitable for MC transport and importable into mod-
ern CAD software. The method eliminates geometric redundancies, allowing for a 
minimal and optimized geometric representation of the meshed structures. This fea-
ture is beneficial for computational human phantoms as voxel size is typically gov-
erned by the smallest anatomical structure to be represented, while a mesh phantom 
is not limited in this respect. The resulting algorithm allows users to continue to use 
the significant number of existing voxel phantoms that have been developed over the 
past 20 years without the need for labor-intensive manual modification. Additionally, 
the algorithm can be used with segmented image data to form mesh geometries free 
of intersections and incongruences so as to be used in simulation or CAD software.

17.2  �Materials and Methods

17.2.1  �Voxel to Mesh Conversion Procedure

The voxel-to-mesh conversion procedure is divided into six main steps: (1) data 
preparation, (2) gridded surface generation, (3) surface simplification, (4) line sim-
plification, (5) polygon detection, and (6) polygon correction. The details of each 

J. L. Brown et al.



319

step are briefly described in this section, which also includes a discussion of the 
benchmarking procedures used to evaluate the conversion process.

�Data Preparation

First, the phantom voxels are read into a three-dimensional array of specified size 
<nx, ny, nz>. Next, two additional four-dimensional arrays are created of dimensions 
<nx, ny, 3, 12 > and < nx, ny, 3, 8 > which represent sliding windows of temporary 
data used to ensure the uniqueness of every facet, vertex, and line that is generated 
in the newly created mesh phantom. The guarantee of element uniqueness is impor-
tant to minimizing subsequent memory requirements during the handling of arbi-
trarily large arrays. It is important to note that the z-axis is chosen to be 3 units wide 
as this is typically the dimension along the phantom’s cranial-caudal (and longest) 
direction this is chosen to minimize memory requirements. The array is 3 units wide 
as only adjacent z-slices of voxels can possibly contain information relevant to the 
current voxel. Several other arrays are also generated:

•	 The vertex array – an array of 3D points
•	 The line array – an array containing two integers representing two connected 

vertices within the vertex array
•	 The facet array – an array containing arbitrary numbers of integers representing 

connected lines within the line array
•	 The facet tag array – an array containing the ordered materials which separate 

the facets.

�Gridded Surface Generation

The voxel data is parsed after the data is initialized. Each voxel is checked to deter-
mine if neighboring voxels are of a different material from the current voxel. If the 
neighboring voxels are of the same material, nothing is generated. If a neighboring 
voxel is found to be of a different material, the next step is to determine the facets 
to be produced. At this step, a facet is simply a rectangle between two voxels of dif-
ferent materials. As shown in Fig. 17.1, there is a possibility of 6 facets, 8 vertices, 
and 12 lines that could be produced for each voxel. Facets, vertices, and lines are 
produced depending on which adjacent voxels are of different materials. Given 
which neighbors are different materials, the required lines and vertices are deter-
mined. Once the required lines and vertices are determined, the sliding window of 
vertices and lines is checked to determine if this information already exists. If the 
data has already been generated, it is added to the current voxel position within the 
sliding window. If the data are not present, the data are generated and stored appro-
priately. The position of the vertices in 3D space is given by the required facets. At 
this point, a facet is composed of only four lines forming a rectangle. This process 
is repeated throughout the phantom array as the window is shifted along the longest 
axis through which it iterates. At this step, a surface mesh phantom has been 

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion



320

generated whose boundaries only differ between different materials (e.g., organs 
and tissue material of a given elemental composition and mass density). These 
boundaries are represented by a gridded surface which is further simplified and 
optimized as shown in Fig. 17.2.

�Surface Simplification

The surface simplification process can begin once all necessary facets, vertices, and 
lines have been generated. Surfaces are first grouped by three values: (1) separated 
material, (2) whether or not x, y, or z is constant, and (3) the value of this constant. 
This grouping results in sets of surfaces which all separate the same material and are 
co-planar to one another (see Fig. 17.3). The purpose of this grouping is twofold. 
First, the grouping reduces the required computation time for the surface simplifica-
tion step as comparisons only need to be made between grouped facets rather than 
across the entire list. Second, this grouping allows the surface simplification step to 
be performed in parallel.

The facets are then merged after grouping facets of the same material. A Boolean 
union operation is performed for every facet within each group. To determine if co-
planar facets can be merged, the facets are checked to see if they share a common 

Fig. 17.1  Example of a 
single voxel and its 
potential 6 facets (blue), 8 
vertices (black), and 12 
lines (red)

Fig. 17.2  A two-
dimensional example of a 
voxelized surface after it 
has been converted to a 
gridded mesh. One 
material is depicted in blue 
and the other in orange

J. L. Brown et al.



321

line. If the two facets indeed share one line, then they may be combined. The 
Boolean union process involves three sub-steps:

	 (i)	 The common line is determined and removed from both facet 1 and facet 2.
	(ii)	 The remaining lines of facet 2 are added to facet 1.
	(iii)	 Facet 2 is marked for removal.

This process is repeated until no more facets can be incorporated within each facet 
group. The facets marked for removal are then removed from the array. After this 
process is completed, unused lines and vertices are removed and facets and lines are 
updated to reflect new vertex and line positions within their respective arrays. At 
this point in the conversion process, the phantom surface mesh has been reduced to 
a minimal number of polygons, as shown in Fig. 17.4.

�Line Simplification

After a minimum number of polygon surface representations have been generated, 
these polygons contain more lines than are necessary to enclose the required volume 
(e.g., organ or body region). Prior to simplifying the lines, they are grouped in a 
similar manner to the facets. First, lines are scanned iteratively to determine for 
every vertex how many lines use that vertex. Next, lines are subdivided into co-
linear groups. This subdivision allows for the line simplification process to be per-
formed in parallel and thus minimizes the required processing time needed since 
fewer comparisons need to be made.

Fig. 17.3  Illustration of 
the facet grouping 
procedure depicting 
separation of facets into 
coplanar groups of the 
same separated material

Fig. 17.4  Illustration of 
the surface simplification 
process for the blue surface 
group in Fig. 17.3. The 
black area on the left 
image depicts space no 
longer occupied by 
polygons

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion



322

To simplify lines, each group of co-linear lines is scanned iteratively. Line pairs 
are flagged if both lines share a common vertex. If the lines share a vertex, a Boolean 
union operation can be performed if the vertex in common is only used by two lines 
globally within the phantom. If this is the case, the two lines and the vertex are not 
necessary to properly represent a given surface, and thus they can be removed with-
out inducing a mesh overlap. The Boolean union process is performed for these two 
lines in a manner similar to that used for the facets:

	 (i)	 The common vertex shared by only line 1 and line 2 is determined.
	(ii)	 The shared vertex in line 1 is replaced by the unshared vertex in line 2.
	(iii)	 Line 2 is marked for removal.

This process is repeated until no additional lines can be incorporated within each 
group of lines. The lines marked for removal and all unused vertices are then 
removed. The line and facet arrays are then updated to reflect the new position of the 
vertices and lines in their respective arrays. At this stage, the mesh phantom is rep-
resented by the minimum possible number of surfaces and these surfaces are repre-
sented by the minimum possible number of lines as demonstrated in Fig. 17.5.

�Polygon Detection

After these two simplification processes, the facets are now composed of an unor-
dered set of lines and polygons. By construction, the lines contained within each facet 
must form at least one closed loop (i.e., a polygon). Within each facet, polygons are 
formed by simply end matching lines until all lines are used. If multiple polygons are 
formed by construction within one facet, one of these polygons must be interior to the 
other, thus forming a hole within the outer polygon. This is easily determined by a 
bounding box as demonstrated in Fig. 17.6. This process is repeated for each facet.

�Polygon Correction and Hole Detection

Even though the technique described herein is computationally efficient, using an 
end-matching method to construct polygons can possibly create self-intersections 
within each polygon. These may occur because vertex repetition is not checked as 
each line is added to the polygon as it would result in a significant decrease in 

Fig. 17.5  Illustration of 
the line simplification 
process for the simplified 
surface group in Fig. 17.4

J. L. Brown et al.



323

computational efficiency. Instead, after polygons have been created, they are 
checked to see if any vertices other than the start/end vertex have been used multiple 
times. An “ear-clipping” method is employed in this situation. To ear-clip a poly-
gon, one creates a new polygon from the lines between the vertex that is used mul-
tiple times. These lines are then removed from the larger polygon and a new polygon 
is added to the facet as demonstrated in Fig. 17.7. At this point, the mesh is now an 
intersection-free and redundancy-free (all vertices, lines, and facets are unique) 
mesh that is represented by the least number of surfaces. If the surface-mesh phan-
tom is to be converted to a tetrahedral-mesh phantom, as required by the PHITS 
radiation transport code, the open-source conversion code TETGEN [5] may be 
utilized. The mesh can also be triangularized and exported in a file format accept-
able to most modern CAD software codes.

17.2.2  �Conversion Process Benchmarking

In testing the performance of the voxel-to-mesh conversion algorithm, two bench-
marking tasks were performed. First, it was important to test that the algorithm is 
robust and can handle arbitrary datasets correctly. Thus, a series of random square 
binary voxel arrays were generated and then meshed to contain between 103 and 108 
elements. One example is shown in Fig.  17.8. Second, it was important that the 
conversion algorithm performed efficiently in a practical setting. Thus, mesh con-
versions were applied to the UF/NCI reference adult male phantom [6] at voxel 
resolutions ranging from 1  cm3 to 1  mm3 as shown in Fig.  17.9. Finally, it was 

Fig. 17.6  Illustration of 
the polygon detection 
process for the simplified 
set of lines in Fig. 17.5

Fig. 17.7  Illustration of 
the polygon correction and 
hole detection process for 
the simplified set of lines 
in Fig. 17.6. Each color 
represents a polygon 
formed in the facet, with 
the black color illustrating 
the presence of a hole in 
the facet

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion



324

important to assess how this conversion algorithm scales across multiple proces-
sors. Thus, the previous two benchmarking studies were performed using 1, 2, 4, 8, 
and 16 cores, respectively. All benchmarking tasks were run on the UF HiPerGator 
cluster using Intel E5-2698 v3 (2.3 GHz) processors. The code was compiled using 
Intel’s C++ compiler with the –qopenmp and –O3 compiler flags.

17.3  �Results

For the random array meshing benchmarks on a single core, the time to mesh for the 
highest resolution dataset (250 × 250 × 250) was 2.5 × 104 seconds, while the conver-
sion time for the highest resolution head phantom was approximately 350 seconds. 

Fig. 17.8  Example of a 
106 random binary voxel 
array (left) and its 
converted meshed format 
(right)

Fig. 17.9  Example of a voxel phantom (resolution of 1 mm3) (top) converted into a mesh format 
(bottom)

J. L. Brown et al.



325

Looking at the time breakdown for each step in the meshing algorithm, the majority 
of the compute time is devoted to the surface simplification step (see Sect. 2.1.3), 
which is expected as this step iteratively compares facets to one another causing this 
portion of the algorithm to have an order of n2 performance (see Fig. 17.10). For the 
voxel-to-mesh phantom conversion, a more linear performance is seen, but this is 

Fig. 17.10  Random array meshing time (units: 104 s) results per step (units: 107 steps) (top) and 
per multiprocessor scaling (bottom)

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion



326

Fig. 17.11  Voxel phantom meshing time (units: s) results per step (units: 109 steps) (top) and per 
multiprocessor scaling (bottom)

likely due to the less randomized nature of the problem (see Fig.  17.11). Across 
multiple processors, both benchmarks saw performance gains although, as expected, 
they are not linear. The voxel-to-mesh phantom conversion speedup for 16 cores was 
approximately a factor of 4.1, whereas for 8 cores it was only a factor of 3.7. The 
diminishing returns are likely due to the implementation of OpenMP scheduling. 
The process can be better optimized in future development of this algorithm.

J. L. Brown et al.



327

17.4  �Conclusions

The presented methodology provides a fast and efficient method to convert voxel 
data to a polygon mesh format, containing no degenerate facets and no self-
intersections, thus making it useful for input to Monte Carlo sampling codes and 
CAD programs. The algorithm can convert any segmented set of voxelized data to 
an optimized meshed surface suitable for a variety of applications such as Monte 
Carlo radiation transport or finite element simulations of the interactions between 
electromagnetic fields and the human body, e.g., during MRI.

Acknowledgments  This work was supported in part by Contracts T72472 and T73057 with Wyle 
Laboratories and NASA Johnson Space Center, and grant R01 EB013558 with the National Cancer 
Institute.

References

	1.	 Werner, C.  J., et  al. (2018). Title: MCNP Version 6.2 Release Notes. In LA-UR-18-20808 
(pp. 1–39).

	2.	 Geant4 Collaboration 2017 Introduction to GEANT4, Release 10.4. https://geant4.web.cern.
ch/support/user_documentation.

	3.	 Sato, T., et al. (2018). Features of Particle and Heavy Ion Transport code System (PHITS) ver-
sion 3.02. Journal of Nuclear Science and Technology, 55(6), 684–690.

	4.	 Furuta, T., et al. (2017). Implementation of tetrahedral-mesh geometry in Monte Carlo radia-
tion transport code PHITS. Physics in Medicine and Biology, 62(12), 4798–4810.

	5.	 Si, H. (2015). TetGen, a quality tetrahedral mesh generator. ACM Transactions on Mathematical 
Software, 41(2), 11.

	6.	 Lee, C., Lodwick, D., Hurtado, J., Pafundi, D., Williams, J. L., & Bolch, W. E. (2010). The 
UF family of reference hybrid phantoms for computational radiation dosimetry. Physics in 
Medicine and Biology, 55(2), 339–363.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

17  A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion

https://geant4.web.cern.ch/support/user_documentation
https://geant4.web.cern.ch/support/user_documentation
http://creativecommons.org/licenses/by/4.0/

	Chapter 17: A Robust Algorithm for Voxel-to-Polygon Mesh Phantom Conversion
	17.1 Introduction
	17.2 Materials and Methods
	17.2.1 Voxel to Mesh Conversion Procedure
	Data Preparation
	Gridded Surface Generation
	Surface Simplification
	Line Simplification
	Polygon Detection
	Polygon Correction and Hole Detection

	17.2.2 Conversion Process Benchmarking

	17.3 Results
	17.4 Conclusions
	References




